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Sensitivity Analysis of Cascaded Quantum

Feedback Amplifier
Yu Yokotera and Naoki Yamamoto

Abstract—Quantum amplifier is an essential device in quantum
information processing. As in the classical (non-quantum) case,
its characteristic uncertainty needs to be suppressed by feedback,
and in fact such a control theory for a single quantum amplifier
has recently been developed. This letter extends this result to the
case of cascaded quantum amplifier. In particular, we consider
two types of structures: the case where controlled amplifiers are
connected in series, and the case where a single feedback control
is applied to the cascaded amplifier. Then, we prove that the latter
is better in the sense of sensitivity to the uncertainty. A detailed
numerical simulation is given to show actual performance of these
two feedback schemes.

Index Terms—Quantum information and control, stability of
linear systems, robust control.

I. INTRODUCTION

A
MPLIFIERS are essential in modern technology [1].

Note that this device is not used in a stand-alone fashion,

because its amplification gain cannot be exactly specified

due to unavoidable characteristic uncertainty. Actually the

amplified output signal produced from a bare amplifier can

be largely distorted, and eventually the performance of signal

processing is degraded. Black discovered that feedback control

resolves this issue [2], which has been further investigated in

depth [3], [4]. This feedback amplification method, which is

now known as one of the most successful examples of control

theory, has made a significant contribution to the development

of the today’s electronic technologies.

The idea of classical (non-quantum) feedback amplification

is as follows. Figure 1 shows a system composed of a

single amplifier with gain G and another system (called the

controller) with gain K. A simple calculation yields

y = Gfbu, Gfb =
G

1+GK
. (1)

Therefore, in the limit |G| → ∞, the closed-loop gain becomes

Gfb → 1/K. This means that the robust amplification is realized

by taking a passive and attenuating controller, such as a

resistor, because the characteristic change in K of those passive

devices is in general quite small.

A single amplifier does not always provide sufficient gain

and bandwidth due to the gain-bandwidth constraint, and

thus cascaded amplifiers are often used in practice to satisfy

the required performance [1]. Surely feedback stabilization

is needed in this case as well, but it is not obvious how to

construct a feedback configuration for such a multi-component
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Fig. 1: Feedback control for a classical amplifier.
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Fig. 2: Two basic feedback configurations for cascaded clas-

sical amplifier; type-a and type-b.

network. In the classical control theory, as the most basic

study, two types of feedback configurations depicted in Fig. 2

were first investigated. The type-a scheme shown in Fig. 2(a) is

the cascade connection of the feedback-controlled amplifiers,

and in the type-b scheme shown in (b), a single feedback loop

is constructed for the cascaded amplifier. In [5], it was shown

that the type-b scheme is more effective for improving the

robustness than the type-a.

Turning our attention to the quantum regime, the quantum

amplifier [6]–[9] is expected to serve as a fundamental device

in quantum information science, such as quantum sensing

[10]–[12] and quantum communication [13]–[15]. In practice,

the quantum amplifier must be stabilized via feedback as in

the classical case. In fact one of the authors has developed the

theory of feedback stabilization for a single quantum amplifier

[16]. It is thus important to extend the theory to the case of

cascaded quantum amplifier [17]–[19], which has not been yet

established; in particular, analyzing proper quantum versions

of the above-described two classical feedback configurations

should be an important basic study along this research di-

rection. The contribution of this letter is to prove that a

quantum version of the classical type-b scheme is better than

a correspondence to the type-a, in the sense of the robustness.

Note that, although this is the same conclusion as the classical

one, the proof is non-trivial, because the quantum amplifier is

essentially a multi-input and multi-output (MIMO) device and

eventually the analysis becomes much more involved than the

classical case, as will be shown in the letter.

This letter is organized as follows. Section II is devoted to

some preliminaries. In Section III, we prove the main result.

Section IV gives a detailed numerical simulation to show the

robustness and stability of the controlled amplifiers.
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II. PRELIMINARIES

A. Sensitivity Function and Cascaded Classical Amplifier

Here we aim to quantify the robustness of the controlled

amplifier described in Section I. Suppose that a small charac-

teristic change ∆G occurs in the gain as G → G+∆G. Then

the closed-loop gain (1) changes to Gfb+∆Gfb. The sensitivity

function of Gfb with respect to G is defined as

S =
∆Gfb/Gfb

∆G/G
. (2)

Now the small deviation ∆Gfb is calculated as

∆Gfb =
G+∆G

1+(G+∆G)K
− G

1+GK
≈ ∆G

(1+GK)2
,

thus S= 1/(1+GK). Therefore, the open-loop gain GK should

be carefully designed so that |S| < 1 while retaining the

stability of the closed-loop system.

