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Abstract—This work is concerned with the problem of output
consensus for two classes of heterogeneous nonlinear multi-
agent systems which are interconnected via diffusive couplings
over directed graphs. Specifically, for agents that are input
feedforward passive (IFP), a condition in terms of passivity
indices is proposed for asymptotic output consensus. Moreover,
it is shown that the proposed condition can be exploited to
design the coupling gain that ensures asymptotic consensus via a
semidefinite program (SDP), and the existence of such a coupling
gain can be guaranteed provided all the agents are IFP. For agents
that are input feedforward output feedback passive (IF-OFP),
a condition in terms of passivity indices for practical output
consensus is provided, in which the relationship between the
coupling gain and the consensus error bound is revealed.

Index Terms—Agents-based systems, Cooperative control,
LMIs

I. INTRODUCTION

CONSENSUS, a fundamental issue in cooperative con-
trol of multi-agent systems, has received increasing re-

search attention for decades due to its wide applications,
e.g., frequency synchronization in power systems [1], for-
mations of unmanned aerial vehicles [2] and coordination
and control of distributed sensor networks [3]. Most of the
pioneer works have discussed the consensus problems for
systems with homogeneous agents, see, for instance, [2]–[4].
Recently, researchers have started to deal with the consensus
of heterogeneous multi-agent systems. In fact, heterogeneity
exists in most of the networked systems, e.g., a power system
composed of individual generators with different dynamics due
to different physical parameters. Among the remarkable works
on output consensus of heterogeneous multi-agent systems,
one should mention [5] and [6] where an internal model
principle is proposed as a necessary and sufficient condition
for output consensus of linear systems, and [7] where a general
framework for robust output consensus is established.

In this work, we concentrate on heterogeneous nonlinear
agents that can be characterized by passivity indices. It is
well known that dissipativity (and its special case, passivity)
is a useful tool for consensus analysis and control design. The
output consensus for passive multi-agent systems over weight-
balanced digraphs is studied in [8], which is further extended
to general digraphs in [9], [10]. A passivity-based switching
strategy is developed in [11] for general digraphs. The more
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general case wherein the agents can be described as input
feedforward passive (IFP) systems, which encompasses the
case of passive systems as a special case (see [12] for details),
is considered in [13]–[15]. Particularly, it is shown in [13] that
asymptotic consensus for IFP systems can be achieved via a
simple diffusive coupling protocol provided that the couplings
are sufficiently weak. In [14], [15], the non-trivial consensus
and its synthesis for passivity-short IFP systems are addressed
over general digraphs.

More recently, an emerging research aspect on heteroge-
neous multi-agent systems that has gained growing interests
is the practical consensus. Generally, it is difficult to achieve
complete asymptotic consensus in heterogeneous systems. Al-
ternatively, the notion of the “practical consensus” is proposed
in [16] to study the relationship between the coupling gain
and the consensus error bound. Some related works of prac-
tical consensus are [17] where practical consensus of single
integrator heterogeneous nonlinear time-varying systems over
undirected graphs is studied, and [18] where asymptotic and
practical consensus of QUAD nonlinear systems over weight-
balanced digraphs are studied. To the best of our knowledge,
the problem of practical consensus for heterogeneous multi-
agent systems over general digraphs has not been addressed
from the perspective of passivity indices yet.

Our contributions are as follows. First, a condition for
asymptotic output consensus of nonlinear IFP systems is pro-
posed. It is shown that asymptotic consensus can be achieved
over general digraphs if agents can be characterized as IFP
systems, which is an extension of [8]–[10] where all agents
are required to be passive. Moreover, the proposed condition is
exploited to design a suitable coupling gain via a semidefinite
program (SDP). Second, for agents that can be characterized as
input feedforward output feedback passive (IF-OFP) systems,
a condition for practical output consensus is derived, which
reveals the relationship between the coupling gain and the
consensus error bound.

II. PRELIMINARIES

A. Notation

Let R and Z be the set of real and integer numbers, respec-
tively. The transpose of a matrix A ∈ Rm×n is denoted by
AT . The notations img(A) and ker(A) denote the image and
kernel of A, respectively. The Kronecker product is denoted
as ⊗. ‖A‖ denotes the 2-norm of A. Given a symmetric
matrix M ∈ Rm×m, the notation M > 0 (M ≥ 0) denotes
that M is positive definite (positive semi-definite). Denote the
eigenvalues of M in ascending order as λ1(M) ≤ λ2(M) ≤



. . . ≤ λm(M). Denote Im as the m × m identity matrix.
1m := (1, . . . , 1)T ∈ Rm and 0m := (0, . . . , 0)T ∈ Rm.
col(v1, . . . , vm) = (vT1 , . . . , v

T
m)T denotes the column vector

stacked with vectors v1, . . . , vm. diag{αi} is a diagonal matrix
with its ith diagonal entry being αi. The notation Ck is used to
denote a k ∈ Z≥1 times continuously differentiable function.

