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Positive Definiteness in Linear Matrix Inequality
Problem for H-infinity Output Feedback Control

Problem
Hayato Waki

Abstract—We focus on the positive definiteness in the linear
matrix inequality (LMI) problem obtained from H∞ output
feedback control problem. In particular, we provide a necessary
condition for an inequality constraint of the LMI problem,
which is called the coupling constraint, to strictly hold at
optimal solutions. It is reasonable to expect that the condition
does not hold for most generalized plants. In other words, the
strict inequality at the optimal solutions rarely happens in H∞
output feedback control for most generalized plants. Thus, we
must apply remedies for constructing a controller after solving
the LMI problem.

Index Terms—LMIs, linear systems, optimization.

I. Introduction

THE importance of H∞ control was proposed by
Zames [1], and it has been studied from the view-

points of theory, application, and computation since then
(See e.g., [2] and references therein). Further, the two
approaches to deal with H∞ control problem, the algebraic
Riccati equations/inequalities approach (e.g., [3], [4]) and
linear matrix inequality (LMI) problem (e.g., [5], [6], [7]),
were proposed and investigated thoroughly.

For H∞ state feedback control, [8], [9] provided charac-
terizations of the optimality via the algebraic Riccati equa-
tion. These characterizations were obtained under only the
so-called standard assumption, i.e., the stabilizability of
the plant, and therefore, a rather satisfactory theory for
H∞ state feedback control was established. For instance,
the optimization was formulated as the infimum problem
and [9] provided characterizations for when the optimal
value is attained. On the other hand, although some
characterizations of the optimality and suboptimality for
H∞ output feedback control were discussed under the
stabilizability and some additional assumptions on zeros,
they are less satisfactory in comparison to H∞ state
feedback control.

In the LMI approach, the optimization of H∞ control
is formulated as an LMI problem, which is a convex
optimization problem. Thus, one can apply an SDP
solver to the resulting LMI problem obtained from H∞
control and obtain the optimal value of the problem.
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If an inequality constraint strictly holds at a computed
solution, one can construct a controller from the solution.
Otherwise, the solution may be available to construct a
reduced-order controller under some restrictive conditions.
See e.g., [7, Section IV].

The motivation of this study is to provide a necessary
condition for the inequality constraint of the LMI prob-
lem, which is called the coupling constraint, to strictly
hold in H∞ output feedback control. The condition is
that the optimal value is equal to one of the lower
bounds simply obtained from the definition of H∞ output
feedback control optimization. It is reasonable to expect
that, in general, the equality in a generalized plant is
rather unusual. Thus, the strict inequality at the optimal
solutions rarely happens in H∞ output feedback control
for most generalized plants. This means that a remedy
to construct a controller, which is proposed in e.g., [7,
Section IV.B], is necessary after solving the LMI problem
for most generalized plants.

The following notation and symbols are used in this
letter. Let R, C, Sn, Sn+ and Sn++ be the sets of real
numbers, complex numbers, n × n symmetry matrices,
n × n positive semidefinite matrices and n × n positive
definite matrices, respectively. j denotes the imaginary
unit. ā denotes the conjugate of a ∈ C. For b ∈ Cn, bH

denotes its conjugate transpose. σmax(M) is the largest
singular value of a matrix M . We define He(M) = M+MT

for any square matrix M .

II. Problem setting
We deal with the following generalized plant.[

Gzw Gzu

Gyw Gyu

]
:


ẋ = Ax+B1w +B2u,

z = C1x+D11w +D12u,

y = C2x+D21w,

(1)

where x(t) ∈ Rn, w(t) ∈ Rm1 , u(t) ∈ Rm2 , z(t) ∈ Rp1

and y(t) ∈ Rp2 . Here, the coefficient matrices in (1)
have appropriate sizes. We design the following dynamical
controller for (1).

K :

{
ẋK = AKxK +BKy,
u = CKxK +DKy,

(2)

where xK(t) ∈ Rn. We impose the following assumptions
to (1) throughout this letter.

Assumption 1: (A,B2) is stabilizable and (A,C2) is
detectable.