Next we consider the cascaded feedback amplifiers shown

in Fig. 2 [5], which in both cases are composed of N identical

classical amplifiers. In the type-a scheme, the same feedback

controller with gain Ka is applied to each amplifier, and in the

type-b scheme, the output of the terminal amplifier is fed back

to the first one through the single controller with gain Kb. The

overall gains are given by

Gfb
a = (Gfb)N =

GN

(1+GKa)N
, Gfb

b =
GN

1+GNKb

.

Now suppose that the small change G→G+∆G occurs in one

of the amplifiers, say, the j-th amplifier. Then the fluctuations

of Gfb
a and Gfb

b are calculated as follows;

∆Gfb
a =

(G+∆G)GN−1

[1+(G+∆G)Ka](1+GKa)N−1
− GN

(1+GKa)N

≈ GN−1∆G

(1+GKa)N+1
,

∆Gfb
b =

(G+∆G)GN−1

1+(G+∆G)GN−1Kb

− GN

1+GNKb

≈ GN−1∆G

(1+GNKb)2
.

From Eq. (2), the sensitivity functions are given by

Sa = 1/(1+GKa), Sb = 1/(1+GNKb). (3)

Then, if the gains of both of the controlled systems are equal

and these are smaller than the gain of the non-controlled

cascaded amplifier, i.e., |Gfb
a |= |Gfb

b |< |G|N , we have

|Sb|
|Sa|

=
1

|1+GKa|N−1
< 1.

Thus the type-b feedback scheme has a better performance

than the type-a scheme in the sense of sensitivity.

B. Quantum Amplifier and Feedback Stabilization

In this letter we consider the phase-preserving linear quan-

tum amplifier [6]–[9], which is simply called the “amplifier”

in what follows. Let b(t) be a field annihilation operator called

the signal; b(t) has the meaning of a complex amplitude of the

field and satisfies the canonical commutation relation (CCR)

b(t)b†(t ′)− b†(t ′)b(t) = δ (t − t ′), where b†(t) represents the

Nonlinear crystal

Signal Idler

Pump 

beam

(a) (b)

Fig. 3: (a) Non-degenerate parametric amplifier. (b) Feedback

configuration for a single quantum amplifier.

Hermitian conjugate of b(t). The amplifier transforms b(t) to

b̃(t) = gb(t)+
√

g2 − 1d†(t), where d(t) is an additional field

annihilation operator called the idler, which is necessary to

preserve the CCR of b̃(t). Also g> 1 is the amplification gain.

In quantum optics the non-degenerate parametric amplifier

(NDPA) [20] shown in Fig. 3(a) is often used. This is an

optical cavity with two inputs b1 (signal) and b2 (idler). The

corresponding internal cavity modes a1 and a2 couple with

each other at the pumped nonlinear crystal. In the rotating-

frame at the half of input laser frequency, the dynamical

equations of the NDPA under ideal setup (i.e., zero-detuned

and no-loss) are given by

ȧ1 =−κ

2
a1 + εa†

2 −
√

κb1, ȧ†
2 =−κ

2
a†

2 + εa1 −
√

κb†
2,

b̃1 =
√

κa1 + b1, b̃
†
2 =

√
κa

†
2 + b

†
2,

where κ is the cavity damping rate and ε is the strength of

nonlinearity. (The mirror Mi is partially transmissive for ai but

perfectly reflective for the other cavity mode.)

In the Laplace domain, the amplified output signal b̃1 is,

together with the amplified idler b̃2, represented as

[

b̃1(s)

b̃
†
2(s)

]

=

[

g1(s) g2(s)
g2(s) g1(s)

][

b1(s)

b
†
2(s)

]

, (4)

where g1(s) = (s2 −κ2/4− ε2)/D(s) and g2(s) = −κε/D(s)
are the transfer functions with D(s) = s2 + κs + κ2/4 −
ε2. Note that |g1(iω)|2 − |g2(iω)|2 = 1, ∀ω holds to sat-

isfy the CCR of the output, represented by b̃(iω)b̃†(iω ′)−
b̃†(iω ′)b̃(iω) = δ (ω −ω ′) in the Fourier domain. Also the

characteristic equation D(s) = 0 yields the stability condition

0 < x = 2ε/κ < 1. The gain at the center frequency satisfies

|g1(0)|= (1+ x2)/|1− x2| → ∞ as x → 1− 0.