B. Passivity

Let us first give the definition of passivity for a nonlinear
system described by

Σ :

{
ẋ = f (x, u)

y = h (x, u)
(1)

where x ∈ X ⊂ Rn, u ∈ U ⊂ Rm and y ∈ Y ⊂ Rm are the
state, input and output, respectively, and X , U and Y are the
state, input and output spaces, respectively.

Definition 1 (Dissipative/Passive System [19]). System Σ with
supply rate ω(t) is said to be dissipative if there exists a C1

nonnegative real function V (x), called the storage function,
such that for all t ≥ 0,

V (x (t))− V (x (0)) ≤
∫ t

0

ω (τ) dτ. (2)

System Σ is called a passive system if the supply rate is ω(t) =
u(t)T y(t).

Throughout this work, we assume that any storage function
V is radially unbounded, positive definite and V (0n) = 0.

Definition 2 (Excess/Shortage of Passivity [20]). System Σ is
said to be: Input Feedforward Passive (IFP) if it is dissipative
with respect to the supply rate ω(u, y) = uT y−νuTu for some
ν ∈ R, denoted as IFP(ν); Output Feedback Passive (OFP) if
it is dissipative with respect to the supply rate ω(u, y) = uT y−
ρyT y for some ρ ∈ R, denoted as OFP (ρ); Input Feedforward
Output Feedback Passive (IF-OFP) if it is dissipative with
respect to the supply rate ω(u, y) = uT y − νuTu− ρyT y for
some ν ∈ R and ρ ∈ R, denoted as IF-OFP (ν, ρ).

The signs of passivity indices ν and ρ denote an excess or
shortage of passivity. Particularly, when ν > 0 (respectively,
ρ > 0), the system is said to be input strictly passive (ISP)
(respectively, output strictly passive (OSP)).

C. Graph Theory

The information exchanging network is represented by a
graph G = (N , E) where N = {1, . . . , N} is the node set of
all agents and E ⊂ N ×N is the edge set. The edge (i, j) ∈ E
denotes that agent i can obtain information from agent j. The
graph G is said to be undirected if (i, j) ∈ E ⇔ (j, i) ∈ E
and directed otherwise. G is said to be strongly connected
if there exists a sequence of edges between any two agents. A
sequence of time-varying graphs {G(t)} is said to be jointly
strongly connected if there exists a T > 0 such that for
any tk, the union ∪t∈[tk,tk+T ]G(t) is strongly connected. The
adjacency matrix is defined as A = [aij ], where aii = 0,
aij = 1 if (i, j) ∈ E , and aij = 0, otherwise. The in-
degree and out-degree of the ith node are diin =

∑N
j=1 aij

and diout =
∑N
j=1 aji, respectively. The graph G is said to

be weight-balanced if diin = diout, ∀i ∈ N . The in-degree
matrix of G is defined as Win = diag{diin}. The Laplacian
matrix of G is defined as L = Win −A.

D. Preliminary Lemmas

Before stating our main results, we introduce some prelim-
inary lemmas as follows.

Lemma 1 ( [21]). Let Ξ = diag{ξi} where ξ is the left
eigenvector of the Laplacian matrix L corresponding to the
zero eigenvalue and satisfies that ξi > 0. Suppose the graph
G is strongly connected, then ΞL+ LTΞ ≥ 0.

Lemma 2 ( [22]). Given a singular symmetric matrix A ∈
RN×N with eigenvalues 0 < λ2 ≤ λ3 ≤ . . . ≤ λN , and
suppose 1N is the eigenvector corresponding to the zero
eigenvalue, then

min
x6=0N , 1T

Nx=0
xTAx = λ2 ‖x‖2 , max

x6=0N

xTAx = λN ‖x‖2 .

Lemma 3 ( [12]). Let V : Rm → R be a continuous positive
definite function that contains the origin. Then, there exist
class K functions α1 and α2, such that

α1 (‖x‖) ≤ V (x) ≤ α2 (‖x‖) .

