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COMPOSITIONAL SYNTHESIS OF SYMBOLIC MODELS FOR NETWORKS OF

SWITCHED SYSTEMS∗

ABDALLA SWIKIR1 AND MAJID ZAMANI2,3

Abstract. In this paper, we provide a compositional methodology for constructing symbolic models for
networks of discrete-time switched systems. We first define a notion of so-called augmented-storage functions
to relate switched subsystems and their symbolic models. Then we show that if some dissipativity type
conditions are satisfied, one can establish a notion of so-called alternating simulation function as a relation
between a network of symbolic models and that of switched subsystems. The alternating simulation function
provides an upper bound for the mismatch between the output behavior of the interconnection of switched
subsystems and that of their symbolic models. Moreover, we provide an approach to construct symbolic
models for discrete-time switched subsystems under some assumptions ensuring incremental passivity of each
mode of switched subsystems. Finally, we illustrate the effectiveness of our results through two examples.

1. Introduction

The notion of symbolic models (a.k.a. finite abstractions) plays an important role in the control of hybrid
systems (see [Tab09] and the references therein). Symbolic models allow us to use automata-theoretic methods
[MPS95] to design controllers for hybrid systems with respect to logic specifications such as those expressed
as linear temporal logic (LTL) formulae [BK08]. Symbolic models are established for incrementally stable
switched systems, a class of hybrid systems [Lib03], by providing approximate bisimulation relations between
them [GPT10,GGM16, SG17, CGG13]. However, as the complexity of constructing symbolic models grows
exponentially in the number of state variables in the concrete system, the approaches proposed in [GPT10,
GGM16,SG17] limit the application of symbolic models to only low-dimensional switched systems. Although
the result in [CGG13] provides a state-space discretization-free approach for computing symbolic models
of incrementally stable switched systems, this approach is still monolithic and reduces the computational
complexity only for switched systems with few modes, see [CGG13, Section IV(D)].

Motivated by the above limitation, in this work we aim at proposing a compositional framework for con-
structing symbolic models for interconnected switched systems. To do so, we first i) partition the overall
concrete switched system into a number of concrete switched subsystems and construct symbolic models of
them individually; ii) then establish a compositional scheme that allows us to construct a symbolic models of
the overall network using those individual ones.

The compositional framework based on a divide-and-conquer scheme [Kea11] is not new. Several results have
already introduced compositional techniques for constructing symbolic models of networks of control subsys-
tems. The results in [TI08, PPB16,MSSM18, SGZ18, SZ18] provide techniques to approximate networks of
control subsystems by networks of symbolic models by assuming some stability property of the concrete sub-
systems. Other compositional approaches provide techniques to design symbolic models of concrete networks
without requiring any stability property or condition on the gains of subsystems [MGW17,HAT17,KAZ18].
However, none of the aforementioned results in [TI08,PPB16,MSSM18,SGZ18,SZ18,MGW17,HAT17,KAZ18]
provide a compositional framework for constructing symbolic models for interconnected switched systems.

In this paper, we provide a compositional methodology for the construction of symbolic models of inter-
connected switched systems based on dissipativity theory [AMP16]. We first define a notion of so-called
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augmented-storage functions to relate switched subsystems and their symbolic models. Then, by leveraging
dissipativity-type compositional conditions, we construct a notion of so-called alternating simulation functions
as a relation between the interconnection of switched subsystems and that of their symbolic models. This
alternating simulation function allows one to determine quantitatively the mismatch between the output be-
havior of the interconnection of switched subsystems and that of their symbolic models. Moreover, we provide
an approach to construct symbolic models together with their corresponding augmented-storage functions for
discrete-time switched subsystems under some assumptions ensuring incremental passivity of each mode of
switched subsystems. Finally, we apply our results to a model of road traffic by constructing compositionally
a symbolic model of a network containing 50 cells of 1000 meters each. We also design controllers composi-
tionally maintaining the density of traffic lower than 30 vehicles per cell. Additionally, we apply our results
to an interconnection of switched subsystems admitting multiple incrementally passive storage functions.

The results presented in this paper are mainly concerned with the compositional construction of symbolic
models of interconnected discrete-time switched systems. The constructed symbolic models here can be used to
synthesize controllers monolithically or also compositionally. Compositional approaches for controller synthesis
can be found in [PPB18,MGW17] and references therein.