Here we review the general feedback method for a single

quantum amplifier [16]. The general linear quantum amplifier

is represented in the Laplace domain as [21]:

[

b̃1(s)

b̃
†
2(s)

]

= G(s)

[

b1(s)

b
†
2(s)

]

, G(s) =

[

G11(s) G12(s)
G21(s) G22(s)

]

,

where |G11(iω)|2 −|G12(iω)|2 = |G22(iω)|2 −|G21(iω)|2 = 1

and G21(iω)G∗
11(iω)−G22(iω)G∗

12(iω) = 0 hold for all ω . As

for the controller, we take a passive and attenuating quantum

system with the following input-output relation:

[

b̃
†
3(s)

b̃
†
4(s)

]

= K(s)

[

b
†
3(s)

b
†
4(s)

]

, K(s) =

[

K11(s) K12(s)
K21(s) K22(s)

]

.
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Fig. 4: Two basic feedback configurations for cascaded quan-

tum amplifier; type-A and type-B.

K†(iω)K(iω) = I, ∀ω holds to satisfy the CCR in both b̃3

and b̃4. These two systems are connected through the feedback

b2 = b̃4 and b3 = b̃2, as shown in Fig. 3(b). The input-output

relation of the closed-loop system is given by
[

b̃1(s)

b̃
†
3(s)

]

=

[

Gfb
11(s) Gfb

12(s)
Gfb

21(s) Gfb
22(s)

][

b1(s)

b
†
4(s)

]

, (5)

where

Gfb
11 = [G11 −K21(G11G22 −G12G21)]/(1−G22K21),

Gfb
12 = G12K22/(1−G22K21), Gfb

21 = G21K11/(1−G22K21),

Gfb
22 = [K12 +G22(K11K22 −K12K21)]/(1−G22K21).

Then |Gfb
11(s)| → 1/|K21(s)| > 1 holds in the high-gain limit

|G11|→∞, meaning that the amplification process can be made

robust by feedback as in the classical case.

III. CASCADED QUANTUM FEEDBACK AMPLIFIER

In this section we show the quantum version of the classical

cascade amplification theory given in Section II-A. First note

that, because the quantum amplifier is an MIMO system and

hence it essentially differs from the classical one, specifying

the feedback network composed of amplifiers and controllers,

which corresponds to the classical one shown in Fig. 2, is

a non-trivial problem. Here we particularly consider the case

where the idler mode of the amplifier can be used, in addition

to the signal mode, to construct the feedback network; actually

in the standard experiments of quantum optics [20] and super-

conductivity [22], the idler mode is artificially implemented

and is thus accessible. In this formulation, reasonable quantum

versions of the classical feedback networks are illustrated in

Fig. 4; the type-A and type-B schemes correspond to the

classical type-a and type-b schemes, respectively. In both

cases, the signal-out and the idler-out are connected to the

signal-in and the idler-in, respectively, and eventually the

whole system has only one idler input from outside. Note

that, if the idler modes are not accessible and only the signal

modes can be connected, then in both configurations the whole

closed-loop system has multiple idler inputs and eventually it

is subjected to a large noise coming from those idler input

channels.

Now the problem is to compare the sensitivity of the two

schemes shown in Fig. 4. We tackle this problem under the

following setting. First, we focus on the gain at the center

frequency ω = 0. Then we consider the quantum amplifier

whose transfer function matrix at ω = 0 is of the form

G(0) =

[

G1 G2

G2 G1

]

, G2
1 −G2

2 = 1, Gi ∈R. (6)

Note that the ideal NDPA with transfer functions (4) indeed

fulfills this condition. Moreover we suppose that both feedback

networks are composed of N identical quantum amplifiers

characterized by Eq. (6), and that the gain of only the j-th

amplifier changes as G1 → G1 + ∆G1 and G2 → G2 + ∆G2.

