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Abstract— In this paper, we propose a network-optimization
framework for the analysis of multi-agent systems with passive-
short agents. We consider the known connection between
diffusively-coupled maximally equilibrium-independent passive
systems, and network optimization, culminating in a pair of
dual convex network optimization problems, whose minimizers
are exactly the steady-states of the closed-loop system. We
propose a network-based regularization term to the network
optimization problem and show that it results in a network-
based feedback using only relative outputs. We prove that if
the average of the passivity indices is positive, then we convexify
the problem, passivize the agents, and that steady-states of
the augmented system correspond to the minimizers of the
regularized network optimization problem. We also suggest a
hybrid approach, in which only a subset of agents sense their
own output, and show that if the set is nonempty, then we can
always achieve the same correspondence as above, regardless
of the passivity indices. We demonstrate our results on a traffic
model with non-passive agents and limited GNSS reception.

I. INTRODUCTION

Distributed control has been extensively studied in the last
few years, due to its applications in many scientific and
engineering fields [1]–[3]. One repeatedly used method in
cooperative control is the notion of passivity [4]. It was
first introduced in this framework in [5] to study group
coordination, but was later used in other areas as robotics,
biochemical systems and cyber-physical systems [6]–[8].

Many variants of passivity have been introduced over the
years to tackle problems in cooperative control, including
incremental passivity [9] and relaxed co-coercivity [2], [7].
Another important notion is equilibrium-independent passiv-
ity (EIP) [10], which considers passivity with respect to all
steady-state I/O pairs. For EIP systems, the steady-state I/O
pairs are related by a single-valued function. EIP was used
to study port-Hamiltonian systems [11], but it does not apply
to single integrators and other marginally stable systems.

To tackle this problem, the notion of maximal equilibrium-
independent passivity (MEIP) for SISO systems was intro-
duced in [12]. It also considers passivity with respect to
all equilibria, but asks the collection of steady-state input-
output pairs to be a maximal monotone relation instead of a
function. In [12], [13], a connection was established between
analysis of diffusively-coupled MEIP systems and network
optimization theory, culminating in two dual network op-
timization problems characterizing the steady-states of the
diffusively coupled network. This framework was used in
[14] to solve the synthesis problem, and in [15] to solve a
network identification problem.

In practice, many systems are not passive. Their shortage
of passivity is usually quantified using passivity indices
[16], [17]. We consider a diffusively-coupled network of

agents, each having a uniform shortage of passivity across all
equilibria. Analysis of these passive short diffusively-coupled
systems was tackled in [18], and later generalized in [19],
by regularizing the network optimization problems obtained
by the network optimization framework for MEIP systems.
However, the solution requires an appropriate loop transfor-
mation for each individual agent, which is not applicable in
many situations, either because the agents cannot sense their
own output, or the agents are not amenable to the network’s
designer. We propose a different solution here, relying on
the network structure to overcome the lack of passivity. Our
contributions are as follows:

We propose a Tikhonov-type regularization to the network
optimization problem, consisting only of network-level vari-
ables. We show that if the sum of the passivity indices over
the agents is positive, then the proposed regularization not
only convexifies the corresponding optimization problem,
but it is equivalent to a network-only feedback passivation
of the closed-loop system.Furthermore, we propose another
Tikhonov-type regularization requiring no assumptions on
the passivity indices of the agents, containing both network-
level variables, as well as variables belonging to a prescribed
set of agents. We show that this hybrid regularization term
is equivalent to a feedback passivation containing a network-
only term, and a loop transformation for each of the agents
in the prescribed set. We also show that if the prescribed
set is nonempty, then the regularization term convexifies the
optimization problem and passivizes the system.

The rest of the paper is as follows. Section II reviews
MEIP systems and equilibrium-independent passive-short
systems. Section III formally states and solves the problem.
Section IV presents a case study, and Section V concludes
the paper.

Notations: This work employs basic notions from al-
gebraic graph theory [20]. An undirected graph G = (V,E)
consists of a finite set of vertices V and edges E ⊂ V× V.
We denote the edge that has ends i and j in V by k =
{i, j} ∈ E. For each edge k, we pick an arbitrary orientation
and denote k = (i, j) when i ∈ V is the head of edge
k and j ∈ V the tail. The incidence matrix of G, denoted
E ∈ R|E|×|V|, is defined such that for edge k = (i, j) ∈ E,
[E ]ik = +1, [E ]jk = −1, and [E ]`k = 0 for ` 6= i, j. For a
convex function F , it’s dual is also convex and defined by
F ?(b) = supa{aT b− F (a)} [21].