2. Notation and Preliminaries

2.1. Notation. We denote by R, Z, and N the set of real numbers, integers, and non-negative integers,
respectively. These symbols are annotated with subscripts to restrict them in the obvious way, e.g., R>0

denotes the positive real numbers. Given N ∈ N≥1, vectors νi ∈ R
ni , ni ∈ N≥1, and i ∈ [1;N ], we use

ν = [ν1; . . . ; νN ] to denote the vector in R
n with n =

∑

i ni consisting of the concatenation of vectors νi.
The closed interval in N is denoted by [a; b] for a, b ∈ N and a ≤ b. We denote by diag(A1, . . . , AN ) the
block diagonal matrix with diagonal matrix entries A1, . . . , AN . We denote the identity matrix in R

n×n by
In. The individual elements in a matrix A ∈ R

m×n, are denoted by {A}ij, where i ∈ [1;m] and j ∈ [1;n].
We denote by ‖·‖ the infinity norm. We denote by | · | the cardinality of a given set and by ∅ the empty

set. For any set S ⊆ R
n of the form of finite union of boxes, e.g., S =

⋃M
j=1 Sj for some M ∈ N, where

Sj =
∏n
i=1[c

j
i , d

j
i ] ⊆ R

n with c
j
i < d

j
i , and positive constant η ≤ span(S), where span(S) = minj=1,...,M ηSj

and ηSj
= min{|dj1 − c

j
1|, . . . , |d

j
n − cjn|}, we define [S]η = {a ∈ S | ai = kiη, ki ∈ Z, i = 1, . . . , n}. The set [S]η

will be used as a finite approximation of the set S with precision η. Note that [S]η 6= ∅ for any η ≤ span(S). We
use notations K and K∞ to denote different classes of comparison functions, as follows: K = {α : R≥0 → R≥0|
α is continuous, strictly increasing, and α(0) = 0}; K∞ = {α ∈ K| lim

r→∞
α(r) = ∞}.

2.2. Discrete-Time Switched and Transition Systems. In this work we consider discrete-time switched
systems of the following form.

Definition 1. A discrete-time switched system Σ is defined by the tuple Σ = (X, P,W, F,Y1,Y2, h1, h2), where

• X,W,Y1, and Y2 are the state set, internal input set, external output set, and internal output set,
respectively, and are assumed to be subsets of normed vector spaces with appropriate finite dimensions;

• P = {1 · · · ,m} is the finite set of modes;
• F = {f1, · · · , fm} is a collection of set-valued maps fp : X ×W ⇒ X for all p ∈ P ;
• h1 : X → Y1 is the external output map.
• h2 : X → Y2 is the internal output map.

The discrete-time switched system Σ is described by difference inclusions of the form

Σ :







x(k + 1) ∈ fp(k)(x(k), ω(k)),
y1(k) = h1(x(k)),
y2(k) = h2(x(k)),

(1)
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where x : N → X, y1 : N → Y1, y2 : N → Y2, p : N → P , and ω : N → W are the state signal, external output
signal, internal output signal, switching signal, and internal input signal, respectively. We denote by Σp the
system in (1) with constant switching signal p(k) = p ∈ P ∀k ∈ N. We use Xx0,p,ω and Yx0,p,ω to denote
the sets of infinite state and external output runs of Σ, respectively, associated with infinite switching sequence
p = {p0, p1, . . .}, infinite internal input sequence ω = {w0, w1, . . .}, and initial state x0 ∈ X.

Let φk, k ∈ N≥1, denote the time when the k-th switching instant occurs and define Φ := {φk : k ∈ N≥1} as
the set of switching instants. We assume that signal p satisfies a dwell-time condition [Mor96] (i.e. there
exists kd ∈ N≥1, called the dwell-time, such that for all consecutive switching time instants φk, φk+1 ∈ Φ,
φk+1 − φk ≥ kd, for any k ∈ N).

System Σ is called deterministic if |fp(x,w)| ≤ 1 ∀x ∈ X, ∀p ∈ P, ∀w ∈ W, and non-deterministic otherwise.
System Σ is called blocking if ∃x ∈ X, ∀p ∈ P, ∀w ∈ W such that |fp(x,w)| = 0 and non-blocking if |fp(x,w)| 6=
0 ∀x ∈ X, ∃p ∈ P, ∃w ∈ W. System Σ is called finite if X and W are finite sets and infinite otherwise. In this
paper, we only deal with non-blocking systems.

