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9 On exact controllability of infinite-dimensional

linear port-Hamiltonian systems*
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Abstract

Infinite-dimensional linear port-Hamiltonian systems on a one-dimensional
spatial domain with full boundary control and without internal damping
are studied. This class of systems includes models of beams and waves
as well as the transport equation and networks of nonhomogeneous trans-
mission lines. The main result shows that well-posed port-Hamiltonian
systems, with state space L2((0, 1);Cn) and input space C

n, are exactly
controllable.

Keywords: Controllability, C0-semigroups, port-Hamiltonian differential equa-
tions, boundary control systems.
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1 Introduction

In this article, we consider infinite-dimensional linear port-Hamiltonian systems
on a one-dimensional spatial domain with boundary control of the form

∂x

∂t
(ζ, t) =

(
P1

∂

∂ζ
+ P0

)
(H(ζ)x(ζ, t)),

x(ζ, 0) =x0(ζ), (1)

u(t) =W̃B

[
(Hx)(1, t)
(Hx)(0, t)

]
,

where ζ ∈ [0, 1] and t ≥ 0. Moreover, we assume that P1 is an invertible n× n

Hermitian matrix, P0 is a n × n skew-adjoint matrix, W̃B is a full row rank
n× 2n-matrix, and H(ζ) is a positive n× n Hermitian matrix for a.e. ζ ∈ (0, 1)
satisfying H,H−1 ∈ L∞((0, 1);Cn×n). The matrix P1H(ζ) can be diagonalized
as P1H(ζ) = S−1(ζ)∆(ζ)S(ζ), where ∆(ζ) is a diagonal matrix and S(ζ) is an
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invertible matrix for a.e. ζ ∈ (0, 1). We suppose the technical assumption that
S−1, S, ∆ : [0, 1] → Cn×n are continuously differentiable.

Equation (1) describes a special class of port-Hamiltonian systems, which
however is rich enough to cover in particular the wave equation, the transport
equation and the Timoshenko beam equation, and also coupled beam and wave
equations each with possibly damping on the boundary. For more information
on this class of port-Hamiltonian systems we refer to the monograph [1] and
the survey [2]. However, we note that here we always assume that there is no
internal damping (the matrix P0 is skew-adjoint) and that we have full boundary

control (W̃B is a full row rank n× 2n-matrix).
Port-based network modeling of complex physical systems leads to port-

Hamiltonian systems. For finite-dimensional systems there is by now a well-
established theory [3, 4, 5]. The port-Hamiltonian approach has been extended
to the infinite-dimensional situation by a geometric differential approach [6, 7,
8, 9] and by a functional analytic approach [10, 9, 1, 11, 12, 2]. Here we follow
the functional analytic point of view. This approach has been successfully used
to derive simple verifiable conditions for well-posedness [13, 10, 9, 1, 11, 14],
stability [1, 15] and stabilization [16, 17, 15, 18] and robust regulation [19]. For
example, the port-Hamiltonian system (1) is well-posed, if v∗P1v − w∗P1w ≤ 0

for every [ vw ] ∈ ker W̃B.
Provided the port-Hamiltonian system (1) is well-posed, we aim to char-

acterize exact controllability. Exact controllability is a desirable property of
a controlled partial differential equation and has been extensively studied, see
for example [20, 21, 22]. We call the port-Hamiltonian system exactly control-
lable, if every state of the system can be reached in finite time with a suitable
control input. Triggiani [23] showed that exact controllability does not hold
for many hyperbolic partial differential equations. However, in this paper we
prove, that the port-Hamiltonian system (1) is exactly controllable whenever it
is well-posed.