Assumption 2: A has no purely imaginary eigenvalues.
We provide a formulation of the optimization of H∞

output feedback control problem based on transfer func-
tions of (1) and (2) as follows:

γ∗ = inf
K∈K

sup
s∈jR

σmax(Gcl(K, s)), (3)

where Gcl(K, s) = Gzw(s) + Gzu(s)K(s)(In −
Gyu(s)K(s))−1Gyw(s) and K is the set of a rational
function on s that makes the transfer function Gcl(K, s)
internally stable.

We provide another formulation of H∞ output feedback
control problem, which is an LMI problem. For this, we
introduce some notation and symbols. The state space
representation of the closed loop of (1) with (2) is
formulated as follows:

[
ẋ
ẋK

]
=

[
Ã B2CK

BKC2 AK

] [
x
xK

]
+

[
B̃1

BKD21

]
w,

z =
[
C̃1 D12CK

] [ x
xK

]
+ D̃w

where Ã, B̃1, C̃1, and D̃ are defined by Ã = A+B2DKC2,
B̃1 = B1 + B2DKD21, C̃1 = C1 + D12DKC2, and D̃ =
D11 +D12DKD21, respectively.

The LMI problem of H∞ output feedback control
problem via the change in variables is formulated in (4).
Here, ∗ indicates the transpose of the lower triangular
matrix.

Remark 1: From [7], the optimal value of (4) is equal
to the optimal value γ∗ of (3). On the other hand, (4)
may not have optimal solutions even if γ∗ is finite. It
was proved in [10] that (4) has an optimal solution if the
following conditions 1) and 2) hold for (1).

1) For all λ ∈ C with ℜ(λ) ≤ 0, rank
[
A−λIn B2

C1 D12

]
=

n+m2 and rank
[
AT−λIn CT

2

BT
1 DT

21

]
= n+ p2.

2) Both D12 and DT
21 have full column ranks.

From the viewpoint of the algebraic Riccati equa-
tions/inequalities approach, [3, Section V.G] discussed the
optimality and suboptimality of controllers under a weaker
condition than 1) above.
An optimal solution of (4) is said to be positive definite
if the solution satisfies[

X ∗
−In Y

]
∈ S2n++. (5)

If an optimal solution of (4) is positive definite, then one
can compute controller parameters in (2) by using the
solution. See [7] for the detail.

III. Lower bounds
Define σ(M,x, y) = [ xH yH ]

[
O M

MH O

]
[ xy ]. To obtain the

lower bounds of γ∗, we use a characterization of the largest
singular value.

Lemma 1: For any M ∈ Cm×n, we can formulate
σmax(M) as follows.

σmax(M) = sup

{
σ(M,x, y) :

∥x∥22 + ∥y∥22 = 1,
x ∈ Cm, y ∈ Cn

}
,

Proof: It follows from the singular value decomposi-
tion (SVD) of M that there exist Σ ∈ Rm×n and unitary
matrices U ∈ Cm×m and V ∈ Cn×n such that M = UΣV
and all the off-diagonals of Σ are zeros. Moreover, we
have σmax(M) = Σ11 ≥ Σ22 ≥ · · · ≥ Σpp ≥ 0 and
p = min{m,n}.

For any (x, y), define z = UHx and w = V y. Then

σ(M,x, y) = σ(Σ, z, w) =

p∑
k=1

Σkk(z̄kwk + zkw̄k)

≤ Σ11(z
Hw + wHz) ≤ Σ11(∥z∥22 + ∥w∥22).

Furthermore, the equalities hold if we choose
√
2x and√

2y as the first column vector of U and V , respectively.
Since U and V are unitary, the desired result follows from
these discussions.

Using Lemma 1, we provide a lower bound of γ∗. For
any K ∈ K and s ∈ jR, we have

σmax(Gcl(K, s))

= sup

{
σ(Gcl(K, s), v2, v3) :

∥v2∥22 + ∥v3∥22 = 1,
v2 ∈ Cp1 , v3 ∈ Cm1

}

≥ sup

σ(Gcl(K, s), v2, v3) :
∥v2∥22 + ∥v3∥22 = 1,
vH2 Gzu(s) = 0,
v2 ∈ Cp1 , v3 ∈ Cm1


=sup

σ(Gzw(s), v2, v3) :
∥v2∥22 + ∥v3∥22 = 1,
vH2 Gzu(s) = 0,
v2 ∈ Cp1 , v3 ∈ Cm1

 .