Next, we introduce a notion of so-called transition systems, inspired by the one in [GPT10], to provide an
alternative description of switched systems that can be later directly related to their symbolic models

Definition 2. Given a discrete-time switched system Σ=(X, P,W, F,Y1,Y2, h1, h2), we define the associated
transition system T (Σ)=(X,U,W,F , Y1, Y2,H1,H2). where:

• X = X× P × {0, · · · , kd − 1} is the state set;
• U = P is the external input set;
• W = W is the internal input set;
• F is the transition function given by (x′, p′, l′) ∈ F((x, p, l), u, w) if and only if x′ ∈ fp(x,w), u = p

and the following scenarios hold:
– l < kd − 1, p′ = p and l′ = l + 1: switching is not allowed because the time elapsed since the

latest switch is strictly smaller than the dwell time;
– l = kd − 1, p′ = p and l′ = kd − 1: switching is allowed but no switch occurs;
– l = kd − 1, p′ 6= p and l′ = 0: switching is allowed and a switch occurs;

• Y1 = Y1 is the external output set;
• Y2 = Y2 is the internal output set;
• H1 : X → Y1 is the external output map defined as H1(x, p, l) = h1(x).
• H2 : X → Y2 is the internal output map defined as H2(x, p, l) = h2(x).

We use T (X)z0,u,ω and T (Y)z0,u,ω to denote the sets of infinite state and external output runs of T (Σ),
respectively, associated with infinite external input sequence u = {u0, u1, . . .}, infinite internal input sequence
ω = {w0, w1, . . .}, and initial state z0 = (x0, p0, l0) ∈ X , where u0 = p0 and l0 = 0.

In the next proposition, we show that sets Yx0,p,ω and T (Y)z0,u,ω, where p = u and z0 = (x0, p0, 0), are
equivalent.

Proposition 3. Consider Σ, T (Σ), p = {p0, p1, . . .} = u, ω = {w0, w1, . . .}, and x0 ∈ X. Then, Yx0,p,ω =
T (Y)z0,u,ω, where z0 = (x0, p0, 0).

Proof. The proof consists of showing that for any infinite run in Yx0,p,ω, denoted yx0,p,ω, there exists an
infinite run in T (Y)z0,u,ω, denoted T (y)z0,u,ω, and vise versa. Since p, ω, and x0 are given, one can construct
yx0,p,ω ∈ Yx0,p,ω. Then by utilizing the definition of H1 in Definition 2, we have yx0,p,ω = T (y)z0,u,ω ∈
T (Y)z0,u,ω. Now since u = p and z0 = (x0, p0, 0), one can construct T (y)z0,u,ω ∈ T (Y)z0,u,ω. Then again by
using the definition of H1 in Definition 2, we have T (y)z0,u,ω = yx0,p,ω ∈ Yx0,p,ω. �

From now on, we use Σ and T (Σ) interchangeably.
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If Σ does not have internal inputs, which is the case for interconnected systems (cf. Definition 7), Definition
1 reduces to the tuple Σ = (X, P, F,Y , H), the set-valued map fp becomes fp : X ⇒ X, and (1) reduces to:

Σ :

{
x(k + 1) ∈ fp(k)(x(k)),

y(k) = h(x(k)).
(2)

Correspondingly, Definition 2 reduces to tuple T (Σ) = (X,U,F , Y,H), and the transition function F is given
by (x′, p′, l′) ∈ F((x, p, l), u) if and only if x′ ∈ fp(x), u = p and the following scenarios hold:

• l < kd − 1, p′ = p and l′ = l + 1;
• l = kd − 1, p′ = p and l′ = kd − 1;
• l = kd − 1, p′ 6= p and l′ = 0.

3. Augmented-Storage and Alternating Simulation Functions

Inspired by the definition of the storage function in [ZA17], we introduce a notion of so-called augmented-
storage function, which relates two transition systems with internal inputs and outputs.