II. PASSIVITY AND NETWORK OPTIMIZATION

We consider the following dynamical system, defined on
a graph G = (V,E). Namely we consider |V| agents and |E|
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(a) A diffusively coupled network
(G,Σ,Π).

(b) A general feedback interconnec-
tion.

Fig. 1. Block diagrams of diffusive networks and general feedback systems.

controllers, having the following state-space models,

Σi :

{
ẋi = fi(xi, ui)

yi = hi(xi, ui)
,Πe :

{
η̇e = φe(ηe, ζe)

µe = ψe(ηe, ζe)
, (1)

for i ∈ V, e ∈ E. We consider stacked vectors u =
[u1, ..., u|V|]

T , and similarly for y, ζ and µ. The loop is
closed by taking ζ(t) = ET y(t) and u(t) = −Eµ(t). The
closed loop is called a diffusively-coupled system, denoted
as a triplet (G,Σ,Π), and exhibited in Fig. 1(a).

Our approach to the analysis of the system (G,Σ,Π) is
based on the notion of equilibrium-independent passivity
(EIP) [10], and maximal equilibrium-independent passivity
(MEIP) [12]. As the name suggests, these properties require
that the system is passive with respect to any equilibrium I/O
(I/O) pair. Moreover, they study the collection of I/O pairs
of the system. In EIP, we demand that there is a continuous
function k mapping steady-state inputs uss to steady-state
outputs yss. EIP holds for many systems, but it leaves out
other important systems, like marginally stable systems, e.g.
the single integrator ẋ = u, y = x, whose steady-state input
output-pairs are u = 0 and any y ∈ R. To address this
issue, MEIP was proposed in [12]. In MEIP, we consider
the collection k of all steady-state I/O pairs (uss, yss), called
the steady-state input output relation of the system.. It gives
rise to two set-valued functions, denoted k and k−1. If u is a
steady-state input, and y is a steady-state output, we let k(u)
be the set of all steady-state outputs corresponding to u, and
k−1(y) be the set of all steady-state inputs corresponding to
y. We now define MEIP:

Definition 1 ([12]). A SISO system is (output-strictly) MEIP
if the system is (output-strictly) passive with respect to any
steady-state I/O pair (u, y), and its steady-state relation is
maximally monotone.1

The monotonicity requirement in Definition 1 stems from
two origins. The first being the fact that the steady-state
function k for EIP systems is monotone. The second is that
maximally monotone relations are closely tied to convex
functions. A theorem by Rockafellar [22] shows that a
maximally monotone relation is the subgradient of a convex

1For all steady-state I/O pairs (u1, y1), (u2, y2), (u2 − u1)(y2 − y1) ≥
0 and is not contained in a larger monotone relation.

function (and vice versa), and the convex function is unique
up to an additive constant.

We now consider a diffusively coupled network (G,Σ,Π)
with MEIP agents and controllers. We denote the steady-state
I/O relations of Σi,Πe by ki, γe respectively, and the stacked
versions by k, γ. By the theorem above, there exists convex
functions Ki,Γe such that ki = ∂Ki and γe = ∂Γe, and their
sums K,Γ satisfy ∂K = k, ∂Γ = γ. In [13], it is shown that
y is a steady-state output of the closed-loop system if and
only if 0 ∈ k−1(y)+Eγ(ETy). Moreover, ∂K = k, ∂Γ = γ,
meaning that k−1(y) + Eγ(ETy) is exactly the subgradient
of K?(y) + Γ(ETy), where K?(y) = minu{yTu−K(u)} is
the convex dual function of K and ∂K? = k−1 [21]. Using
convex optimization theory, [12] proved the following:

Theorem 1 ( [12]). Consider a diffusively-coupled net-
work (G,Σ,Π) with output-strictly MEIP agents and MEIP
controllers. Let K,Γ be the stacked integral functions for
the agents and the controllers, respectively. Then the sig-
nals u(t), y(t), ζ(t), µ(t) converge to constant steady-states,
which are (dual) optimal solutions to the static network
optimization problems:

Optimal Potential Problem Optimal Flow Problem

min
y,ζ

K?(y) + Γ(ζ)

s.t. ET y = ζ

min
u,µ

K(u) + Γ?(µ)

s.t. µ = −Eu.