Lastly, without loss of generality, the transfer function matrix

of the controller at ω = 0 can be set to:

K•(0) =

[

K1• K2•
−K2• K1•

]

, K2
1•+K2

2• = 1, Ki• ∈R,

where •=A,B; i.e., KA(0) and KB(0) are applied to the type-A

and the type-B schemes, respectively.

First, we derive the overall gain for the type-A scheme.

From Eq. (5), each feedback-controlled amplifier has the

following transfer function matrix:

Gfb(0) =

[

Gfb
1 Gfb

2

Gfb
2 Gfb

1

]

=
1

1+G1K2A

[

G1 +K2A G2K1A

G2K1A G1 +K2A

]

.

This matrix can be diagonalized using the orthogonal matrix

P = 1/
√

2[1,1;1,−1] as follows;

P−1Gfb(0)P = diag{λ fb
+ , λ fb

− }=
[

λ fb
+ 0

0 λ fb
−

]

,

where λ fb
± = (G1 + K2A ±G2K1A)/(1 +G1K2A). The overall

transfer function matrix is the N product of Gfb(0);

Gfb
A ≡

[

Gfb
1A Gfb

2A

Gfb
2A Gfb

1A

]

= [Gfb(0)]N

=
1

2

[

(λ fb
+ )N +(λ fb

− )N (λ fb
+ )N − (λ fb

− )N

(λ fb
+ )N − (λ fb

− )N (λ fb
+ )N +(λ fb

− )N

]

.

The gain of interest is the (1,1) element of Gfb
A , i.e., Gfb

1A.

Now the characteristic changes G1 → G1 + ∆G1 and G2 →
G2 +∆G2 occur; then, using G2∆G2 = G1∆G1, we find that

the fluctuation of Gfb
1A is calculated as

∆Gfb
1A =

1

2

[

G1 +∆G1 +K2A +(G2 +∆G2)K1A

1+(G1+∆G1)K2A

− G1 +K2A +G2K1A

1+G1K2A

]

(

λ fb
+

)N−1

+
1

2

[

G1 +∆G1 +K2A − (G2 +∆G2)K1A

1+(G1 +∆G1)K2A

− G1 +K2A −G2K1A

1+G1K2A

]

(

λ fb
−
)N−1

≈ K1A∆G1

2G2(1+G1K2A)

[

(

λ fb
+

)N

−
(

λ fb
−
)N

]

.



As a result, the sensitivity function is represented as

SA =
∆Gfb

1A/Gfb
1A

∆G1/G1

=
K1AG1

G2(1+G1K2A)

Gfb
2A

Gfb
1A

. (7)

Next we consider the type-B scheme, where the single

feedback control is applied to the series of quantum amplifiers

with transfer function matrix (6). Noting that G(0) is diago-

nalized in terms of the orthogonal matrix P as P−1G(0)P =
diag{λ+, λ−} with λ± = G1 ±G2, we have

[G(0)]N =

[

M1 M2

M2 M1

]

=
1

2

[

λ N
+ +λ N

− λ N
+ −λ N

−
λ N
+ −λ N

− λ N
+ +λ N

−

]

.

From Eq. (5), the transfer function matrix of the whole closed-

loop system is then given by

Gfb
B ≡

[

Gfb
1B Gfb

2B

Gfb
2B Gfb

1B

]

=
1

1+M1K2B

[

M1 +K2B M2K1B

M2K1B M1 +K2B

]

.

The characteristic change in G1 and G2 induces a small

fluctuation in the overall gain, Gfb
1B, as follows:

∆Gfb
1B =

M1 +∆M1 +K2B

1+(M1+∆M1)K2B

− M1 +K2B

1+M1K2B

=
K2

1B∆M1

(1+M1K2B)[1+(M1 +∆M1)K2B]

=
K2

1BM2∆G1

(1+M1K2B)[G2 +(M1G2 +M2∆G1)K2B]

≈ K1BGfb
2B∆G1

G2(1+M1K2B)
,

where the following equality is used:

G2∆M1 = M2∆G1. (8)

The proof of this equation is given in Appendix. Therefore we

arrive at the following sensitivity function:

SB =
∆Gfb

1B/Gfb
1B

∆G1/G1

=
K1BG1

G2(1+M1K2B)

Gfb
2B

Gfb
1B

. (9)

Now we show the main result of this letter; if the gains of

both of the controlled systems are equal and these are smaller

than the gain of the non-controlled cascaded amplifier, i.e.,

|Gfb
1A|= |Gfb

1B|< |M1|, we prove that

|SB|< |SA|. (10)

The proof is given in Appendix. Therefore, the type-B feed-

back scheme is better than the type-A scheme in terms of the

sensitivity to the characteristic uncertainty ∆G1.

