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Abstract—In this paper, we investigate balanced truncation
for a class of continuous-time bilinear descriptor systems, ap-
pearing, e.g., in constraint circuit analysis or resulting from
semi-discretization of the Navier-Stokes equations. For this, as
widely done in the literature, we first aim at transforming the
bilinear descriptor system into an equivalent ODE system by
means of projectors for which the standard balanced truncation
method for bilinear systems can be applied. Subsequently, we
discuss how to solve the arising generalized Lyapunov equations
corresponding to the equivalent ODE, without requiring the
explicit computation of the projectors. The efficiency of the
proposed algorithm is illustrated through a numerical example,
which also shows its competitiveness with an iterative H2-optimal
model order reduction scheme.

Index Terms—Model/controller reduction, large-scale systems,
differential-algebraic systems

I. INTRODUCTION

THIS paper discusses model order reduction based on
balanced truncation for bilinear descriptor systems or

differential-algebraic equations (DAEs) of the form:

E11ẋ1(t) =A11x1(t) +A12x2(t)+
m∑

k=1

Nkx1(t)uk(t) +B1u(t), (1a)

0 =A21x1(t) +B2u(t), (1b)
y(t) =C1x1(t) + C2x2(t), (1c)

where x1(t) ∈ Rn1 , x2(t) ∈ Rn2 are the state variables, with
n1 > n2, u(t) ∈ Rm are the inputs, y(t) ∈ Rp are the outputs,
and E11, A11 ∈ Rn1×n1 , AT

12, A21 ∈ Rn2×n1 , B1 ∈ Rn1×m,
B2 ∈ Rn2×m, C1 ∈ Rp×n1 and C2 ∈ Rp×n2 . Furthermore,
we assume that E11 and A21E

−1
11 A12 are nonsingular matrices.

As a consequence, the linear part of the system (1), i.e., for
Nk = 0 with k = 1, . . . ,m, is a Hessenberg index-2 DAE
system, see, e.g., [1]. Generally, these special bilinear DAE
systems (1) arise, e.g., from semi-discretization of the Navier-
Stokes equations or constraint RLC circuits.

Model order reduction (MOR) aims at replacing a large-
scale system by a simpler surrogate low-order system. For
an overview of some methods, we refer to the books [2]
and [3]. Among the classical techniques, balanced truncation
(BT) is one of the popular methods, since it can be easily
implemented by solving Lyapunov equations and preserves
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asymptotic stability. It was first proposed in [4] in the context
of linear time-invariant (LTI) systems, and was later extended
to linear DAE systems, see [5]–[7]. Additionally, the author
in [8] has considered an extension of BT for a particular class
of linear DAE systems, i.e., systems (1) with Nk = 0 for
k = 1, . . . ,m, by using explicit projectors, which can be
expensive to compute in a large-scale setting. As a result, the
authors in [9] have proposed how to apply BT to the latter
systems, avoiding explicit computation of projectors or the
related deflating subspaces, and without losing sparsity. Our
main goal in this paper is to extend the BT method for bilinear
systems [10] to the class of bilinear DAE systems (1). It is
worth mentioning that interpolation-based methods for classes
of bilinear DAEs including the system (1) can be found in the
literature, see [11], [12] and [13].

The rest of the paper is organized as follows. In Section II,
we revisit BT for bilinear systems and the associated gener-
alized Lyapunov equations. In Section III, we show how to
transform bilinear descriptor systems (1) into an equivalent
ordinary differential equation (ODE) form. In Section IV,
the main contribution of the paper is established, i.e., the
extension of BT for the class of bilinear DAEs (1). Therein,
we first develop the method for the equivalent ODE system,
and then, we show how to apply the BT method avoiding
projection. Finally, in Section V, we carry out some numerical
experiments for a medium-scale circuit system, and Section VI
concludes the paper.