2 Reminder on port-Hamiltonian systems

We define

Ax :=

(
P1

d

dζ
+ P0

)
(Hx), x ∈ D(A), (2)

on X := L2((0, 1);Cn) with the domain

D(A) :=
{
x ∈ X | Hx ∈ H1((0, 1);Cn)

}
(3)

and B : D(A) → Cn by

Bx = W̃B

[
(Hx)(1, t)
(Hx)(0, t)

]
. (4)

Here H1((0, 1);Cn) denotes the first order Sobolev space. We call A the (max-
imal) port-Hamiltonian operator and equip the state space X = L2((0, 1);Cn)



with the energy norm
√
〈·,H·〉, where 〈·, ·〉 denotes the standard inner product

on L2((0, 1);Cn). We note that the energy norm is equivalent to the standard
norm on L2((0, 1);Cn).

Then the partial differential equation (1) can be written as a boundary control
system

ẋ(t) = Ax(t), x(0) = x0,

u(t) = Bx(t).

The first important question is whether the port-Hamiltonian system (1) is
well-posed in the sense that for every initial condition x0 ∈ X and every u ∈
L2
loc([0,∞);Cn) equation (1) has a unique mild solution.
In [10, 9, 1] it is shown that the port-Hamiltonian system (1) is well-posed

if and only if the operator A : D(A) ⊂ X → X , defined by

Ax :=

(
P1

d

dζ
+ P0

)
(Hx), x ∈ D(A), (5)

with the domain

D(A) :=

{
x ∈ D(A) | W̃B

[
(Hx)(1)
(Hx)(0)

]
= 0

}
(6)

generates a strongly continuous semigroup on X . We recall, that A generates a
contraction semigroup on X if and only if A is dissipative on X , c.f. [13, 1, 15].
Further, matrix conditions to guarantee generation of a contraction semigroup
have been obtained in [13, 1, 15] and matrix conditions for the generation of
strongly continuous semigroups can be found in [11].

For the proof of the main theorem feedback techniques are needed and there-
fore we investigate port-Hamiltonian systems with boundary control and obser-
vations. These are systems of the form

∂x

∂t
(ζ, t) =

(
P1

∂

∂ζ
+ P0

)
(H(ζ)x(ζ, t)),

x(ζ, 0) =x0(ζ), (7)

u(t) =W̃B

[
(Hx)(1, t)
(Hx)(0, t)

]

y(t) =W̃C

[
(Hx)(1, t)
(Hx)(0, t)

]
,

where we restrict ourselves in this article to case where P1, P0, H and W̃B

satisfy the condition described in Section 1 and W̃C is a full row rank k × 2n

matrix, k ∈ {0, · · · , n}, such that the matrix
[
W̃B

W̃C

]
has full row rank. We call

system (7) a (boundary control and observation) port-Hamiltonian system. The
case k = 0 refers to the case of a system without observation, that is, every
definition or statement of the port-Hamiltonian system (7) also applies to the
port-Hamiltonian system (1).



We define C : D(A) → Ck by

Cx = W̃C

[
(Hx)(1, t)
(Hx)(0, t)

]
. (8)

Then we can write the port-Hamiltonian system (7) in the following form

ẋ(t) = Ax(t), x(0) = x0,

u(t) = Bx(t), (9)

y(t) = Cx(t).

If the operator A, defined by (5)-(6), generates a strongly continuous semigroup
on the state spaceX , then (9) defines a boundary control and observation system,
see [1, Theorem 11.3.2 and Theorem 11.3.5].

Definition 2.1. Let A : D(A) ⊂ X → X, B : D(A) → C
n and C : D(A) →

Ck be linear operators. Then (A,B,C) is a boundary control and observation
system if the following hold:

1. The operator A : D(A) ⊂ X → X with D(A) = D(A) ∩ ker(B) and Ax =
Ax for x ∈ D(A) is the infinitesimal generator of a strongly continuous
semigroup on X.

2. There exists a right inverse B̃ ∈ L(Cn, X) of B in the sense that for all

u ∈ C
n we have B̃u ∈ D(A), BB̃u = u and AB̃ : Cn → X is bounded.