Remark 1: Here we remark on a difference between the

quantum and classical sensitivity functions. Because we aim

to construct a high-gain feedback controlled amplifier, let us

assume |Gfb
1•| ≫ 1 (•= A,B). Then, due to |Gfb

1•|2−|Gfb
2•|2 = 1,

Eqs. (7) and (9) are then approximated as

SA ≈ K1AG1

G2(1+G1K2A)
, SB ≈ K1BG1

G2(1+M1K2B)
.

TABLE I: Nominal parameters and the resulting sensitivity.

Case1 Case2 Case3 Case4

N 2 5

M1 [dB] 45 30 45 30

x 0.90 0.78 0.53 0.393

βA 0.2 0.1 0.07 0.03

βB −0.0412 −0.0291 0.0034 0.0046

SA 0.3388 0.7259 1.0718 1.4094

SB 0.1190 0.5271 0.7428 1.2802

gm [dB] 8.1310 18.4593 8.5699 19.9847

Now further let us take |G1| ≫ 1; then, from G2
1−G2

2 = 1, the

quantum sensitivity function S• is identical to the classical one

(3) except for K1•. However, the idea of cascade amplification

is to connect many low-gain amplifiers in series to realize

|Gfb
1•| ≫ 1 (e.g., Case 4 in Section IV); in this case G1/G2

takes a large value, and eventually S• can become bigger than

the classical one or even 1. In the classical case, this type of

performance degradation does not occur, which is due to the

increase of G1/G2; note that this term stems from the CCR

constraint on quantum mechanical systems.

IV. STABILITY AND SENSITIVITY ANALYSIS

The superiority of the type-B scheme over the type-A is

guaranteed to hold only at the center frequency ω = 0. Thus,

in this section, we focus on a specific system and numerically

investigate the frequency dependence of amplification gain in

those two schemes, with particular attention to the robustness

and stability properties.

The amplifier is the ideal NDPA discussed in Section II-B.

The controller is a partially transmissive mirror called the

beam-splitter (BS), which is a 2-inputs and 2-outputs passive

static system with the following transfer function matrix:

K•(s) =

[

α• −β•
β• α•

]

, α2
• +β 2

• = 1,

where • = A,B. The real parameters α•,β• ∈ R represent the

transmissivity and reflectivity of the mirror, respectively. Note

that, from Eq. (5), the single NDPA with this controller has

the amplification gain 1/|β•| in the limit x → 1− 0.

We consider the four cases summarized in Table I; the

number of amplifiers is N = 2 (Cases 1 and 2) or N = 5 (Cases

3 and 4); the gain of the (1,1) element of [G(0)]N , i.e., the non-

controlled cascaded NDPA at ω = 0, is M1 = 45 dB (Cases

1 and 3) or M1 = 30 dB (Cases 2 and 4). In each case the

cavity decay rate of the NDPA is fixed to κ = 1.8× 107 Hz

[23], [24], while x = 2ε/κ is chosen so that M1 equals to 45

dB or 30 dB. The reflectivity βB was determined as follows;

first we fix the parameters of the type-A system, x and βA,

and then βB is determined so that the gains at ω = 0 of both

of the schemes are the same, i.e., |Gfb
1A|= |Gfb

1B|.
First, let us see the stability of the feedback-controlled

system. For the type-A system, it is enough to analyze the

stability of the single feedback-controlled NDPA; its charac-

teristic equation is given by

s2 +
κ

1−βA

s+
1+βA

1−βA

κ2

4
− ε2 = 0.
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Fig. 5: Nyquist plots of the type-B controlled system.

The system is stable if and only if both of the two solutions s

of this equation satisfy Re(s)< 0, which leads to x = 2ε/κ <
√

(1+βA)/(1−βA). This condition is always satisfied if the

NDPA is stable (x < 1) and 0 ≤ βA < 1.