Remark 1. The proof of Theorem 1, as seen in [13], consists
of two parts. The first shows that if there is a steady-state
I/O pair (u, y) for the agents Σ, a steady-state I/O pair
(ζ, µ) for the controllers Π, and ζ = ETy,u = −Eµ,
then the closed-loop system converges. This part is based on
the output-strict passivity of Σ and the passivity of Π. The
second part (for (OPP)) shows that the steady-state equation
0 ∈ k−1(y) + Eγ(ETy) is equivalent to the minimization of
K?(y) + Γ(ETy). This part is based on the convexity of the
integral function K?(y) + Γ(ETy).

The feedback configuration in Fig. 1(a) can be thought of
more abstractly as the symmetric feedback configuration of
two MIMO systems P and Q with the matrix M , as shown
in Fig. 1(b). This added layer of abstraction, in which we
treat the stacked agents and controllers as MIMO dynamical
systems and study their I/O steady-state behavior, will be of
great importance later. The reason is that P , in our case, will
be a feedback connection of the agents Σ with some network
control law, coupling the agents together, and forcing us to
consider them as a single, indecomposable system.

Lastly, we wish to deal with multi-agent systems that have
shortage of passivity. We define equilibrium-independent
shortage of passivity, as defined in [18].

Definition 2. The system Σ is equilibrium-independent
output-passive short (EIOPS) if there exist some ρ < 0 such
that for any steady-state I/O pair (u, y), there exists a storage
function S(x) such that:

Ṡ ≤ (u− u)T (y − y)− ρ(y − y)T (y − y). (2)



One should note that (2) also defines passivity (if ρ = 0),
and output-strict passivity (if ρ > 0).

III. NETWORK REGULARIZATION AND PASSIVATION

From now on, we fix a collection {Σi} of n agents, and
an underlying graph G = (V,E) on n vertices. For the rest
of the paper, we also make the following assumption:

Assumption 1. For each i ∈ V, there is a storage function
Si and some ρi ∈ R such that the SISO dynamical system Σi
satisfies (2) for any (ui, yi) ∈ ki. Moreover, we assume that
the inverse steady-state relation k−1i is a function defined
over R. In this case, we can choose an integral function for
k−1i defined by K?

i (y) =
∫ y

y0
k−1i (ỹ)dỹ. Thus K?

i are differ-
entiable and ∇K?

i = k−1i . We denote K(y) =
∑
iKi(yi).

Suppose one chooses MEIP controllers {Πe} over the
edges, with steady-state I/O relations γe and integral func-
tions Γe, and let Γ(ζ) =

∑
e Γe(ζe). In this case, Theorem

1 does not prove convergence due to lack of passivity, but
moreover, the problem (OPP), minimizing K?(y) + Γ(ζ)
such that ETy = ζ, might not be convex. Indeed, as
seen in [18], [19], the integral functions K?

i might not be
convex. In [18], a Tikhonov type regularization term of the
form 1

2

∑
i∈V βiy

2
i , where βi > 0 [23] was introduced. In

turn, this led to the passivation of each agent using the
control law ui = vi − βiyi, where vi is some exogenous
input, assuming βi > −ρi. Later, an analysis theorem
was established for closed loop with the new, passivized
agents, showing that the steady-states of this closed loop
networked system correspond to minima of the regularized
(OPP), minimizing K?(y) + Γ(ζ) + 1

2yTdiag(βi)y with the
constraint ζ = ETy. For notational convenience, we denote
R = diag{ρ1, . . . , ρ|V|}.

This method allows for analysis, and later synthesis of
passive-short multi-agent systems. However, it requires each
agent to implement the control law ui = vi − βiyi. This
might not be possible in applications for two reasons. First,
the agents might not be able to sense their self-output
yi, but only relative outputs yi − yj . This is the case in
many formation control problems, or real-life applications
for robots in GNSS-deprived areas. Second, the planner of
the multi-agent system might not be able to intervene with
the agents’ dynamics. This is the case in open networks.
Thus we strive for a different network regularization term.