Moreover, if V (x) is radially unbounded, then α1 and α2 can
be chosen to belong to class K∞.

III. PROBLEM FORMULATION

We consider a group of N heterogeneous agents of the
general form {

ẋi = fi(xi, ui)

yi = hi(xi)
i = 1, . . . , N (3)

where xi ∈ Rn, ui, yi ∈ Rm are the state, input and output,
respectively; fi and hi are general nonlinear functions. The
dimension of the input and output of all agents are the same.

Definition 3. The group of agents (3) is said to achieve
asymptotic output consensus if limt→+∞ ‖yi(t)− yj(t)‖ =
0, ∀i, j ∈ N .

Define the average output as ȳ := 1
N

∑N
i=1 yi.

Definition 4. The group of agents (3) is said to achieve
practical output consensus if given ε > 0, there exists a real
number T ≥ 0 (dependent on ε and yi(t0) for all i ∈ N ) such
that ‖yi(t)− ȳ(t)‖ ≤ ε, ∀t ≥ t0 + T, ∀i ∈ N .

In this work we consider the scenario where the agents
are diffusively coupled over a directed and strongly connected
communication graph G. To be specific, a consensus protocol
based on relative output feedback is exploited, and the input
ui, i ∈ N are determined as

ui = σ

N∑
j=1

aij(yj − yi), i = 1, . . . , N (4)



where the coupling gain σ is a positive constant. It follows
that a compact form of (4) is given by

u = −σ (L⊗ Im) y (5)

where L is the Laplacian matrix of G, u = col(u1, . . . , uN )
and y = col(y1, . . . , yN ).

For a group of heterogeneous dissipative agents (3) that can
be characterized by passivity indices, our goal is to investigate
their consensus behaviours when they are interacting with each
other by the diffusive coupling (4) over digraphs. Specifically,
we aim to derive a condition for asymptotic output consensus
and design a suitable coupling gain based on this condition.
Moreover, for more general classes of systems that may not
have the behaviour of asymptotic consensus, we aim to extend
our condition to address practical output consensus and reveal
the relationship between the coupling gain and the consensus
error bound.

IV. MAIN RESULTS

A. Asymptotic Consensus and the Coupling Gain

In this subsection, we first investigate asymptotic output
consensus and then propose an optimization method to design
a suitable coupling gain.

Assume that all agents in (3) can be represented as IFP
systems. In particular, the ith agent can be characterized
as a IFP(νi) system with the passivity index νi. Define the
symmetric matrix

M = −σ
2

(ΞL+ LTΞ)− σ2LTΞνL (6)

where ν = diag{νi} and Ξ is defined in Lemma 1.

Theorem 1. Consider the group of heterogeneous IFP agents
(3) with diffusive couplings (4). The interconnected system can
achieve asymptotic output consensus if M ≤ 0 and zero is a
simple eigenvalue of M .

Proof. Suppose M ≤ 0 and zero is a simple eigenvalue of M .
First, since each agent is IFP, there exists a storage function
Vi for each agent i such that

V̇i ≤ yTi ui − νiuTi ui, ∀i ∈ N . (7)

Select the candidate Lyapunov function as V =
∑N
i=1 ξiVi,

where ξi is the ith element of the left eigenvector of the
Laplacian matrix L corresponding to the zero eigenvalue and
satisfies ξi > 0. Hence, V is positive definite. The derivative
of V gives

V̇ ≤
N∑
i=1

ξiy
T
i ui − ξiνiuTi ui

=

N∑
i=1

yTi (ξi ⊗ Im)ui − uTi (ξiνi ⊗ Im)ui

=− σyT (Ξ⊗ Im)(L⊗ Im)y

− σ2yT (LT ⊗ Im)(Ξν ⊗ Im)(L⊗ Im)y

=yT
{[
−σ

2
(ΞL+ LTΞ)− σ2LTΞνL

]
⊗ Im

}
y

=yT (M ⊗ Im)y.

By properties of Kronecker product, one has M ≤ 0⇒M ⊗
Im ≤ 0. Therefore, V̇ ≤ 0.