3. The operator C is bounded from D(A) to Ck, where D(A) is equipped with
the graph norm of A.

We recall, that if A, defined by (5)-(6), generates a strongly continuous
semigroup on the state space X , then the port-Hamiltonian system (7) is a
boundary control and observation system.

We note that for x0 ∈ D(A) and u ∈ C2([0, τ ];Cn), τ > 0, satisfying Bx0 =
u(0), a boundary control and observation system (A,B,C) possesses a unique
classical solution [1, Lemma 13.1.5].

For technical reasons we formulate the boundary conditions equivalently via
the boundary flow and the boundary effort. As the matrix

[
P1 −P1

I I

]
is invertible,

we can write the port-Hamiltonian system (7) equivalently as

∂x

∂t
(ζ, t) =

(
P1

∂

∂ζ
+ P0

)
(H(ζ)x(ζ, t)),

x(ζ, 0) =x0(ζ), (10)

u(t) =WB

[
fδ,Hx

eδ,Hx

]
,

y(t) =WC

[
fδ,Hx

eδ,Hx

]
,



where
[
fδ,Hx

eδ,Hx

]
=

1√
2

[
P1 −P1

I I

] [
(Hx)(1)
(Hx)(0)

]

and

W̃B = WB

1√
2

[
P1 −P1

I I

]
, W̃C = WC

1√
2

[
P1 −P1

I I

]
. (11)

Here fδ,Hx is called the boundary flow and eδ,Hx the boundary effort. The port-
Hamiltonian system (7) is uniquely described by the tuple (A,B,C) given by
(2), (3), (4) and (8).

Well-posedness is a fundamental property of boundary control and observa-
tion systems.

Definition 2.2. We call a boundary control and observation system (A,B,C)
well-posed if there exist a τ > 0 and mτ ≥ 0 such that for all x0 ∈ D(A) and
u ∈ C2([0, τ ];Cn) with u(0) = Bx0 the classical solution x, y satisfy

‖x(τ)‖2X +

∫ τ

0

‖y(t)‖2dt

≤mτ

(
‖x0‖2X +

∫ τ

0

‖u(t)‖2dt
)
.

There exists a rich literature on well-posed systems, see e.g. Staffans [24]
and Tuscnak and Weiss [25]. In general, it is not easy to show that a boundary
control and observation system is well-posed. However, for the port-Hamiltonian
system (7) well-posedness is already satisfied if A generates a strongly continuous
semigroup.

Theorem 2.3. [1, Theorem 13.2.2] The port-Hamiltonian system (7) is well-
posed if and only if the operator A defined by (5)-(6) generates a strongly con-
tinuous semigroup on X.

There is a special class of port-Hamiltonian systems for which well-posedness
follows immediately.

Definition 2.4. A port-Hamiltonian systems (7) is called impedance passive,
if

Re 〈Ax, x〉 ≤ Re 〈Bx,Cx〉 (12)

for every x ∈ D(A). If we have equality in (12), then the port-Hamiltonian
system is called impedance energy preserving.

The fact that a port-Hamiltonian system is impedance energy preserving
can be characterized by a easy checkable matrix condition.



Theorem 2.5. [13, Theorem 4.4] The port-Hamiltonian systems (7) is impedance
energy preserving if and only if it holds

[
WBΣW

∗
B WBΣW

∗
C

WCΣW
∗
B WCΣW

∗
C

]
=

[
0 I
I 0

]
, (13)

where Σ = [ 0 I
I 0 ].

Remark 2.6. Every impedance energy preserving port-Hamiltonian system (7)
is well-posed; WBΣW

∗
B = 0 even implies that A generates a unitary strongly

continuous group, c.f. [11, Theorem 1.1].