A. Network-Only Regularization and Passivation

We consider a different Tikhonov-type regularization term,
of the form of 1

2

∑
e∈E βeζ

2
e , depending only on the network

variables ζ. This gives rise to the network-regularized opti-
mal potential problem (NROPP):

min
y,ζ

K?(y) + Γ(ζ) +
1

2
ζTBζ s.t. ETy = ζ, (NROPP)

where B = diag(β) = diag{β1, . . . , β|E|} is a design pa-
rameter that will be appropriately chosen to make (NROPP)
convex. We can consider the cost function of (NROPP) as the
sum of two functions - the first is Γ(ζ), which is known to

be convex. The second is K?(y) + 1
2ζ
Tdiag(β)ζ. Following

the notation in [18] and recalling that ζ = ETy, we denote
the latter as

Λ?N (y) = K?(y) + 0.5yTEdiag(β)ETy. (3)

The following theorem proves that this new, regularized
integral function for the agents is induced by a network
consensus-type feedback.

Proposition 1. Consider the agents Σi satisfying Assumption
1. Let Λ?N , given by (3), be the network-regularized integral
function for the agents. Then Λ?N is differentiable. Moreover,
consider the MIMO system Σ̃ given by the parallel inter-
connection of the agents {Σi}i∈V with an output-feedback
control of the form

u = v − Ediag(β)ET y, (4)

with some new exogenous input v ∈ Rn, and let λN be
its I/O steady-state relation. Then λ−1N is a function, and
∇Λ?N = λ−1N .

Proof. The proof is similar to the proof of Theorem 1 in [18].
Λ?N is differentiable as a sum of the differentiable functions
K? and 1

2yTEdiag(β)ETy. Its derivative is given by

∇Λ?N (y) = k−1(y) + Ediag(β)ETy. (5)

If (u, y) is a steady-state I/O pair for the agents, and we
denote v = ∇Λ?N (y), then (6) is equivalent to

v = u + Ediag(β)ETy. (6)

Rearranging the terms, we conclude that (v, y) is a steady-
state I/O pair for the closed-loop system given by the agents
with the network feedback as in (7). This completes the
proof.

In other words, Proposition 1 gives the following interpre-
tation of (NROPP). It is the optimal potential problem (OPP)
for the closed-loop system which is the feedback connection
of the controllers Π with the augmented agents Σ̃, as seen
in Fig. 2(a). In the spirit of feedback connection of passive
systems, and because the controllers Π are MEIP, we wish
to understand when Σ̃ is passive.

Proposition 2. Suppose that R + Ediag(β)ET is positive-
semi definite.2 Then Σ̃ is passive with respect to any steady-
state I/O pair. Moreover, if the matrix is positive-definite,
then Σ̃ is output-strict passivity.

Proof. We take a steady-state I/O pair (v, y) for Σ̃, so that
(u, y) is a steady-state I/O pair of Σ where v = u +
Ediag(β)ETy. If S(x) =

∑
i S(xi) is the sum of the storage

functions for the agents Σi, then summing (2) over the agents
gives

Ṡ ≤ −(yi − yi)
TR(yi − yi) + (yi − yi)

T (ui − ui).

2Recall R = diag{ρ1, . . . , ρ|V|} with ρi the passivity index of Σi.



(a) Network only regularization. (b) Hybrid network regularization
with one self-regulating agent Σ|V|.

Fig. 2. Block diagrams of suggested network-based regularization schemes.

Substituting ui = vi − Ediag(β)ETy gives

Ṡ ≤− (yi − yi)
TR(yi − yi) + (yi − yi)

T (vi − vi)

− (yi − yi)
TEdiag(β)ET (yi − yi).

Grouping R and Ediag(β)ET completes the proof.

We conclude the following theorem.

Theorem 2. Let {Σi}i∈V be agents satisfying Assumption
1 with passivity indices ρ1, ..., ρn. Let {Πe}e∈E be MEIP
controllers with stacked integral function Γ. Consider the
closed-loop system with the controller input ζ = ET y and
the control input u = −Eµ−Ediag(β)ζ. If R+Ediag(β)ET
is positive-definite, then the closed-loop system converges to
a steady-state. Moreover, the steady-state output y and ζ =
ETy are the optimal solutions to the problem (NROPP).