To analyze the stability property of the type-B system, we

use the Nyquist plot, which is now directly applicable because

all the parameters (κ ,ε,αB,βB) are real. The Nyquist plot is

the vector plot of the open-loop transfer function L(s), i.e.,

the trajectory of (Re{L(iω)}, Im{L(iω)}) with ω ∈ (−∞,+∞);
note that L(s) = G(s)K(s) for the classical system (1). The

feedback-controlled system is stable if and only if there is

no encirclement of the point (−1,0), provided that L(s) has

no unstable poles. Now, from Eq. (5) the type-B system has

the open-loop transfer function L(s) = −[GN ]22(s)βB, where

[GN ]22(s) is the (2,2) element of G(s)N . The Nyquist plots are

shown in Fig. 5; hence, from the above stability criterion, the

type-B system is stable in all Cases.

Next we discuss the sensitivity. To see this explicitly,

suppose that the characteristic change of the amplifier, ∆G1,

stems from the fluctuation of the parameter ε . We model this

uncertainty as ε ′ =(1+0.05r)ε , where r is the random number

generated from the uniform distribution over [−1,1]; that is,

the nominal parameter x = 2ε/κ given in Table I experiences

up to 5% deviation. The gain plots are shown in Fig. 6,

where the red and blue lines represent the gains of the type-

A and the type-B systems, respectively. Also the black lines

are the gain plots of the cascaded amplifier without feedback.

In each scheme (color), 100 sample paths are produced from

the above-mentioned probability distribution. The figure shows

that, in all Cases, the gain fluctuation of the controlled systems

at ω = 0 are smaller than that of the uncontrolled system; that

is, the feedback control always works well to suppress the

gain fluctuation of the amplifier, at the price of decreasing the

gain. Moreover, the fluctuation of the gain at ω = 0 of the

type-B controlled system is always smaller than that of the

type-A, i.e., |SB| < |SA|, as proven in Section III. However,

importantly, this fact does not hold over all frequencies; in

particular in Cases 1 and 3, the type-A scheme is better than

the type-B, at the frequency ω ∼ κ/10 where there is a peaking

in the gain.

(a) N = 2, M1 ≈ 45 [dB] (b) N = 2, M1 ≈ 30 [dB]

(c) N = 5, M1 ≈ 45 [dB] (d) N = 5, M1 ≈ 30 [dB]

Fig. 6: Gain plots of the feedback-controlled system.

Finally we discuss the control performance, with the focus

on both stability and sensitivity. The Nyquist plot can be used

to quantify how much the system is stable, in terms of the

gain margin gm = 1/|L(iωpc)| with ωpc the phase crossover

frequency satisfying ∠L(iωpc) = −180◦. Now, as shown in

Table I, the gain margin gm in Cases 1 and 3 are smaller than

that in Cases 2 and 4. Hence the systems in Cases 1 and 3

are less stable than those in Cases 2 and 4; actually a peaking

appears in Figs. 6(a) and (c), but not in (b) and (d). However,

as implied by Fig. 6, it is harder to reduce the sensitivity in

Cases 2 and 4, compared to Cases 1 and 3. That is, there is

a tradeoff between the stability and robustness. Note also that

the controlled system with less number of amplifiers has the

better sensitivity; in fact the controlled system composed of

N = 5 amplifiers, which yet has the same level of sensitivity

as that of the system with N = 2, is often unstable.

V. CONCLUDING REMARK

The long-term goal of this work is to develop the design

theory for feedback-controlled quantum networks containing

amplifiers, corresponding to the established classical one [1]–

[5]. Toward this goal, as an important first step, this letter

gives the following theorem: to construct a robust high-gain

quantum amplifier from some low-gain amplifiers, it is always

better to stabilize the cascaded amplifier via a single feedback

controller, than to take a cascade connection of feedback-

controlled amplifiers. Recall that, although this is the same

conclusion as the classical one, the proof of this fact is

highly non-trivial. Also, as stated in Remark 1 and shown

in Section IV, the sensitivity functions of the quantum feed-

back amplifiers have different characteristic from the classical

counterparts in robustness and stability. As a consequence, a

more careful sensitivity analysis will be required in general for

designing a practical quantum network device, e.g., a robust

quantum communication channel over a specific bandwidth

[13]–[15].