γ∗
1 (s) denotes the optimal value of the last maximization

problem. Then, we obtain γ∗ ≥ γ∗
1 (s) for all s ∈ jR.

Similarly, we have

σmax(Gcl(K, s))

≥ sup

σ(Gcl(K, s), v2, v3) :
∥v2∥22 + ∥v3∥22 = 1,
Gyw(s)v3 = 0,
v2 ∈ Cp1 , v3 ∈ Cm1


=sup

σ(Gzw(s), v2, v3) :
∥v2∥22 + ∥v3∥22 = 1,
Gyw(s)v3 = 0,
v2 ∈ Cp1 , v3 ∈ Cm1

 .

We denote the last maximization problem by γ∗
2(s). Then,

we obtain γ∗ ≥ γ∗
2(s) for all s ∈ jR. It should be noted

that these lower bounds are obtained by removing the
controller K(s) from the objective function of (3). This
idea can be also seen at the proof of necessity in [11,
Theorem 2.6].

We can also obtain a lower bound of γ∗ by setting
s = ∞. In fact, for all K ∈ K, because Gzw(∞) = D11,
Gzu(∞) = D12, Gyw(∞) = D21 and K(∞) = DK , we
have

σmax (Gcl(K,∞)) = σmax (D11 +D12DKD21)

= inf

γ :

[
γIp1 ∗

−DT
11 − (D12DKD21)

T γIm1

]
∈ Sp1+m1

+ ,

γ ∈ R

 .

The last equality holds due to a characterization of the
maximum singular values in e.g., [2, Section 2.1]. We



inf


γ :

−

 He(AX +B2ĈK) ∗ ∗ ∗
C1X +D12ĈK −γIp1 ∗ ∗

(B1 +B2D̂KD21)
T (D11 +D12D̂KD21)

T −γIm1 ∗
(ÂK +A+B2D̂KC2)

T (C1 +D12D̂KC2)
T Y B1 + B̂KD21 He(Y A+ B̂KC2)

 ∈ S2n+m1+p1

+ ,

[
X ∗
−In Y

]
∈ S2n+ ,

[
ÂK B̂K

ĈK D̂K

]
∈ R(n+p2)×(n+m2), γ ∈ R


(4)

denote the last minimization by γ∗(DK). Then, we obtain
the following result.

Proposition 1: We have γ∗ ≥ γ∗
1(s), γ

∗
2 (s) for all s ∈ jR

and γ∗ ≥ γ∗
∞ := infDK

γ∗(DK).
Remark 2: If the normal rank of Gzu(s), i.e., the

maximum of the rank of Gzu(s) over s ∈ C, is p1, then
s ∈ C that satisfies vH2 Gzu(s) = 0 for some v2 ∈ Cp1

is a transmission zero of Gzu. See [12, Lemma 3.28]. In
addition, if p1 = 1, then γ∗

1 (jω) can be simplified as
follows.

γ∗
1 (jω) =

{
σmax(Gzw(jω)) if Gzu(jω) = 0,
0 otherwise

These also hold for Gyw and γ∗
2(s).

IV. Main theorem
Theorem 1: Under Assumptions 1 and 2, if (4) has

a positive definite optimal solution, at least one of the
following holds.

1) There exists ω∗
1 ∈ R such that γ∗ = γ∗

1(jω
∗
1),

2) there exists ω∗
2 ∈ R such that γ∗ = γ∗

2(jω
∗
2) or

3) γ∗ = γ∗
∞.

Theorem 1 implies that it is rare that (4) has a positive
definite optimal solution. To emphasize it, we provide
the following result from Theorem 1 in the case of the
generalized plant with the single-input-single-output.

Corollary 1: Let m1 = m2 = p1 = p2 = 1. Under
Assumptions 1 and 2, if (4) has a positive definite optimal
solution, at least one of the following holds.