II. BALANCED TRUNCATION FOR BILINEAR SYSTEMS

BT mainly relies on reachability and observability energy
functionals. For LTI systems, these functionals are defined via
the reachability and observability Gramians. In the context
of bilinear systems, algebraic Gramians were first discussed
in [14], and later on, in [15], the concepts of reachability
and observability are generalized based on the kernels of the
corresponding Volterra series. Furthermore, connections of the
algebraic Gramians to energy functionals were also studied,
see, e.g., [10], [16]. As a result, these Gramians allow us to
find the states that are hard to reach as well as hard to observe,
which are then truncated to reduce the order of the model.

Moreover, we would like to mention that the concept of
energy functionals and balancing-based MOR for general non-
linear, including bilinear, systems was studied in [17]. Therein,
it was shown that energy functionals for nonlinear systems
are the solutions of state-dependent nonlinear Hamilton-Jacobi
equations and Lyapunov-type nonlinear equations. Thus, they
are not only difficult to compute for large-scale systems but
also hard to apply in the MOR framework.



In this section, we first briefly overview BT for bilinear
ODE systems based on the algebraic Gramians. We begin by
considering bilinear ODE systems of the form

Σ :

Eẋ(t) =Ax(t) +

m∑
k=1

Nkx(t)uk(t) +Bu(t),

y(t) =Cx(t), x(0) = 0,

(2)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp are the
state, the input and output vectors of the system, respectively,
and all other matrices are of appropriate sizes. Moreover, the
matrix E in (2) is considered to be nonsingular, and, hence, the
system (2) has no algebraic constraints. In the past years, MOR
for bilinear systems has been studied vastly in the literature,
see, e.g., [10], [18]–[20]. BT is a projection-based method,
i.e., it aims at determining projection matrices V,W ∈ Rn×r,
leading to a reduced-order system

Σr :

Êẋ(t) = Âx̂(t) +

m∑
k=1

N̂kx̂(t)uk(t) + B̂u(t),

ŷ(t) = Ĉx̂(t), x̂(0) = 0,

(3)

with Ê = WTEV , Â = WTAV , N̂k = WTNkV , B̂ =
WTB, Ĉ = CV . The matrices V and W are constructed by
removing the states which are hard to reach as well hard to
observe. To that end, we first recall the definition of algebraic
Gramians for bilinear ODE systems.

A. Algebraic Gramians for Bilinear ODEs
The algebraic Gramians, namely reachability (P ) and ob-

servability (Q) Gramians, for bilinear systems are defined as
follows:

P =

∞∑
j=1

∫ ∞
0

. . .

∫ ∞
0

Pj(t1, . . . , tj)Pj(t1, . . . , tj)
T dt1 . . . dtj ,

(4a)

Q =

∞∑
j=1

∫ ∞
0

. . .

∫ ∞
0

Qj(t1, . . . , tj)Qj(t1, . . . , tj)
T dt1 . . . dtj ,

(4b)

respectively, where

P1(t1) = eE
−1At1E−1B,

Q1(t1) = eA
TE−T t1CT ,

Pj(t1, . . . , tj) = eE
−1AtjE−1

[
N1Pj−1, . . . , NmPj−1

]
,

Qj(t1, . . . , tj) = eA
TE−T tjE−T

[
NT

1 Qj−1, . . . , N
T
mQj−1

]
,

for j ≥ 2. As it can be noticed, the algebraic Gramians (4)
are defined as series limits, and thus, they may not exist
for a general bilinear system. Hence, sufficient conditions
for the existence of these Gramians are studied in [10],
[18]. Assuming the Gramians P and Q exist, they solve the
following generalized Lyapunov equations

APET + EPAT +

m∑
k=1

NkPN
T
k +BBT = 0, (5a)

ATQE + ETQA+

m∑
k=1

NT
k QNk + CCT = 0. (5b)

The above equations are also known as Lyapunov-plus-
positive, and they also appear in the context of MOR for
stochastic systems, see, e.g., [10]. Moreover, the algebraic
Gramians (4) provide a (local) lower and upper bound for
the reachability and the observability energy functionals, see
[10] and [16]. Additionally, the notion of truncated Gramians
was studied in [21]. Therein, the authors consider BT using
only the first two kernels, i.e., P1(t1), P2(t1, t2), Q1(t1) and
Q2(t1, t2), and perform a study based on it. In what follows,
we briefly present some results from the literature for solvers
of these generalized Lyapunov equations.