Denote the set S = {y | yi = yj ,∀ i, j}. Clearly, y ∈ S is
equivalent to y = 1N ⊗ ȳ. Zero is the simple eigenvalue of
M and it can be observed that M1N = 0N . Then, yT (M ⊗
Im)y = 0, if and only if y ∈ S, and yT (M⊗Im)y < 0 ∀y /∈ S.
Since V ≥ 0 and V̇ ≤ 0, there exists a constant c ≥ 0 such
that limt→+∞ V = c. When V = c, V̇ = 0, and V̇ = 0 only
if y ∈ S . Therefore, limt→+∞ ‖yi(t)− yj(t)‖ = 0, ∀i ∈ N ,
and asymptotic output consensus can be achieved.

The next step is to design the coupling gain σ. In the
following result, it is shown that the condition in Theorem 1
can be satisfied if σ takes any value within an interval (0, σe)
where σe depends on the graph topology and the IFP indices
νi, i ∈ N . With a linear transformation technique introduced
in [23], the condition of Theorem 1 can be transformed into
a linear matrix inequality (LMI) condition.

Let M̄ := 1
σM = − 1

2 (ΞL+LTΞ)−σLTΞνL. Since σ > 0,
the condition of Theorem 1 is equivalent to M̄ ≤ 0 and zero
is a simple eigenvalue of M̄ . Let us define a matrix R ∈
RN×(N−1) such that img(R) = ker(1TN ) and it follows that
M̃ = RT M̄R has the same eigenvalues with M̄ except for
zero. The design of σ is converted to solving a SDP problem.

Corollary 1. The group of IFP agents (3) with the diffusive
coupling (4) can achieve consensus if the coupling gain σ ∈
(0, σe), where

σe = sup
σ∈R+

σ

subject to M̃ < 0.
(8)

Remark 1. It should be noted that since the matrix ΞL +
LTΞ ≥ 0 according to Lemma 1, the LMI constraint in (8)
is always strictly feasible. In other words, there must exist
σ > 0 such that M̃ < 0 regardless of the sign or value
of νi, i ∈ N . Moreover, the condition in Theorem 1 does
not impose any constraint on the sign of passivity indices
νi, i ∈ N , which implies that the agents can be non-passive,
and all IFP systems are output-consensusable. However, in
order to compensate for the shortage of passivity of agents,
the coupling gain should be chosen within the interval (0, σe)
instead of any positive value. Therefore, Theorem 1 is more
general than results obtained in [8]–[10] where all agents are
required to be passive. Moreover, when all agents are passive,
i.e., νi ≤ 0, ∀i ∈ N , it follows that the LMI condition M̃ < 0
in (8) is satisfied automatically and σe →∞, which recovers
the results in [8]–[10].

Remark 2. The conservatism of the condition in Theorem 1
stems from the choice of Lyapunov function. Moreover, it can
be observed that if the condition in Theorem 1 is satisfied
with some σ and νi, i ∈ N , it is also satisfied with the
same σ and with ν̂i, i ∈ N where ν̂i ≥ νi, i ∈ N . For
a nonlinear system, it is generally difficult to derive the exact
IFP index, and only its lower bound can be obtained by
specifying the storage function, which narrows the feasible
range of σ. The conservatism is illustrated in Example 1 by
checking the tightness of the bound σe.



B. Extensions of Asymptotic Consensus among IFP agents

An extension of Theorem 1 is to consider the case where
agents interact with each other using different coupling gains,
i.e.,

ui = σi

N∑
j=1

aij(yj − yi), i = 1, . . . , N (9)

where σi, ∀i ∈ N denote different coupling gains for different
agents.

Corollary 2. The group of IFP agents (3) with the diffusive
coupling (9) can achieve asymptotic output consensus if the
symmetric matrix Q = − 1

2 (ΞL+LTΞ)−LT diag{σi}ΞνL ≤
0 and zero is its simple eigenvalue.

Its proof follows from a similar argument of the proof of
Theorem 1 by selecting V =

∑N
i=1 ξiσ

−1
i Vi.

Remark 3. If ∃νi < 0, the approximation of the condi-
tion in this corollary in terms of eigenvalues gives σi <

λ2(ΞL+LT Ξ)
−2 mini{νi}λN (LT ΞL)

, showing that local gains can be de-
signed independent of other agents’ indices provided the
minimum index is known [14]. It also reveals what kinds of
graph can tolerate more non-passive systems and ensure larger
coupling gains. However, it adopts approximation in terms of
eigenvalues and thus certainly reduces the feasible range.