Proof. By the discussion above, the closed-loop system is
a feedback connection of the network-regularized agents Σ̃,
which are output-strictly passive with respect to any steady-
state they have, and the controllers Π, which are MEIP.
Moreover, the augmented agents’ steady-state I/O relation
λ−1N is the gradient of the function Λ?N . The proof now
follows from Theorem 1 and Remark 1.

We now ask ourselves how to ensure R+ Ediag(β)ET is
positive-definite by appropriately choosing the gains βe. To
answer that question, we prove the following.

Theorem 3. Let ρ1, ..., ρ|V| be any real numbers and assume
G is connected. There exists some β1, ..., β|E| such that
diag(ρ) + Ediag(β)ET is positive definite if and only if∑
i∈V ρi is strictly positive.

Proof. Suppose first that there exist some β1, ..., β|E| such
that X = R + Ediag(β)ET is positive definite. Then
1T|V|X1|V| > 0, where 1|V| is the all-one vector. However,
ET1|V| = 0, so 0 < 1T|V|X1|V| = 1T|V|R1|V| =

∑
i ρi.

As for the other direction, suppose that
∑
i ρi > 0. We

show that if b is large enough, then R + bEET is positive
definite, which will conclude the proof as we can choose

βe = b. As the matrix in question is symmetric, it’s enough
to show that for any x ∈ R|V|, xT (R+ bEET )x ≥ 0.

We can write any vector x ∈ R|V| as x = α1|V| + Ez for
z ∈ R|E| orthogonal to ker(E). The quadratic form is

xT (R+bEET )x =α2
∑
i

ρi+z
T ETR(2α1|V| + Ez) + b||ET Ez||2,

where we use ET1|V| = 0. Now, ETE is a positive
semi-definite matrix, and z is orthogonal to its kernel, as
ker(ETE) = ker(E). Thus ||ETEz|| ≥ λmin,6=0(ETE)||z||,
where λmin,6=0(ETE) is the minimal non-zero eigenvalue.
Moreover, ETE and EET share nonzero eigenvalues [24],
hence the minimal nonzero eigenvalue of ETE is λ2(G),
the second eigenvalue of the graph Laplacian. Therefore the
quadratic form is bounded from below by

α2
∑
i

ρi+2αzT ETR1|V| + zT ETdiag(ρ)Ez+bλ2
2(G)||z||2

=

∥∥∥∥
√∑

i ρi√
|V|

α1|V| +

√
|V|√∑
i ρi

REz
∥∥∥∥2

+ zT
(
ETRE − |V|∑

i ρi
ETR2E + bλ2(G)2Id

)
z.

The first summand is non-negative, as it is a norm, and the
second is non-negative if the symmetric matrix multiplying
zT and z is positive-definite, which is guaranteed if

b >
λmax

( |V|∑
i ρi
ETdiag(ρ)2E − ETdiag(ρ)E

)
λ2(G)2

:= b,

where λmax(·) is the largest eigenvalue of a matrix. This
completes the proof.

Remark 2. Note that if G is not connected, the result of
Theorem 3 holds if we require that the sum is positive on
each connected component.

Example 1. One might expect that if we only demand
positive-semi definiteness in Theorem 3, we might be able
to accommodate

∑
i∈Vc

ρi = 0. However, this is not the
case. Consider a two-agent case with ρ1 = 1 and ρ2 = −1.
There is only one edge in the case, diag(ρ)+Ediag(β)ET =[
1 + β −β
−β −1 + β

]
. This matrix can never be positive semi-

definite, as its determinant is equal to −1 < 0. Thus, the
agents cannot be passivized using the network.

Theorem 3 not only gives a good characterization of the
diffusively-coupled systems that can be passivized, but also
gives a prescription for network passivation, namely have a
uniform gain of size b + ε, for some ε > 0, over all edges.
However, it shows that not all diffusively-coupled systems
satisfying Assumption 1 can be network-passivized. This can
be problematic in some applications, e.g. open networks in
which the sign of the sum

∑
i ρi might be volatile, meaning

that there might be long periods in which we cannot provide
a solution. For that reason, we consider a more general
approach in the next subsection.