APPENDIX

First we prove Eq. (8). If the gain of the j-th amplifier

changes as G1 → G1 +∆G1 and G2 → G2 +∆G2, then M1 =
(λ N

+ +λ N
− )/2 changes as follows;

∆M1 =
1

2

[

(G1 +∆G1 +G2 +∆G2)λ
N−1
+

+(G1 +∆G1 −G2 −∆G2)λ
N−1
−

]

−M1

=
1

2

[

(∆G1 +∆G2)λ
N−1
+ +(∆G1 −∆G2)λ

N−1
−

]

=
∆G1

2

[

(

1+
G1

G2

)

λ N−1
+ +

(

1− G1

G2

)

λ N−1
−

]

=
∆G1

2G2

[

λ N
+ −λ N

−
]

=
M2

G2

∆G1.

Next we prove Eq. (10). To make a fair comparison,

we assume that both the controlled systems have the same

amplification gain at ω = 0, i.e., |Gfb
1A| = |Gfb

1B|, which leads

to |Gfb
2A|= |Gfb

2B|. Then we have

|SB|
|SA|

=

∣

∣

∣

∣

K1B

K1A

1+G1K2A

1+M1K2B

∣

∣

∣

∣

=

∣

∣

∣

∣

1+G1K2A

K1A

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

λ fb
+

)N −
(

λ fb
−
)N

λ N
+ −λ N

−

∣

∣

∣

∣

∣

.

Here, from the relations an − bn = (a− b)∑n
k=1 an−kbk−1 and

λ+λ− = λ fb
+ λ fb

− = 1, we have

(

λ fb
+

)N

−
(

λ fb
−
)N

=
(

λ fb
+ −λ fb

−
)[(

λ fb
+

)N−1

+
(

λ fb
+

)N−3

+ · · ·+
(

λ fb
+

)−(N−1)]

=
2G2K1A

1+G1K2A

N

∑
k=1

(

λ fb
+

)N−2k+1

,

and likewise λ N
+ −λ N

− = 2G2∑N
k=1 λ N−2k+1

+ . Hence, |SB|/|SA|
is now expressed as

|SB|
|SA|

=

∣

∣

∣

∣

∣

∑N
k=1

(

λ fb
+

)N−2k+1

∑N
k=1 λ N−2k+1

+

∣

∣

∣

∣

∣

. (11)

In addition to the condition |Gfb
1A|= |Gfb

1B|, we assume that the

gains of both of the type-A and type-B controlled systems are

smaller than the gain of the non-controlled cascaded amplifier;

|Gfb
1A|= |Gfb

1B|< |M1|, which is represented as

|Gfb
1A|

|M1|
=

∣

∣

∣

∣

∣

(

λ fb
+

)k
+
(

λ fb
+

)−k

λ k
++λ−k

+

∣

∣

∣

∣

∣

< 1, ∀k = 1, · · · ,N.

Then, if N is odd, Eq. (11) leads to

|SB|
|SA|

=

∣

∣

∣

∣

∣

∣

1+∑
(N−1)/2

k=1

[

(

λ fb
+

)2k
+
(

λ fb
+

)−2k
]

1+∑
(N−1)/2

k=1

(

λ 2k
+ +λ−2k

+

)

∣

∣

∣

∣

∣

∣

=
1+∑

(N−1)/2

k=1

[

(

λ fb
+

)2k
+
(

λ fb
+

)−2k
]

1+∑
(N−1)/2

k=1

(

λ 2k
+ +λ−2k

+

)

< 1.

Also, if N is even, particularly N = 4l− 2 (l = 1,2, · · ·),

|SB|
|SA|

=

∣

∣

∣

∣

∣

λ fb
+ +

(

λ fb
+

)−1

λ++λ−1
+

∣

∣

∣

∣

∣

1+∑l−1
k=1

[

(

λ fb
+

)4k
+
(

λ fb
+

)−4k
]

1+∑l−1
k=1

(

λ 4k
+ +λ−4k

+

) ,

and if N = 4l (l = 1,2, · · ·),

|SB|
|SA|

=

∣

∣

∣

∣

∣

λ fb
+ +

(

λ fb
+

)−1

λ++λ−1
+

∣

∣

∣

∣

∣

∑l
k=1

[

(

λ fb
+

)4k−2
+
(

λ fb
+

)−(4k−2)
]

∑l
k=1

[

λ 4k−2
+ +λ

−(4k−2)
+

] ,

which are both less than 1. This completes the proof.
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