Another extension is to consider asymptotic consensus over
time-varying graphs, where G(t) at each time t is weight-
balanced. Denote L(t) as the graph Laplacian and assume it
is not zero at any time. The input u can be written as

u = −σ (L(t)⊗ Im) y. (10)

Corollary 3. Suppose {G(t)} is a sequence of jointly strongly
connected weight-balanced digraphs with L(t) 6= 0, then the
group of IFP agents (3) with the diffusive coupling (10) can
achieve asymptotic output consensus if ∃νi < 0 and the cou-

pling gain σ satisfies 0 < σ <
λ+(L(t)+LT (t))

−2 mini{νi}λN (LT (t)L(t))
, ∀t >

0 where λ+(·) denotes the nonzero smallest eigenvalue.

Its proof lies in the fact that ker (L(t)) = ker
(
LT (t)

)
and

the existence of a coordinate transformation for L(t) +LT (t)
and LT (t)L(t). The rest of the argument is similar to [8].

C. Practical Consensus and the Coupling Gain

Theorem 1 is developed based on the assumption that all
agents are IFP systems. When a wider class of agents, the IF-
OFP agents, is considered, the results proposed in Theorem 1
is no longer applicable. Alternatively, we will investigate
practical output consensus and reveal the relationship between
the consensus error bound and the coupling gain hereafter.

Consider the scenario where all agents in (3) can be
represented as IF-OFP systems. In particular, the ith agent
can be characterized as a IF-OFP (νi, ρi) system and there
exist some ρi < 0. In fact, if ρi ≥ 0, ∀i ∈ N , the term
uTi yi− νiuTi ui− ρiyTi yi is upper bounded by uTi yi− νiuTi ui
due to −ρiyTi yi ≤ 0. Then, the inequalities (7) are satisfied
and Theorem 1 still holds, so the asymptotic consensus can
still be achieved.

Assumption 1. For each individual agent, there exist con-
stants Ci, Ci > 0, such that Ci ‖xi‖ ≤ ‖yi‖ ≤ Ci ‖xi‖.

This assumption requires that each hi(xi) is upper bounded
and lower bounded by some linear functions.

Assumption 2. The average output ȳ of agents (3) with the
diffusive couplings (4) is uniformly bounded, i.e., there exists
p > 0, such that ‖ȳ‖ ≤ p.

This assumption is not restrictive. In fact, some of the
agents are allowed to be unstable so long as the instability
is compensated by other agents. Similar assumptions can be
found in [17], [18].

Theorem 2. Under Assumption 1 and 2, the group of IF-OFP
agents (3) with the diffusive coupling (4) can achieve practical
output consensus if M ≤ 0 where M is defined in (6), and

λN−1(M) < min
i
{ξiρi} (11)

where λN−1(M) denotes the second largest eigenvalue of M .
The error bound ε defined in Definition 4 is given by

ε = α−1
1

(
α2

(
(
√
b2 − ac+ a+ b)p

√
N

a

))
(12)

where a = −λN−1(M) + mini{ξiρi}, b = maxi {|ξiρi|},
c = mini{ξiρi} < 0 and α1, α2 are some class K functions
dependent on storage functions Vi, i ∈ N .

Proof. Suppose that M ≤ 0, and (11) holds. Since each agent
is IF-OFP, there exists a storage function Vi such that

V̇i ≤ yTi ui − νiuTi ui − ρiyTi yi, ∀i ∈ N .
Following similar lines of proof of Theorem 1, we select the
candidate Lyapunov function as V =

∑N
i=1 ξiVi. Since ξi > 0,

V is positive definite. The derivative of V gives

V̇ ≤
N∑
i=1

ξiy
T
i ui − ξiνiuTi ui − ξiρiyTi yi

=

N∑
i=1

yTi (ξiIm)ui − uTi (ξiνiIm)ui − yTi (ξiρiIm)yi

=− σyT (Ξ⊗ Im)(L⊗ Im)y − yT (Ξρ⊗ Im)y

− σ2yT (LT ⊗ Im)(Ξν ⊗ Im)(L⊗ Im)y.