B. Hybrid Approaches for Regularization and Passivation

We return to the problem of regularizing the non-
convex network optimization problem (OPP). We consider
a quadratic regularization term of the form 1

2ζ
Tdiag(β)ζ as

before, but add another Tikhonov-type regularization type in
the spirit of [18], 1

2yTdiag(α)y. Namely, we consider the
Hybrid-Regularized Optimal Potential Problem (HROPP),

min
y,ζ

K?(y) + Γ(ζ) +
1

2
ζTdiag(β)ζ +

1

2
yTdiag(α)y

s.t. ETy = ζ.
(HROPP)

As we’ll see, unlike in [18], the vector α = [α1, ..., α|V|]
T

can be very sparse. Namely, we can prove the following.

Theorem 4. Consider the agents Σi satisfying Assumption 1.
Let ΛH(y) = K?(y) + 1

2ζ
Tdiag(β)ζ + 1

2yTdiag(α)y. Then
Λ?H is differentiable. Moreover, consider the MIMO system
Σ̃ given by the agents with the output-feedback control

u = v − Ediag(β)ET y − diag(α)y, (7)

with some new exogenous input v ∈ Rn, and let λH be
its I/O steady-state relation. Then λ−1H is a function, and
∇Λ?H = λ−1H .

Proof. Similar to the proof of Proposition 1.

Theorem 5. Let {Σi}i∈V be agents satisfying Assumption 1.
Let {Πe}e∈E be MEIP controllers with stacked integral func-
tion Γ. Consider the closed-loop system with the controller
input ζ = ET y and the control input u = −Eµ−Ediag(β)ζ−
diag(α)y. If the matrix diag(ρ+α)+Ediag(β)ET is positive-
definite, then the closed-loop system converges. Moreover, the
steady-state output y and ζ = ETy are the optimal solutions
to the problem (HROPP).

Proof. Similar to the proof of Theorem 2.

Corollary 1. (Almost Network-Only Regularization) Let
{Σi}i∈V be agents satisfying Assumption 1, and suppose that
the graph G is connected. Let Vsr ⊆ V be any nonempty
subset of the agents. Let {Πe}e∈E be MEIP controllers with
stacked integral function Γ. Consider the closed-loop system
with the controller input ζ = ET y and the control input
u = −Eµ−Ediag(β)ζ − diag(α)y. Then there exist vectors
α ∈ R|V|, β ∈ R|E| such that:

i) For any vertex i 6∈ Vsr, αi = 0.
ii) The closed-loop system converges to a steady-state.

iii) The steady-state output y and ζ = ETy are the optimal
solutions to the optimization problem (HROPP).

An example of the closed-loop system for a single self-
regulating agent Σ|V| can be seen in Fig. 2(b).

Proof. By Theorem 5, it’s enough to find some α, β satisfy-
ing the first condition such that diag(ρ+ α) + Ediag(β)ET
is positive-definite. Fixing α, Theorem 3 implies that there
is some β such that diag(ρ+ α) + Ediag(β)ET is positive-
definite if and only if

∑
i(ρi+αi) > 0, or

∑
i αi > −

∑
i ρi.

Taking any i0 ∈ Vsr and choosing αi = 1−
∑
i ρi for i = i0,

and αi = 0 otherwise, finishes the proof.

Remark 3. The set Vsr in the theorem can be thought of
the set of vertices that can sense their own output, and are
amenable to the network designer (i.e., self-regularizable
agents). The theorem shows the strength of the hybrid
approach for regularization of (OPP). we can choose almost
all αi-s to be zero - namely one agent is enough. In practice,
this solution is less restrictive than the one offered in [18].

IV. CASE STUDIES

Consider the traffic dynamics model proposed in [25],
in which vehicles adjust their velocity xi according to the
equation ẋi = κi(Vi(∆p)− xi), where κi > 0 is a constant
representing the sensitivity of the i-th driver, and

Vi(∆p) = V 0
i + V 1

i

∑
j∼i

tanh(pj − pi), (8)

is the adjustment, where V 0
i are the preferred velocities, and

V 1
i are the “sensitivity coefficients.” This model was studied

in [12], where it was shown that it can inhibit a clustering
phenomenon. In [18], the case of κi < 0, attributed to drowsy
driving, was studied. There, a self-gain-feedback was applied
for each agent, resulting in a network of MEIP agents.