1) There exists ω∗
1 ∈ R such that γ∗ = |Gzw(jω

∗
1)| and

Gzu(jω
∗
1) = 0,

2) there exists ω∗
2 ∈ R such that γ∗ = |Gzw(jω

∗
2)| and

Gyw(jω
∗
2) = 0,

3) γ∗ = |D11| or 0.
Proof: 1) and 2) follow from Theorem 1 and Remark 2.

For 3), if both D12 and D21 are nonzero, we obtain γ∗
∞ = 0

by DK = −D11/D12D21. Otherwise, γ∗
∞ = σmax(D11) =

|D11|.
If 1) (resp. 2)) in Corollary 1 holds, then it follows from

the definition of Gcl(K, s) that σmax(Gcl(K, jω∗
1)) = γ∗

(resp. σmax(Gcl(K, jω∗
2)) = γ∗) for each admissible con-

troller K ∈ K. This is a restrictive property for generalized
plants (1).

Although the conditions in Theorem 1 cannot be sim-
plified in the case of the multi-input-multi-output, the
condition 1) (resp. 2)) is independent of the transfer
function Gyw (resp. Gzu). The condition 3) uses only the
feedthrough terms Dij . Therefore it is reasonable to expect
that (4) rarely has a positive definite optimal solution.

V. Proof of Theorem 1
The proof of Theorem 1 involves the following four steps:

(i) simplify (4) to another LMI problem (6), (ii) obtain the
dual problem (7) of (6), (iii) characterize the optimality of
the dual solution, and (iv) reconstruct an optimal solution
of the dual problem. We then obtain the conclusion of
Theorem 1 from the solution. We note that we used a
similar technique to [13], [14] in (iii).

A. Step (i): simplification of the LMI problem (4)
Consider another LMI problem (6). We can prove

the equivalence between (4) and (6) by the so-called
elimination lemma in [2, Section 2.6.2]. In fact, we first
consider the interior of the feasible region of (4). It
follows from Assumption 1 that the interior is nonempty.
The interior can be reformulated by replacing positive
semidefiniteness by positive definiteness. Then, we can
apply the elimination lemma to one of the inequalities
that express the interior of the feasible region. By taking
the closure to the set obtained by the elimination lemma,
we can observe the equivalence between (4) and (6).

B. Step (ii): formulation of dual of the LMI problem (6)
We can obtain the dual problem (7) of (6) by construct-

ing the Lagrange dual problem of (6). Here, the blanks
in the matrices denote the zero matrices with appropriate
sizes and S1 • S2 = Tr(ST

1 S2) for any S1, S2 ∈ Rm×n.
It follows from Assumption 1 that (6) is strictly feasible,

i.e., it has a solution at which all constraints strictly hold.
Then, it follows from the strong duality theorem on the
semidefinite program presented in e.g., [15, Theorem 2.3]
that the optimal value of (6) is equal to that of (7) and
(7) has an optimal solution.

C. Step (iii): characterization of the optimality in (7)
Assume that (6) has a positive definite optimal solution,

i.e., (5) holds. Let (Z, V,W ) be an optimal solution of
(7). Then, it satisfies W = O due to the complementarity
condition on the semidefinite program in e.g., [15, Section
2.4]. Hence, the dual optimal solution (Z, V,O) satisfies
γ∗ = Tr

(
BT

1 Z
T
31 +DT

11Z
T
32

)
+Tr

(
C1V

T
31 +D11V

T
32

)
Tr (B1Z31 +D11Z32) + Tr

(
CT

1 V31 +DT
11V32

)
, (8)

Ip1
• Z22 + Im1

• Z33 + Im1
• V22 + Ip1

• V33 = 1, (9)
He(ATZ11 + CT

1 Z21) = O,BT
2 Z11 +DT

12Z21 = O, (10)
He(AV11 +B1V21) = O,C2V11 +D21V21 = O, (11)

D21 [Z31 Z32]

[
B2

D12

]
+ [C2 D21]

[
V T
31

V T
32

]
D12 = O, (12)



inf


γ :

−

 He(AX +B2ĈK) ∗ ∗
C1X +D12ĈK −γIp1 ∗

(B1 +B2D̂KD21)
T (D11 +D12D̂KD21)

T −γIm1

 ∈ Sn+m1+p1

+ ,

[
X ∗
−In Y

]
∈ S2n+ ,

−

He(ATY + CT
2 B̂T

K) ∗ ∗
BT

1 Y +DT
21B̂

T
K −γIm1 ∗

C1 +D12D̂KC2 D11 +D12D̂KD21 −γIp1

 ∈ Sn+m1+p1

+ ,
B̂K ∈ Rn×p2 , ĈK ∈ Rm2×n,

D̂K ∈ Rm2×p2 , γ ∈ R.