B. Generalized Lyapunov solvers

Efficient methods for generalized Lyapunov equations (5)
are available in the literature, see [22]–[24]. One possible
approach to solve them is to use a stationary iterative method,
see [22], [24]. The idea behind the technique is to write the
generalized Lyapunov equation, e.g., (5a), in the following
form: M(X)−N (X) +BBT = 0, where

M(X) = AXET + EXAT and N (X) = −
m∑

k=1

NkXN
T
k ,

and consider a stationary iteration of the form

M(Xi) = N (Xi−1)−BBT , for i = 1, 2, . . . .

As a consequence, upon convergence, one obtains the solution
of the generalized Lyapunov equation. This procedure is a
convergent fixed-point iteration if ρ(M−1N ) < 1, see [22].
A common criterion to check convergence is to see if the
residual is smaller than a given tolerance, i.e.,

‖Res(Xi)‖F = ‖M(Xi)−N (Xi) +BBT ‖F ≤ tol,

and, once this condition is achieved, the procedure stops. Ad-
ditionally, in the large-scale setting, the solution is computed
as a low-rank approximation, i.e., X ≈ SST , with S ∈ Rn×k

and k � n.

C. Balanced truncation for model order reduction

As mentioned before, the main idea of BT lies in further-
more neglecting the almost unreachable as well as unobserv-
able states, in other words, hard to reach and hard to observe
states. In order to guarantee that hard to reach and hard to
observe states are truncated simultaneously, we need to find a
state transformation TB, such that the bilinear ODE system is
transformed into a balanced bilinear system realization. Thus,
the reachability and observability Gramians of the transformed
realization are the same and diagonal, i.e.,

P = Q = Σ = diag (σ1, σ2, . . . , σn) ,

where σ1 ≥ σ2 ≥ · · · ≥ σn > 0 and σk are referred
to as the Hankel singular values of the system. Such a
transformation exists whenever P and Q are positive definite
matrices. Moreover, the small Hankel singular values σk
characterize the states that are hard to reach and hard to
observe, which can then be truncated. Additionally, the decay
of the singular values indicates a good order for a reduced



Algorithm 1: Balanced truncation for bilinear systems

Input: Matrices (E,A,Nk, B,C) and reduced-order r.
Output: Reduced-order matrices (Ê, Â, N̂k, B̂, Ĉ) .

1: Compute the low-rank approximation of the Gramians
P ≈ SST and Q ≈ RRT .

2: Compute the SVD of STER written as

STER =
[
U1 U2

]
diag (Σ1,Σ2)

[
V1 V2

]T
,

with Σ1 ∈ Rr×r.
3: Construct the projection matrices V = SU1Σ

− 1
2

1 and W =

RV1Σ
1
2
1 .

4: Construct Ê = WTEV, Â = WTAV , N̂k = WTNkV ,
B̂ = WTB and Ĉ = CV .

5: return Ê, Â, N̂k, B̂, and Ĉ.

system. A reduced-order system can be computed using the
square root balancing approach, which avoids the computation
of the balanced realization of the original system (2). The
approach is sketched in Algorithm 1. BT for bilinear ODE
systems preserves the local stability of the original system,
i.e., the matrix Â is Hurwitz, provided that A is Hurwitz. The
method also preserves a stronger notion of stability, see [25]
for more details. Additionally, error bounds for the quality of
the obtained reduced-order systems can be found in [26]–[28].
In the next section, we discuss how the theory presented in
this section can be applied to bilinear DAE systems (1).