In order to formulate the mild solution of a well-posed port-Hamiltonian
system (7) we need to introduce some notation. Let X−1 be the completion
of X with respect to the norm ‖x‖X

−1
= ‖(βI − A)−1x‖X for some β in the

resolvent set ρ(A) of A, this implies,

X ⊂ X−1

and X is continuously embedded and dense in X−1. Furthermore, let (T (t))t≥0

be the strongly continuous semigroup generated by A. The semigroup (T (t))t≥0

extends uniquely to a strongly continuous semigroup (T−1(t))t≥0 on X−1 whose
generator A−1, with domain equal to X , is an extension of A, see e.g. [26].
Moreover, we can identify X−1 with the dual space of D(A∗) with respect to
the pivot space X , see [22], that is X−1 = D(A∗)′. If the port-Hamiltonian
system (7) is well-posed, then the unique mild solution is given by

x(t) = T (t)x0 +

∫ t

0

T−1(t− s)(AB̃ −A−1B̃)u(s) ds.

Here the operator B̃ : Cn → L2((0, 1);Cn) can be defined as follows

(B̃u)(ζ) := (H(ζ))−1 (S1ζ + S2(1− ζ)) u,

where S1 and S2 are n× n-matrices given by

[
S1

S2

]
:=

[
P1 −P1

I I

]−1

W̃ ∗
B(W̃BW̃

∗
B)

−1.

For a well-posed port-Hamiltonian system (7) the transfer function is given
by [1, Theorem 12.1.3]

G(s) = C(sI −A)−1(AB̃ − sB̃) + CB̃, s ∈ ρ(A),

where ρ(A) denotes the resolvent set of A. The transfer function is bounded
on some right half plane and equals the Laplace transform of the mapping
u(·) 7→ y(·) if x0 = 0.



Definition 2.7. [1, Definition 13.1.11] A well-posed port-Hamiltonian system
(7) with transfer function G is called regular if lims∈R,s→∞ G(s) exists. In this
case the feedthrough operator D is defined as

D := lim
s∈R,s→∞

G(s).

Lemma 2.8. [1, Lemma 13.2.22] Under the standing assumptions every well-
posed port-Hamiltonian system (7) is regular.

So far, we have only considered open-loop system, that is, the input u(t) is
independent of the output y(t), see Figure 1. Systems, where input and output
are connected via a feedback law

u(t) = Fy(t) + v(t), (14)

are called closed-loop systems, see Figure 2. Here F denotes the so called feedback
operator and v(t) the new input.

(A,B,C)
u y

Figure 1: open-loop system (A,B,C)

(A,B,C)

F

v u y

+

Figure 2: closed-loop system (A,B,C) with feedback F

Definition 2.9. ([1, Theorem 13.2.2] and [27, Proposition 4.9]) (7) and we
denote by D the corresponding feedthrough. A n × n-matrix F is called an
admissible feedback operator for a regular port-Hamiltonian system (7) with
feedthrough operator D, if I −DF is invertible.

Proposition 2.10. [1, Theorem 13.1.12] Let (A,B,C) be a well-posed port-
Hamiltonian system (7). Assume that F is an admissible feedback operator.



Then the closed-loop system (A, (B− FC),C), i.e.,

∂x

∂t
(ζ, t) =

(
P1

∂

∂ζ
+ P0

)
(H(ζ)x(ζ, t)),

x(ζ, 0) =x0(ζ), (15)

v(t) =(B − FC)x(t),

y(t) =Cx(t)

with input v and output y is a well-posed port-Hamiltonian system.

Definition 2.11. The well-posed port-Hamiltonian system (7) is exactly con-
trollable, if there exists a time τ > 0 such that for all x1 ∈ X there exists a
control function u ∈ L2((0, τ);Cn) such that the corresponding mild solution
satisfies x(0) = 0 and x(τ) = x1.

Proposition 2.12. [27, c.f. Remark 6.9] Let (A,B,C) be a well-posed port-
Hamiltonian system (7). Assume that F is an admissible feedback operator.
Then the closed-loop system (A, (B− FC),C) is exactly controllable if and only
if the open-loop system (A,B,C) is exactly controllable.

3 Exact controllability for port-Hamiltonian sys-

tems

This section is devoted to the main result of this paper, that is, we show that
every well-posed port-Hamiltonian system (1) is exactly controllable.