(6)



sup

 ∗
∗

BT
1 DT

11

 • Z +

 ∗
∗

C1 D11

 • V +

[
∗

In

]
•W

s.t. Ip1
• Z22 + Im1

• Z33 + Im1
• V22 + Ip1

• V33 = 1,He(ATZ11 + CT
1 Z21) = W11,

BT
2 Z11 +DT

12Z21 = O,He(AV11 +B1V21) = W22, C2V11 +D21V21 = O,

D21

[
Z31 Z32

] [ B2

D12

]
+
[
C2 D21

] [V T
31

V T
32

]
D12 = O,W =

[
W11 ∗
W21 W22

]
∈ S2n+ ,

Z =

Z11 ∗ ∗
Z21 Z22 ∗
Z31 Z32 Z33

 ∈ Sn+p1+m1

+ , V =

V11 ∗ ∗
V21 V22 ∗
V31 V32 V33

 ∈ Sn+p1+m1

+ .

(7)

and the positive semidefiniteness of Z and V .
Because Z and V are positive semidefinite, we decom-

pose Z and V as follows.

Z =

F1

F2

F3

F1

F2

F3

T

+

On ∗ ∗
O Z̃22 ∗
O Z̃32 Z̃33

 =: Z∗
1 + Z∗

2 ,

V =

G1

G2

G3

G1

G2

G3

T

+

On ∗ ∗
O Ṽ22 ∗
O Ṽ32 Ṽ33

 =: V ∗
1 + V ∗

2 ,

where both F1 and G1 are of full column rank or vanished,
and the second terms in the above are positive semidefi-
nite. If Z11 = On, then Fj (j = 1, 2, 3) is eliminated from
the above decomposition of Z, i.e. Z = Z∗

2 . This also holds
in the decomposition of V . Let rF and rG be the ranks of
F1 and G1, respectively.

We can rewrite (10) and (11) by using the following
lemma. The proof is provided in Appendix A.

Lemma 2: Assume that the matrices F1 and F2 satisfy
He((ATF1+CT

1 F2)F
T
1 ) = O. In addition, we assume that

F1 is of full column rank with rank r. Then there exists
Ω ∈ Rr×r such that He(Ω) = Or and ATF1+CT

1 F2 = F1Ω.
It follows from Lemma 2 that there exists an ΩF ∈

RrF×rF such that He(ΩF ) = OrF and

ATF1 + CT
1 F2 = F1ΩF , B

T
2 F1 +DT

12F2 = O. (13)

Similarly, there exists an ΩG ∈ RrG×rG such that
He(ΩG) = OrG and

AG1 +B1G2 = G1ΩG, C2G1 +D21G2 = O. (14)

It is clear that
[
Z31 Z32

]
=

[
F3F

T
1 F3F

T
2 + Z̃32

]
, and[

V31 V32

]
=

[
G3G

T
1 G3G

T
2 + Ṽ32

]
. Thus, it follows from

(13) and (14) that (12) is equivalent to

D21

(
Z̃32 + Ṽ T

32

)
D12 = O. (15)

Because all skew-symmetric matrices can be diagonal-
ized using a unitary matrix, we have Λ◦ = UH

◦ Ω◦U◦ (◦ =
F,G), where Λ◦ ∈ Cr◦×r◦ is diagonal and U◦ ∈ Cr◦×r◦ is
a unitary matrix. In particular, all diagonal elements λ◦,p
(p = 1, . . . , r◦) in Λ◦ are purely imaginary numbers. We set
FℓUF =