Consider a case where only some agents know their own
velocity (e.g., by a GNSS measurement). Thus, agents which
have no GNSS reception cannot implement the regularization
of (OPP), or the self-feedback loops, proposed in [18].
Instead, we opt for the hybrid regularization suggested above.

The model is a diffusively coupled network with the agents
Σi : ẋi = κi(−xi +V 0

i +V 1
i u), yi = xi and the controllers

Πe : η̇e = ζe, µe = tanh(ηe). The agents are EIOPS
if V 1

i κi > 0, with ρi = κi, so κi > 0 corresponds
to output-strict MEIP. We suppose that only agent i0 has
GNSS reception, so we implement a correction term of the
form αi0y

2
i0

+ βζT ζ to (OPP), giving us (HROPP). The
new control law is u(t) = −αi0xi0ei0 − βEETx − V (∆p)
where V (∆p) = [V1(∆p), · · · , Vn(∆p)]T , and ei is the i-th
standard basis vector. Only the states xi0 and ETx are used
in the control law, meaning that no agent but i0 is required
to know its velocity in a global frame of reference, but only
positions and velocities relative to its neighbors.

To illustrate this, we consider a network of n = 100
agents, all connected to each other, with parameters κi
randomly chosen either as −1 (w.p. 1/3) and 1 (w.p. 2/3).
Moreover, the parameters V 0

i were chosen as a Gaussian
mixture model, with half of the samples having mean 20
and standard deviation 15, and half having mean 120 and
standard deviation 15. Lastly, V 1

i where chosen as 0.8κi. In
[12], it is shown that (OPP) in this case is given by

min
y,ζ

∑
i

1

2V 1
i

(yi − V 0
i )2 +

∑
e

|ζe| s.t. ζ = ET y,



(a) Vehicles’ trajectories under
network-only regularization.
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(b) Asymptotic behaviour pre-
dicted by (NROPP).

Fig. 3. Traffic control model.

meaning that (HROPP) is given by:

min
y,ζ

∑
i

1

2V 1
i

(yi − V 0
i )2 +

∑
e

|ζe|+ αi0y
2
i0 + β

∑
e

ζ2e

s.t. ζ = ET y.

Here, the sum
∑
i ρi =

∑
i κi is positive, so we use

the network-regularization method, choosing αi0 = 0, and
(HROPP) reduces to (NROPP). Choosing β = b+ ε, we ap-
ply Theorems 5 and 3 to conclude that the system converges,
and find its steady-state limit. We plot the trajectories of the
system in Fig. 3(a), as well as the minimizer of (NROPP)
in Fig. 3(b). It is easily seen that the steady-state value
of the system matches the forecast, namely the minimizer
of (NROPP). It should be noted that we get a clustering
phenomenon, as noted in [12]. However, the clustering is
far less refined than one expects given the simulation results
presented in [12], and the Gaussian mixture model chosen
for V 0

i . This is due to the ever-going consensus feedback
−βEETx appearing in u, which does not only passivizes the
system, but also forces the trajectories closer to a consensus.

V. CONCLUSION

We considered a diffusively-coupled network of
equilibrium-independent output-passive-short (EIOPS)
agents. As the systems are not MEIP, the cost function of
the associated network optimization problem (OPP) need
not be convex. We proposed a regularization term, which is
based only on the network-level variables ζ, and proved that
it corresponds to applying a network-only feedback term
on the agents. In turn, we showed that if

∑
i ρi is positive,

where ρi is the passivity parameter of the i-th agent, then
we successfully convexify the cost function of (OPP), and
that steady-state outputs of the new closed-loop dynamical
system correspond to minimizers of the regularized
constrained minimization problem, (NROPP). We also
suggested a hybrid approach, in which we try and regularize
(OPP) both with network-level variables ζ and a subset of
the agent outputs. This implies that other agent need not
measure their own output, nor self-regulate. We showed
that (OPP) can always be convexified using this term, and
that steady-state outputs of the new closed-loop system
correspond to minimizers of the regularized constrained
minimization problem, (HROPP). Future research can try
and find a more refined network-based regularization term,
in which different edges are assigned different gains.
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