Exact controllability for impedance energy preserving port-Hamiltonian sys-
tem has been studied in [2].

Proposition 3.1. [2, Corollary 10.7] An impedance energy preserving port-
Hamiltonian system (7) is exactly controllable.

For completeness we include the proof of Proposition 3.1.

Proof. As the port-Hamiltonian system (7) is impedance energy preserving the
corresponding operator A generates a unitary strongly continuous group. Thus,
−A generates a bounded strongly continuous semigroup and exact controlla-
bility is equivalent to optimizability, [28, Corollary 2.2]. The system is called
optimizable if for all x0 ∈ X there exists a control function u ∈ L2((0,∞);Cn)
such that the corresponding mild solution x satisfies x ∈ L2((0,∞);X). Thus
it is sufficient to show that the port-Hamiltonian system (7) is optimizable. Let
x0 ∈ X be arbitrarily. In [19, Lemma 7] it is shown that for every k > 0 the
choice u(t) = −ky(t) leads to a mild solution in L2((0,∞);X). This shows
optimizability of system (7) and concludes the proof.

Now we can formulate our main result.



Theorem 3.2. Every well-posed port-Hamiltonian system (1) is exactly con-
trollable.

For the proof of our main result we need the following lemmas.

Lemma 3.3. Let [W1 W0 ] ∈ Cn×2n have full row rank with W1,W0 ∈ Cn×n.

Then, there exist invertible matrices R̃1, R̃0 ∈ Cn×n such that [W1 W0 ]
[
R̃1

R̃0

]
= I.

Proof. Let [W1 W0 ] have full row rank with rankW1 = n−k, k ∈ {0, . . . , n}, and
rankW0 = n− ℓ with ℓ ∈ {0, . . . , n}. Clearly n− k+ n− ℓ ≥ n, or equivalently,
k + ℓ ≤ n.

By Wn−k
1 we denote the first n − k rows of W1 and W k

1 denotes the last k
rows. Similarly, by Wn−ℓ

0 we denote the last n − ℓ rows of W0 and by W ℓ
0 the

first ℓ rows. That is

W1 =

[
Wn−k

1

W k
1

]
and W0 =

[
W ℓ

0

Wn−ℓ
0

]
.

Without loss of generality, using row reduction and the fact that rank [W1 W0 ] =
n, we may assume that W k

1 = 0 and that Wn−k
1 and Wn−ℓ

0 have full row rank.
We choose right inverses Rn−k

1 ∈ Cn×(n−k) for Wn−k
1 and Rn−ℓ

0 ∈ Cn×(n−ℓ)

for Wn−ℓ
0 . Thus,

Wn−k
1 Rn−k

1 = I and Wn−ℓ
0 Rn−ℓ

0 = I.

Clearly, the columns of Rn−k
1 and Rn−ℓ

0 are linearly independent and are not
elements of the kernel of W1 and W0, respectively.

Let Rk
1 ∈ C

n×k consisting of columns spanning the kernel of W1, and let
Rℓ

0 ∈ Cn×ℓ consisting of columns spanning the kernel of W0. We define R1 =[
Rn−k

1 Rk
1

]
∈ Cn×n and R0 =

[
Rℓ

0 Rn−ℓ
0

]
∈ Cn×n. Thus, R1 and R0 are

invertible and it yields

W1R1 +W0R0

=

[
In−k 0(n−k)×k

0k×(n−k) 0k×k

]
+

[
0ℓ×ℓ W l

0R
n−ℓ
0

0(n−ℓ)×ℓ In−ℓ

]
.

Thus, W1R1 + W0R0 := M is invertible as an upper triangular matrix and
we define R̃1 := R1M

−1 and R̃0 := R0M
−1 to obtain the assertion of the

lemma.