[
fℓ,1 . . . fℓ,rF

]
and GℓUG =

[
gℓ,1 . . . gℓ,rG

]
for ℓ = 1, 2, 3. (13) and (14) imply AT f1,p + CT

1 f2,p =
λF,pf1,p, BT

2 f1,p +DT
12f2,p = 0, Ag1,p +B1g2,p = λG,pg1,p

and C2g1,p + D21g2,p = 0 for all p. We note that each
f2,p is not the zero vector for all p if F1 is not vanished.
Otherwise, we obtain AT f1,p = λF,pf1,p and BT

2 f1,p = 0,
and thus it contradicts Assumption 1. Similarly, no g2,p
is the zero vector. In addition, from Assumption 2, we
obtain for all p

f1,p = (λF,pIn −AT )−1CT
1 f2,p, f

H
2,pGzu(λ̄F,p) = 0, (16)

g1,p = (λG,pIn −A)−1B1g2,p, Gyw(λG,p)g2,p = 0.

We can rewrite the equations (8) and (9) by using fℓ,p
and gℓ,p. In fact, because UF is unitary, Z has the form

of Z =

[
F1

F2

F3

]
UF

([
F1

F2

F3

]
UF

)H

+Z∗
2 . Thus, we can rewrite

the first terms in (8) and (9) as follows.

Tr
(
BT

1 Z
T
31 +DT

11Z
T
32

)
=

rF∑
p=1

fH
3,pGzw(λ̄F,p)f2,p

+

[
∗

DT
11

]
•
[
Z̃22 ∗
Z̃32 Z̃33

]
Ip1 • Z22 + Im1 • Z33 =

rF∑
p=1

(
∥f2,p∥22 + ∥f3,p∥22

)

Further, V has a similar form, and we can rewrite the
second terms in (8) and (9). Hence, the equations (8) and



(9) are rewritten by substituting f1,p and g1,p as follows.

γ∗ =

rF∑
p=1

σ
(
Gzw(λ̄F,p), f2,p, f3,p

)
+

rG∑
p=1

σ (Gzw(λG,p), g3,p, g2,p)

+

[
∗

DT
11

]
•
[
Z̃22 + Ṽ33 ∗
Z̃32 + Ṽ T

32 Z̃33 + Ṽ22

]
, (17)

1 =

rF∑
p=1

(
∥f2,p∥22 + ∥f3,p∥22

)
+

rG∑
p=1

(
∥g2,p∥22 + ∥g3,p∥22

)
+

[
Ip1

Im1

]
•
[
Z̃22 + Ṽ33 ∗
Z̃32 + Ṽ T

32 Z̃33 + Ṽ22

]
. (18)

D. Step (iv): reconstruction of the optimal solution
We construct another optimal solution with a simpler

expression from the optimal solution (Z, V,O) of (7). We
assume that f2,p ̸= 0 and g2,p ̸= 0 for all p and that the
matrix

[
Z̃22+Ṽ33 ∗
Z̃32+Ṽ T

32 Z̃33+Ṽ22

]
is nonzero. Otherwise, we can

ignore the terms of fℓ,p, gℓ,p or the matrix in (17) and
(18). From the assumption, we have for all p

αp := ∥f2,p∥22 + ∥f3,p∥22 < 1, βp := ∥g2,p∥22 + ∥g3,p∥22 < 1,

δ :=

[
Ip1

Im1

]
•
[
Z̃22 + Ṽ33 ∗
Z̃32 + Ṽ T

32 Z̃33 + Ṽ22

]
< 1.

Then, it follows from (18) that
∑

p αp +
∑

p βp + δ = 1.
Moreover, because all αp, βp and δ are nonzeros, we can
define Ẑp, V̂p and Ŝ by

Ẑp =
1

2αp
He

[
f1,p
f2,p
f3,p

][
f1,p
f2,p
f3,p

]H
,

V̂p =
1

2βp
He

[
g1,p
g2,p
g3,p

][
g1,p
g2,p
g3,p

]H
,

Ŝ =
1

δ

[
Z̃22 + Ṽ33 ∗
Z̃32 + Ṽ T

32 Z̃33 + Ṽ22

]
.