III. TRANSFORMATION OF THE BILINEAR DAE SYSTEM

In this section, we first discuss a transformation, enabling us
to rewrite the bilinear DAE system (1) into an equivalent ODE
form. Such a transformation was first introduced in [9], in the
context of BT for LTI systems, and later on, it was applied
to interpolation-based MOR for bilinear and quadratic-bilinear
DAE systems in [13], [29].

We begin with the case B2 = 0 in the system (1); the case
B2 6= 0 is discussed later in this paper. Thus, we have a system
in the following form:

E11ẋ1(t) =A11x1(t) +A12x2(t)+∑m

k=1
Nkx1(t)uk(t) +B1u(t), (6a)

0 =A21x1(t), (6b)
y(t) =C1x1(t) + C2x2(t). (6c)

Following the same steps as in [13], from (6b), we have
A21ẋ1(t) = 0. Multiplying (6a) by A21E

−1
11 from the left

and using the latter relation, we obtain

0 = A21E
−1
11 A11x1(t) +A21E

−1
11 A12x2(t)

+

m∑
k=1

A21E
−1
11 Nkx1(t)uk(t) +A21E

−1
11 B1u(t).

This implies that x2(t) can be written as a function of x1(t).
Hence, by inserting this expression into (6a) and (6c), one

obtains

E11ẋ1(t) = ΠA11x1(t) +

m∑
k=1

ΠNkx1(t)uk(t) + ΠB1u(t),

(7a)

y(t) = Cx1(t) +

m∑
k=1

C(k)
N x1(t)uk(t), (7b)

where
Π = I−A12(A21E

−1
11 A12)−1A21E

−1
11 , (8)

and

C = C1 − C2(A12E
−1
11 A12)A12E

−1
11 A11,

C(k)
N = −C2(A12E

−1
11 A12)−1A12E

−1
11 Nk.

For simplicity, we assume that A12 = AT
21. However, A21 6=

AT
12 can also be handled similarly by extending the arguments

used in [30]. As shown in [9], Π is an oblique projector,
satisfying

AT
12z = 0 if and only if ΠT z = z.

As a consequence of (6b), ΠTx1(t) = x1(t). By replacing
x1(t) by ΠTx1(t) and multiplying (7) by Π from the left, we
obtain

EΠẋ1(t) = AΠx1(t) +

m∑
k=1

NΠ,kx1(t)uk(t) +BΠu(t), (9a)

y(t) = CΠx1(t) +

m∑
k=1

C(k)
N,Πx1(t)uk(t), (9b)

where EΠ = ΠE11ΠT , AΠ = ΠA11ΠT , NΠ,k = ΠNkΠT ,
BΠ = ΠB1, CΠ = CΠT and C(k)

N,Π = C(k)
N ΠT . As stated in

[13], the bilinear system (9) evolves in the n1−n2 dimensional
subspace, belonging to ker(Π). This can be made more explicit
by expressing

Π = ΘlΘ
T
r , (10)

with Θl,Θr ∈ Rn1×(n1−n2), such that ΘT
l Θr = I . Substitut-

ing this decomposition in (9), x̃1 := ΘT
l x1 ∈ Rn1−n2 satisfies

the following equation:

EΘ
˙̃x1 = AΘx̃1 +

m∑
k=1

NΘ,kx̃1(t)uk(t) +BΘu(t), (11a)

y(t) = CΘx̃1(t) +

m∑
k=1

C(k)
N,Θx̃1(t)uk(t), (11b)

where EΘ = ΘT
r E11Θr, AΘ = ΘT

r A11Θr, NΘ,k = ΘT
r NkΘr

BΘ = ΘT
r B1, CΘ = CΘr and C(k)

N,Θ = C(k)
N Θr.

The system (11) is equivalent to the system (6) with respect
to the input and output behavior. However, an advantage of the
realization given by (11) is that the matrix EΘ is nonsingular,
since Θr has full column rank and E11 is nonsingular. But
the output given by (11b) involves bilinear terms in the
state and input. Since treating bilinear terms in the output
equation is still an open problem, we will not consider the
terms C(k)

N,Θ while computing the projection matrices V and
W . Hence, from now on, we assume C(k)

N,Θ = 0 as far as



Algorithm 2: BT for bilinear descriptor systems involving
projectors

Input: E11, A11, Nk, B1, C, C(k)
N and order r.