Lemma 3.4. Let α 6= 0 and (A,B) be a well-posed port-Hamiltonian system.
Then the port-Hamiltonian system (A, αB) is well-posed as well. Moreover, the
system (A,B) is exactly controllable if and only if the system (A, αB) is exactly
controllable.

Proof. Well-posed of the scaled system follows immediately. The controllability
of the two systems is equivalent, since we can scale the input function u of one
system by α or 1

α
to get an input for the other system without changing the

mild solution.



Proof of Theorem 3.2: We start with an arbitrary port-Hamiltonian system
(1) described by the tuple (A,B).

By Lemma 3.4, this system is exactly controllable if and only if for some
α > 0 the system (A, αB) is exactly controllable. We aim to prove that there
exists an α > 0 such that the system (A, αB) is exactly controllable.

Thus, we aim to write the system (A, αB) as a closed-loop system of an
exactly controllable system (A,Bo,Co). To construct (A,Bo,Co) we find an
impedance energy preserving system (A,Bo, C̃) which is exactly controllable by
Proposition 3.1.

By (4) and (11), the operatorB is described by a full row rank n×2n-matrix

WB =
[
W1 W0

]
.

Using Lemma 3.3 there exists a matrix R =
[
R1

R0

]
∈ C2n×n such that

WBR = I

and R1, R0 ∈ C
n×n are invertible. If W0 = 0, without loss of generality we may

assume that R0 = I and R1 = W−1
1 .

We now consider the port-Hamiltonian system (A,Bo, C̃), where

Box =
[
R−1

1 0
] [fδ,Hx

eδ,Hx

]

and

C̃x =
[
0 R∗

1

] [fδ,Hx

eδ,Hx

]
.

Obviously, the port-Hamiltonian system (A,Bo, C̃) is impedance energy pre-

serving. Then it follows from Proposition 3.1 that (A,Bo, C̃) is exactly control-
lable.

If W0 = 0, then (A,B) = (A,Bo) and thus the statement is proved with
α = 1.

We now assume that W0 6= 0. In this case we consider the port-Hamiltonian
system (A,Bo,Co), where

Cox =
[
αR−1

1 αR−1
0

] [fδ,Hx

eδ,Hx

]
.

The constant α > 0 will be chosen later. The matrix
[

R
−1

1
0

αR
−1

1
αR

−1

0

]
is invertible

and the port-Hamiltonian system (A,Bo,Co) is still exactly controllable, since
changing the output does not influence controllability.

The port-Hamiltonian system (A,Bo,Co) is regular, see Theorem 2.3 and
Lemma 2.8. By D we denote the feedthrough operator of (A,Bo,Co) and we
choose

α =

{
2 ‖D‖ ‖W0R0‖ , D 6= 0

1, D = 0
.



Then α > 0 and the matrix

F =
1

α
W0R0

is an admissible feedback operator for (A,Bo,Co) as ‖DF‖ < 1 (which implies
invertibility of I −DF ).

We now consider the closed-loop system as shown in Figure 3 and obtain

ẋ(t) = Ax(t), x(0) = x0,

uα(t) = α(uo(t)− Fyo(t))

= α(Bo − FCo)x(t)

=
(
α
[
R−1

1 0
]
−W0R0

[
αR−1

1 αR−1
0

]) [fδ,Hx

eδ,Hx

]

= αWB

[
fδ,Hx

eδ,Hx

]
.

Thus, the closed-loop system equals the port-Hamiltonian system (A, αB). As
the open-loop system (A,Bo,Co) is exactly controllable, by Theorem 2.12 the
port-Hamiltonian system (A, αB) is exactly controllable.