Then, it follows from (13), (14) and (15) that (Ẑp, O,O),
(O, V̂p, O), for all p and (O,O, Ŝ) are feasible in (7) with
the objective values being d1(Ẑp), d2(V̂p), and d∞(Ŝ),
respectively. Here, we define the functions d1(Z) and
d2(V ) for any Z, V ∈ Sn+p1+m1 and d∞(S) for any
S ∈ Sm1+p1 .

d1(Z) =

[ ∗
∗

BT
1 DT

11

]
• Z, d2(V ) =

[
∗
∗

C1 D11

]
• V,

d∞(S) =

[
∗

DT
11

]
• S.

We prove that at least one of these feasible solutions is
optimal in (7). In fact, we note that

d1(Ẑp) = σ
(
Gzw(λ̄F,p), f2,p, f3,p

)
, (19)

d2(V̂p) = σ (Gzw(λG,p), g3,p, g2,p) . (20)

for all p. From (17), (18) and Proposition 1, we have

γ∗ =

rF∑
p=1

αpd1(Ẑp) +

rG∑
p=1

βpd2(V̂p) + δd∞(Ŝ)

≤ max
{
d1(Ẑp) (p = 1, . . . , rF ),

d2(V̂p) (p = 1, . . . , rG), d∞(Ŝ)
}
≤ γ∗.

The last inequality implies that at least one of (Ẑp, O,O),
(O, V̂p, O), for all p and (O,O, Ŝ) is optimal in (7).

If (Ẑp, O,O) is optimal, then γ∗ = d1(Ẑp) = γ∗
1 (λ̄F,p).

In fact, it follows from the definition of αp and (16) that
the vector (f2,p/

√
αp, f3,p/

√
αp) satisfies∥∥∥∥ f2,p√

αp

∥∥∥∥2
2

+

∥∥∥∥ f3,p√
αp

∥∥∥∥2
2

= 1 and
(

f2,p√
αp

)H

Gzu(λ̄F,p) = 0,

and thus, the objective value σ
(
Gzw(λ̄F,p),

f2,p√
αp

,
f3,p√
αp

)
is

less than or equal to γ∗
1 (λ̄F,p). This can be seen from the

definition of γ∗
1(s). Hence, it follows from Proposition 1

that γ∗ = d1(Ẑp) ≤ γ∗
1 (λ̄F,p) ≤ γ∗. A similar result holds

for the case in which (O, V̂p, O) is optimal.
If (O,O, Ŝ) is optimal, then d∞(Ŝ) = γ∗

∞. In fact, the
dual of the minimization of γ∗(DK) over all DK ∈ Rm2×p2

is formulated as follows.

sup

d∞(S) :
S =

[
S22 ∗
S32 S33

]
∈ Sp1+m1

+ ,

Ip1
• S22 + Im1

• S33 = 1,
D21S32D12 = O

 .

The optimal value of the above maximization is γ∗
∞

because of the strong duality on the semidefinite program.
It follows from (15) and the definition of δ that Ŝ is feasible
in the above maximization problem. Hence, it follows from
Proposition 1 that γ∗ = d∞(Ŝ) ≤ γ∗

∞ ≤ γ∗. Therefore, we
obtain the desired result.

VI. H∞ state feedback problem
We can obtain similar results to Proposition 1 and

Theorem 1 for H∞ state feedback problem. In this case,
we deal with C2 = In and D21 = O for (1) and consider a
static feedback law u = Kx. Then, the LMI problem via
the change in variables can be formulated as follows.

inf

γ :
−

[
He(AX +B2Y ) ∗ ∗
C1X +D12Y −γIp1 ∗

BT
1 DT

11 −γIm1

]
∈ SN+ ,

X ∈ Sn+, Y ∈ Rm2×n, γ ∈ R

 ,

(21)

where N = n + p1 +m1. Let γ∗ be the optimal value of
(21).

Proposition 2: γ∗ ≥ γ∗
1 (s) for all s ∈ jR and γ∗ ≥

σmax(D11).
If (21) has an optimal solution (γ∗, X∗, Y ∗) that satisfies

X∗ ∈ Sn++, then we can provide a static feedback law
u = K∗x by K∗ = Y ∗(X∗)−1. We call such an optimal
solution of (21) a positive definite optimal solution of (21).