1: Compute Θr, Θl, and the matrices EΘ, AΘ, NΘ,k, BΘ ,
CΘ and C(k)

N,Θ.
2: Compute low-rank factors of P ≈ S̃S̃T and Q ≈ R̃R̃T

as solution of the Lyapunov equations (12).
3: Compute the SVD of S̃TEΘR̃ written as

S̃TEΘR̃ =
[
U1 U2

]
diag (Σ1,Σ2)

[
V1 V2

]T
,

with Σ1 ∈ Rr×r.
4: Construct the projection matrices Ṽ = S̃U1Σ

− 1
2

1 and W =

R̃V1Σ
1
2
1 .

Output: reduced order matrices:
Ê = W̃TEΘṼ , Â = W̃TAΘṼ , N̂k = W̃TNΘ,kṼ , B̂ =

W̃TBΘ, Ĉ = CΘṼ and Ĉ(k)
N = C(k)

N,ΘṼ .

determining projection matrices for MOR; but note that the
bilinear terms in the output equation are projected afterward
using the obtained projection matrices. Hence, this allows us
to obtain a bilinear system whose realization has a similar
form as given in (2), enabling us to apply BT as presented
in Section II. In the next section, we discuss two different
procedures to apply BT to bilinear DAE systems of form (6)
or its equivalent representation (11).

IV. BALANCED TRUNCATION FOR BILINEAR DAE
SYSTEMS OF INDEX-2

A. Balanced truncation involving projector

We recall, under the assumption C(k)
N,Θ = 0, that the

realization given by (11) is equivalent to the one from (6).
Hence, applying BT to the system (11) requires computa-
tion of the reachability and observability Gramians P̃ , Q̃ ∈
R(n1−n2)×(n1−n2), which are the solutions of the following
equations:

AΘP̃E
T
Θ + EΘP̃A

T
Θ +

m∑
k=1

NΘ,kP̃N
T
Θ,k +BΘB

T
Θ = 0,

(12a)

AT
ΘQ̃EΘ + ET

ΘQ̃AΘ +

m∑
k=1

NT
Θ,kQ̃NΘ,k + CT

ΘCΘ = 0.

(12b)

Thus, by following the BT procedure presented in Subsec-
tion II-C, one is able to find a reduced-order system. Al-
gorithm 2 summarizes the steps to construct a reduced-order
system for the system (6) based on the Gramians, given in (12).
Unfortunately, to determine the system matrices of (11), we
require the explicit computation of the matrices Θr and Θl,
which might be an expensive computational task. Moreover,
transforming the realization (6) into the system (11) might
imply the loss of sparsity, thus making the computation of the
reduced-order systems more expensive. Therefore, rather than
reducing system (11), we aim at reducing (6) or (9), without
explicit computation of the matrices Π, Θr, and Θl. That is
precisely the scope of the next subsection.

B. Projector-free balanced truncation

We aim at constructing a reduced-order system without
explicitly computing the matrices Θl and Θr, and the system
matrices of (11). By adapting the steps from [9] to the bilinear
context, our first goal is to establish generalized Lyapunov
equations for P := ΘrP̃ΘT

r , Q := ΘrQ̃ΘT
r . Using the relation

ΘT
l Θr = I , it can easily be seen that the matrices P and Q

satisfy the following identities:

P = ΠTPΠ, Q = ΠTQΠ.