1
α

(A,Bo,Co)

F = 1
α
W0R0

uα uo yo
+

Figure 3: (A, αB) as a closed-loop system

Thus, every well-posed port-Hamiltonian system is exactly controllable. �

4 Example of an exactly controllable port-Hamiltonian

system

An (undamped) vibrating string can be modeled by

∂2w

∂t2
(ζ, t) =

1

ρ(ζ)

∂

∂ζ

(
T (ζ)

∂w

∂ζ
(ζ, t)

)
, (16)

t ≥ 0, ζ ∈ (0, 1), where ζ ∈ [0, 1] is the spatial variable, w(ζ, t) is the vertical
position of the string at place ζ and time t, T (ζ) > 0 is the Young’s modulus of
the string, and ρ(ζ) > 0 is the mass density, which may vary along the string.
We assume that T and ρ are positive and continuously differentiable functions



on [0, 1]. By choosing the state variables x1 = ρ∂w
∂t

(momentum) and x2 = ∂w
∂ζ

(strain), the partial differential equation can equivalently be written as

∂

∂t

[
x1(ζ, t)
x2(ζ, t)

]
=

[
0 1
1 0

]
∂

∂ζ

([ 1
ρ(ζ) 0

0 T (ζ)

] [
x1(ζ, t)
x2(ζ, t)

])

= P1
∂

∂ζ

(
H(ζ)

[
x1(ζ, t)
x2(ζ, t)

])
, (17)

where

P1 =

[
0 1
1 0

]
, H(ζ) =

[ 1
ρ(ζ) 0

0 T (ζ)

]
.

The boundary control for (17) is given by

[
W̃1 W̃0

] [
(Hx)(1, t)
(Hx)(0, t)

]
= u(t),

where
[
W̃1 W̃0

]
is a 2 × 4-matrix with rank 2, or equivalently, the partial

differential equation is equipped with the boundary control

[
W̃1 W̃0

]



ρ∂w
∂t

(1, t)
∂w
∂ζ

(1, t)

ρ∂w
∂t

(0, t)
∂w
∂ζ

(0, t)


 = u(t). (18)

Defining γ =
√
T (ζ)/ρ(ζ), the matrix function P1H can be factorized as

P1H =

[
γ −γ

ρ−1 ρ−1

]

︸ ︷︷ ︸
S−1

[
γ 0
0 −γ

]

︸ ︷︷ ︸
∆

[
(2γ)−1 ρ/2
(2γ)−1 ρ/2

]

︸ ︷︷ ︸
S

.

In [11] it is shown that the port-Hamiltonian system (16), (18) is well-posed if
and only if

W̃1

[
γ(1)
T (1)

]
⊕ W̃0

[
−γ(0)
T (0)

]
= C

2,

or equivalently if the vectors W̃1

[
γ(1)
T (1)

]
and W̃0

[
−γ(0)
T (0)

]
are linearly indepen-

dent.
By Theorem 3.2 the port-Hamiltonian system (16), (18) is exactly control-

lable if the vectors W̃1

[
γ(1)
T (1)

]
and W̃0

[
−γ(0)
T (0)

]
are linearly independent. Here

we consider W̃1 := I and W̃0 :=
[
−1 0
0 1

]
. Then the port-Hamiltonian system

(16), (18) is exactly controllable if the vectors
[
γ(1)
T (1)

]
and

[
γ(0)
T (0)

]
are linearly

independent.



5 Conclusions

In this paper we have studied the notion of exact controllability for a class of
linear port-Hamiltonian system on a one dimensional spacial domain with full
boundary control and no internal damping. We showed that for this class well-
posedness implies exact controllability. Further, we applied the obtained results
to the wave equation.

By duality a well-posed port-Hamiltonian system (A,B,C) with state space
L2((0,∞);Cn) and output space Cn is exactly observable. An interesting prob-
lem for future research is the characterization of exact controllability for port-
Hamiltonian systems with internal damping, i.e, port-Hamiltonian systems where
P0 is not necessarily skew-adjoint. We note, that the condition that W̃B has
full rank cannot be neglected, as in general without full boundary control a
port-Hamiltonian system is not exact controllable. Another open question is
the characterization of exact controllability for port-Hamiltonian systems of
higher order, see [10]. However, for these systems even the characterization of
well-posedness is an open problem.
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