Denote K = IN − 1
N 1N1TN and ε = y − 1N ⊗ ȳ. Then,

(1N ⊗ γ)T ε = (1N ⊗ γ)T (K ⊗ Im)y = (1TNK ⊗ γT )y = 0
where γ is an arbitrary vector Rn. Since M1N = 0, it can be
obtained that
V̇ ≤yT (M ⊗ Im)y − yT (Ξρ⊗ Im)y

=εT (M ⊗ Im)ε− (ε+ 1N ⊗ ȳ)T (Ξρ⊗ Im)(ε+ 1N ⊗ ȳ)

=εT (M ⊗ Im − Ξρ⊗ Im)ε− 2 (1N ⊗ ȳ)
T

(Ξρ⊗ Im)ε

− (1N ⊗ ȳ)
T

(Ξρ⊗ Im)(1N ⊗ ȳ)

≤
[
λN−1(M)−min

i
{ξiρi}

]
‖ε‖2

+ 2 ‖1N ⊗ ȳ‖ ‖Ξρ⊗ Im‖ ‖ε‖ −min
i
{ξiρi} ‖1N ⊗ ȳ‖2

≤− a ‖ε‖2 + 2bp ‖ε‖
√
N − cp2N

≤0, ∀ ‖ε‖ ≥
(√
b2 − ac+ b

)
p
√
N

a



where the second inequality follows from Lemma 2; the
third inequality follows from ‖Ξρ⊗ Im‖ = maxi {|ξiρi|}
and ‖1N ⊗ ȳ‖ ≤

√
Np based on Assumption 2. Moreover,

by the reverse triangle inequality, one has ‖ε‖ ≥ ‖y‖ −
‖1N ⊗ ȳ‖ ≥ ‖y‖−

√
Np, which follows that V̇ ≤ 0 whenever

‖y‖ ≥ (
√
b2−ac+b)p

√
N

a +
√
Np.

Denote x = col(x1, . . . , xN ), it follows that ‖x‖2 =∑N
i=1 ‖xi‖

2. By the inequality of arithmetic and geomet-
ric means, ‖x‖ ≤

∑N
i=1 ‖xi‖ ≤

√
N ‖x‖, and similarly,

‖y‖ ≤
∑N
i=1 ‖yi‖ ≤

√
N ‖y‖. Combining these inequalities

and under Assumption 1, one obtains

1√
N

min
i∈N
{ 1

Ci
} ‖y‖ ≤ ‖x‖ ≤

√
N max

i∈N
{ 1

Ci
} ‖y‖ . (13)

Since ξi > 0, it is obvious that ‖x‖ → ∞ ⇒ V =∑N
i=1 ξiVi → ∞. Then, by Lemma 3 there exist class K

functions α and α, such that α(‖x‖) ≤ V ≤ α(‖x‖). By
properties of class K functions and (13),

α

(
1√
N

min
i∈N
{ 1

Ci
} ‖y‖

)
≤ V ≤ α

(√
N max

i∈N
{ 1

Ci
} ‖y‖

)
.

Define α1(‖y‖) = α
(

1√
N

mini∈N { 1
Ci
} ‖y‖

)
, α2(‖y‖) =

α
(√

N maxi∈N { 1
Ci
} ‖y‖

)
. Since

√
N , mini∈N { 1

Ci
} and

maxi∈N { 1
Ci
} are all positive constants, it follows that α1,

α2 are also class K functions and α1 (‖y‖) ≤ V ≤ α2 (‖y‖).
Finally, according to Theorem 4.18 in [12], there exists

a T (dependent on y(t0) and (
√
b2−ac+a+b)p

√
N

a ), such that
‖y − 1N ⊗ ȳ‖ = ‖(K ⊗ Im) y‖ ≤ ‖y‖ ≤ ε, ∀t > T , where
ε = α−1

1

(
α2

(
(
√
b2−ac+a+b)p

√
N

a

))
. Since ‖y − 1N ⊗ ȳ‖2 =∑N

i=1 ‖yi − ȳ‖
2, it follows that ‖yi − ȳ‖ ≤ ε, ∀i ∈ N ,

∀t > T .

Note that the eigenvalues of M are dependent upon the
indices νi, i ∈ N . This implies that the IF-OFP indices ρi, νi
are constrained by the inequality (11). Intuitively, with fixed
indices νi, i ∈ N , the indices ρi, i ∈ N should not be too
small in order to reach practical consensus. Moreover, one can
observe that the value of a increases as the coupling gain σ
increases since M ≤ 0. Therefore, it can be inferred from (12)
that the error bound ε becomes smaller as the coupling gain
σ increases while satisfying the condition in (11).