Moreover, having multiplied (12a) by Θr from the left and
right, and (12b) from the left and right by Θl, we notice that
P and Q solve the following projected Lyapunov equations:

AΠPE
T
Π + EΠPA

T
Π +

m∑
k=1

NΠ,kPN
T
Π,k +BΠB

T
Π = 0,

(13a)

AT
ΠQEΠ + ET

ΠQAΠ +

m∑
k=1

NT
Π,kQNΠ,k + CT

ΠCΠ = 0,

(13b)

where Π = I−A12(AT
12E

−1
11 A12)−1AT

12E
−1
11 . In [9], projected

ADI Lyapunov solvers for the linearized version of (13) are
presented, i.e., the case where NΠ,k = 0 for k = 1, . . . ,m.
This enables us to compute low-rank approximations to the
solution of the equations

AΠPlE
T
Π + EΠPlA

T
Π +BΠB

T
Π = 0,

AT
ΠQlEΠ + ET

ΠQlAΠ + CT
ΠCΠ = 0,

i.e., Pl ≈ SlS
T
l and Ql ≈ RlR

T
l , with Sl ∈ Rn×kP ,

Rl ∈ Rn×kQ , and kP , kQ � n. This procedure uses only
the original system matrices E11, A11, A12, B, and C, without
explicitly computing the projector Π. As a consequence, the
solver takes advantage of the sparsity of those matrices and
it is numerically less expensive than dealing directly with the
projected system (11). For details, see [9, Sec. 5].

Our approach to solve (13) is to combine the above proposed
projected ADI Lyapunov solver with a stationary iterative
method for generalized Lyapunov equations (sketched in Sub-
section II-B). In what follows, we focus on the computation
of the reachability Gramian, and the observability Gramian
will follow similarly. To that end, let us define the following
operators

MΠ(X) = AΠXE
T
Π + EΠXA

T
Π and

NΠ(X) = −
m∑

k=1

NΠ,kXN
T
Π,k,

and consider a stationary iteration of the form
MΠ(Xi) = NΠ(Xi−1)−BΠB

T
Π , for i = 1, 2, . . . .

Let Xi−1 ≈ Si−1S
T
i−1 be the factorized form of the solution

obtained in the (i−1)st iteration. Hence,

Xi−1 = ΠTXi−1Π ≈ ΠTSi−1S
T
i−1Π.

As a consequence, at every iteration step, one needs to solve
the following Lyapunov equation:

AΠXiE
T
Π + EΠXiA

T
Π + BΠ,iBTΠ,i = 0, (14)



Algorithm 3: Iterative ADI based solver for (13)

Input: E11, A11, Nk, B1, tol.
1: while ‖Res(Xk)‖F > tol do
2: Solve (14) for Xk ≈ SkS

T
k using the projected ADI

solver from [9].
3: Compute Bi (from eq. (15)).
4: end while

Output: Sk ∈ Rn×l low-rank approximation, i.e., P ≈
SkS

T
k .

Algorithm 4: BT for bilinear DAE systems without projector

Input: E11, A11, Nk, B1, C, C(k)
N and order r.

1: Compute low-rank approximations of P ≈ SST and Q ≈
RRT from (13) using Algorithm 3.

2: Compute the SVD of STE11R written as

STE11R =
[
U1 U2

]
diag (Σ1,Σ2)

[
V1 V2

]T
,

with Σ1 ∈ Rr×r.
Output: reduced order matrices:

Ê = WTE11V , Â = WTA11V , N̂k = WTNkV , B̂ =
WTB1, Ĉ = CV and Ĉ(k)

N = C(k)
N V .

where BΠ,1 = ΠTB1, and BΠ,i = ΠTBi, (15)

for i ≥ 2, with Bi =
[
N1Si−1, N2Si−1, . . . , NmSi−1, B1

]
.

Hence, by using the projected ADI solver, one can compute
the solution of (14) as a low-rank approximation Xi ≈ SiS

T
i ,

without the explicit computation of the projector Π, and the
matrices Θr and Θl. We only need at each iteration the
matrices E11, A11, A12, and Bi. The procedure keeps iterating
until the residual is smaller than a tolerance, i.e.,

‖Res(Xi)‖F = ‖MΠ(Xi)−NΠ(Xi) +BΠB
T
Π‖F ≤ tol.