Theorem 2: Under Assumptions 1 and 2, if (21) has
a positive definite optimal solution, at least one of the
following holds.

1) There exists ω∗ ∈ R such that γ∗ = γ∗
1(jω

∗) or
2) γ∗ = σmax(D11).

Theorem 2 is proven in a similar manner to Theorem 1.
Remark 3: In [9, Theorem 2], the existence of an optimal

controller for H∞ state feedback control problem was char-
acterized by using an algebraic Riccati equation/inequality
under Assumption 1. For instance, in a more restrictive
situation than Assumption 1, it was introduced in [9, a
corollary of Theorem 2] that an algebraic Riccati equation
(ARE) defined by γ∗ has a positive definite solution if and
only if there exists an optimal controller. Moreover, it was
presented in [16] that the Hamiltonian matrix related to
the ARE has a purely imaginary eigenvalue because of
the optimality of γ∗. The investigation of the relationship
between the eigenvalue and jω∗ of 1) in Theorem 2 is
future work.

We can discuss the result for an H∞ state feedback
control in [17] from the viewpoint of Theorem 2. The
authors in [17] considered the following generalized plant.

ẋ = Ax+B1w +B2u,

z =

[
In

Oq×n

]
x+

[
On×m

D

]
u,

y = x,

(22)

where A is symmetric and Hurwitz stable, and D ∈ Rq×m

is of full column rank. We present a result discussed in
[17].

Theorem 3: ([17, Theorem 1 and Remark 1]) Define
R = DTD. Then, an optimal solution (γ∗, X∗, Y ∗)
of the H∞ state feedback control problem for (22) is
γ∗ =

√
∥BT

1 (A
2 +B2R−1BT

2 )
−1B1∥, X∗ = −A and

Y ∗ = −R−1BT
2 . Here, ∥M∥ denotes the largest eigenvalue

of a square matrix M . Consequently, an optimal state
feedback gain K∗ is provided by K∗ = R−1BT

2 A
−1.

For (22), it follows from Theorems 2 and 3 that the
condition 1) in Theorem 2 holds because D11 = O in
(22). In addition, we can specify ω∗ as follows.

Proposition 3: γ∗ = γ∗
1(0).

Proof: The transfer functions Gzw(s) and Gzu(s) are
formulated as

Gzw(s) =

[
(sIn −A)−1B1

Om×n

]
, Gzu(s) =

[
(sIn −A)−1B2

D

]
.

Then, γ∗
1 (0) can be formulated by

sup

 −vH1 A−1B1v3
−vH3 BT

1 A
−T v1

:
BT

2 (−A−T )v1 +DT v2 = 0,
∥v1∥22 + ∥v2∥22 + ∥v3∥22 = 1,
v1 ∈ Cn, v2 ∈ Cq, v3 ∈ Cm

 .

It is easy to verify that for each optimal solution
v∗ = (v∗1 , v

∗
2 , v

∗
3), v∗2 is spanned by some columns of D.

Otherwise, it contradicts the optimality of v∗.
We define ṽ1 = (−A)−T v1 and v2 = Dṽ2. Then, γ∗

1(0)
can be reformulated by

sup

 ṽH1 B1v3
+ṽH3 BT

1 v1
:

∥AT ṽ1∥22 + ∥DR−1BT
2 ṽ1∥22

+∥v3∥22 = 1,
ṽ1 ∈ Cn, v3 ∈ Cm

 .

We define x = (A2 + B2R
−1BT

2 )
1/2ṽ1, y = v3 and M =

(A2 + B2R
−1BT

2 )
1/2B1. Then, it follows from Lemma 1

that γ∗
1(0) is the square root of the largest eigenvalue of

BT
1 (A

2 +B2R
−1BT

2 )
−1B1.

Appendix A
Proof of Lemma 2

Because F1 is of full column rank, this statement follows
from Lemma 3. Rantzer [14, (iii) of Lemma 3] provided a
proof for an extension of Lemma 3.

Lemma 3: Let F,G ∈ Rm×n. Assume that F is of full
column rank. Then, He(FGT ) = Om if and only if there
exists an Ω ∈ Rn×n such that G = FΩ and He(Ω) = On.
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