V. NUMERICAL EXAMPLES

Example 1 (Asymptotic Consensus):

Consider three agents with the following dynamics
ẋ11 = −2x11 + u1

ẋ12 = u1

y1 = x12 − x11

,


ẋi1 = −i(xi1 + xi2)3 − i(xi1 + xi2) + iui

ẋi2 = −i(xi1 + xi2)3 − i(xi1 + xi2) + (i− 1)ui

yi = −2xi2, i = 2, 3

which are interconnected via a weight-unbalanced di-
graph shown in Fig. 1. The corresponding Laplacian ma-

trix is obtained as L =

 2 −1 −1
0 1 −1
−1 0 1

 with ξ =(
0.25 0.25 0.50

)T
.

Fig. 1: Digraph of three interconnected agents.

Let us first verify that these three systems are IFP(νi). It can
be obtained by exploiting Corollary 1 in [24] that ν1 = −0.50.
The indices of the nonlinear agents are estimated as ν2 =
−0.75 and ν3 = −0.83 respectively, by using storage function
Vi = 1

i(i−1)+4 ‖xi1 + xi2‖2 + 1
2 ‖xi1 − xi2‖

2, i = 2, 3.
Next, we solve the SDP in (8) and obtain that σe = 0.5438.

Hence, for any σ ∈ (0, 0.5438), asymptotic output consensus
can be achieved. For example, the outputs when σ = 0.50
is shown in the middle trajectories of Fig. 2. For asymptotic
consensus among passivity-short IFP agents, the coupling gain
cannot be arbitrarily large. As the coupling gain grows larger,
asymptotic consensus is no longer guaranteed. We check the
tightness of the bound and find that the outputs obviously
diverge when σ ≥ 1.10, which can be observed in the bottom
trajectories of Fig. 2. When individual agents take different
coupling gains, it is possible to choose some σi larger than the
threshold σe obtained in Corollary 1. For instance, given σ1 =
0.10, σ2 = 1.10 and σ3 = 0.30, the condition in Corollary 2
is satisfied, so asymptotic consensus can be achieved, which
is shown by the upper trajectories in Fig. 2.

0 20 40 60 80
Time(s)

-1

0

1

2

3

y i

1=0.10, 2 = 1.10, 3 = 0.30

=0.50

=1.10

Fig. 2: Outputs with different choices of coupling gains.

Example 2 (Practical Consensus):

Consider three agents interconnected through Fig. 1 with
the following dynamics{

ẋi = −ixi + (i+ 1) sinxi + ui

yi = xi, i = 1, 2, 3.

It can be shown by Vi = 1
2x

2
i that each agent without input

is exponentially bounded in ‖xi‖ ≤ i+1
i−δ , where 0 < δ < 1.

Since exponentially bounded systems cannot be destabilized



by diffusive couplings [18], [25], the average output ȳ is
bounded. All agents are IF-OFP systems whose indices are
estimated by the storage function Vi = 1

2x
2
i as ρi = −1

and νi = 0, i = 1, 2, 3. Then, M ≤ 0 for any σ > 0.
When σ ∈ (1.33,+∞), the inequality (11) holds and thus
practical consensus is guaranteed. The output trajectories when
σ = 3, 10 are shown respectively in Fig. 3. The relationship
between σ and

∑3
i=1 ‖yi(t)− ȳ(t)‖ is shown in Fig. 4. It can

be observed that the consensus error becomes smaller as the
coupling gain σ increases.

0 1 2 3 4 5 6 7 8 9 10

Time(s)

0.5

1

1.5

y i

(a) Outputs when σ = 3.

0 1 2 3 4 5 6 7 8 9 10

Time(s)

0.5

1

1.5

y i

(b) Outputs when σ = 10.

Fig. 3: Outputs with different coupling gains.
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0

0.05

0.1

0.15

0.2

0.25

Fig. 4: The relationship between σ and
∑3
i=1 ‖yi(t)− ȳ(t)‖.

VI. CONCLUSIONS

This work has addressed the problem of output consen-
sus for two classes of heterogeneous nonlinear multi-agent
systems interconnected via diffusive couplings over directed
graphs. Sufficient conditions in terms of passivity indices have
been proposed for asymptotic consensus of nonlinear IFP
agents and practical consensus of nonlinear IFP-OFP agents.
It has been shown that the interconnected system can achieve
asymptotic consensus by choosing a proper coupling gain if
all the agents are IFP. For agents that can be characterized as
IF-OFP systems, it has been shown that if the average output
is uniformly bounded, the interconnected system can achieve
practical consensus, i.e., a small enough consensus error bound
can be guaranteed given a sufficiently large coupling gain.
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