Algorithm 3 summarizes the computation of the low-rank
solution of (13), and Algorithm 4 shows the steps to construct
a reduced-order system for the system (6) without explicit
computation of projectors or its basis.

Remark 1: Both Algorithms 2 and 4 preserve local asymp-
totic stability of the original systems. This is due to the
fact that these algorithms are equivalent to applying BT to
the projected ODE system, which, in turn, preserves local
asymptotic stability.

Remark 2: The case B2 6= 0 has been discussed in [9], for
linear systems, and in [13], for bilinear systems. Therein, it
has been shown how to equivalently rewrite a system with
B2 6= 0 as a system with B2 = 0. For more details, we refer
to [13] and [9, Sec. 6].

V. NUMERICAL EXPERIMENT

In this section, we test the efficiency of the proposed BT
method for bilinear DAE systems, having an index-2 matrix
pencil. For the projected ADI Lyapunov solvers, we use the
implementation provided in the M-M.E.S.S. toolbox [31].
We compare the results with the ones obtained by apply-
ing the H2-optimal MOR method proposed in [13] for the
same class of systems. All the simulations are done on a
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Fig. 1: Decay of normalized Hankel singular values.

CPU 2.6 GHz Intel® Core™i5, 8 GB 1600 MHz DDR3,
MATLAB® 9.1.0.441655 (R2016b).

We consider a nonlinear RC circuit presented in [13, Sec. 5].
It consists of a constraint transmission line circuit, where the
voltages at the first and last nodes are the same. The nonlinear-
ities come from diodes modeled as g(vD) = e40vD + vD − 1,
where vD is the voltage across the node. In this example, y(t)
correspond to the voltage at the first node. Having applied
a Carleman bilinearization [13], we end up with a bilinear
descriptor system of the form (1) with n1 = 930 and n2 = 31.
In what follows, we refer to the obtained bilinear descriptor
system as the original one.

We now aim at obtaining reduced systems of orders r = 10
and r = 20 by using the proposed BT and the H2-optimal
MOR methods. Figure 1 depicts the decay of the Hankel singu-
lar values. In Figures 2a and 2b, we compare the quality of the
reduced-order systems with the original system by computing
transient responses for an input u(t) = (sin(10πt) + 1)/2. To
determine the transient response, we apply an implicit Euler
scheme with step size h = 0.01 and simulate the original
system and the reduced-order models (ROMs) in the time
interval [0, 10]. The outputs of the original system and the
ROMs are depicted in Figure 2a. Additionally, in Figure 2b, we
present the relative error between the original and the ROM,
i.e., (|yOri(t)− yROM(t)|) /maxt |yOri(t). Although all ROMs
are able to follow the behavior of the original system, the
ROMs of order 20 are of better quality than those of order
10 as expected. Additionally, these figures show that the two
methods, BT and H2-optimal MOR methods, provide very
similar quality ROMs in terms of the magnitude of the error.
However, we note that BT has the advantage of providing
an indicator of a good order of a reduced-order system r,
by observing the decay of the singular values, i.e., one can
determine the order of the ROM automatically rather than
picking r beforehand.

VI. CONCLUSIONS

In this paper, we have studied the problem of balanced
truncation for bilinear descriptor systems of index-2. To that
aim, by explicitly enforcing the algebraic conditions, the orig-
inal descriptor system is first transformed into an equivalent
bilinear ODE system by using projectors. This has enabled us
to apply the standard BT method for bilinear ODE systems.
However, this process is computationally expensive due to the
explicit involvement of the projector. To cope with this issue,
we have proposed a BT method for the class of bilinear DAEs,
avoiding the explicit computation of projectors in order to
compute reduced-order systems. Finally, we have illustrated
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Fig. 2: Comparison of the time-domain simulations of the
original and ROMs of orders r = 10 and r = 20, obtained
using BT and H2-optimal MOR methods.

the efficiency of the proposed approach using a nonlinear
electrical circuit example and have shown its competitiveness
with an iterative H2-optimal model order reduction scheme.
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