Definition 4. Consider T (Σ)=(X,U,W,F ,Y1,Y2,H1,H2) and T̂ (Σ̂)=(X̂,Û ,Ŵ ,F̂ ,Ŷ1,Ŷ2,Ĥ1, Ĥ2) where Ŵ ⊆ W

and Ŷ1 ⊆ Y1. A function S : X × X̂ → R≥0 is called an augmented-storage function from T̂ (Σ̂) to T (Σ) if

∀(x, p, l) ∈ X and ∀(x̂, p, l) ∈ X̂, one has

α(‖H1(x, p, l)− Ĥ1(x̂, p, l)‖)≤S((x, p, l), (x̂, p, l)), (3)

and ∀(x, p, l) ∈ X and ∀(x̂, p, l) ∈ X̂, ∀û ∈ Û , ∀w ∈ W , ∀ŵ ∈ Ŵ , ∀(x′, p′, l′) ∈ F((x, p, l), û, w) ∃(x̂′, p′, l′) ∈

F̂((x̂, p, l), û, ŵ) such that one gets

S((x′, p′, l′), (x̂′, p′, l′))≤σS((x, p, l), (x̂, p, l))+ε+

[
w−ŵ

H2(x, p, l)−Ĥ2(x̂, p, l)

]T

R:=
︷ ︸︸ ︷
[
R11 R12

R21 R22

][
w−ŵ

H2(x, p, l)−Ĥ2(x̂, p, l)

]

,

(4)

for some α ∈ K∞, 0 < σ < 1, ε ∈ R≥0, and some symmetric matrix R of appropriate dimension with

conformal block partitions Rij. i, j ∈ [1; 2]. We say that T̂ (Σ̂) is an abstraction of T (Σ) if there exists an

augmented-storage function from T̂ (Σ̂) to T (Σ). In addition, if T̂ (Σ̂) is finite (X and W are finite sets), we

say that T̂ (Σ̂) is a symbolic model of T (Σ).

Now, we introduce a notion of so-called alternating simulation functions, inspired by Definition 1 in [GP09],
which quantitatively relates transition systems without internal inputs and outputs.

Definition 5. Consider T (Σ) = (X,U,F , Y,H) and T̂ (Σ̂) = (X̂, Û , F̂ , Ŷ , Ĥ) where Ŷ ⊆ Y . A function

S̃ : X × X̂ → R≥0 is called an alternating simulation function from T̂ (Σ̂) to T (Σ) if ∀(x, p, l)∈X and

∀(x̂, p, l)∈X̂, one has

α̃(‖H(x, p, l)− Ĥ(x̂, p, l)‖)≤S̃((x, p, l), (x̂, p, l)), (5)

and ∀(x, p, l) ∈ X, ∀(x̂, p, l) ∈ X̂, ∀û ∈ Û , ∀(x′, p′, l′) ∈ F((x, p, l), û) ∃(x̂′, p′, l′) ∈ F̂((x̂, p, l), û) such that one
gets

S̃((x′, p′, l′), (x̂′, p′, l′))≤ σ̃S̃((x, p, l), (x̂, p, l)) + ε̃, (6)

for some α̃ ∈ K∞, 0 < σ̃ < 1, and ε̃ ∈ R≥0.

Note that the notions of storage and simulation functions in [ZA17, Definitions 3.1, 3.2] are defined between
two continuous-time control systems with continuous state sets, whereas we define the augmented-storage and
alternating simulation functions between two transition systems associated with two discrete-time switched
systems. Moreover, on the right-hand side of (4) and (6), we introduce constant ε ∈ R≥0 to allow the relation
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to be defined between two systems with either infinite or finite state sets. The role of ε will become clear in
Section V where we introduce symbolic models. Such a constant does not appear in [ZA17, Definitions 3.1,
3.2] which makes them only suitable for systems with continuous state sets.

The next result shows that the existence of an alternating simulation function for transition systems implies
the existence of an approximate alternating simulation relation between them as defined in [Tab09].

Proposition 6. Consider T (Σ) = (X,U,F , Y,H) and T̂ (Σ̂) = (X̂, Û , F̂ , Ŷ , Ĥ) where Ŷ ⊆ Y . Assume S̃ is

an alternating simulation function from T̂ (Σ̂) to T (Σ) as in Definition 5. Then, relation R ⊆ X × X̂ defined

by R=
{

((x, p, l),(x̂, p, l))∈X×X̂|S̃((x, p, l), (x̂, p, l))≤ϕ
}

, where ϕ = ε̃
(1−σ̃)ψ , and ψ can be chosen arbitrarily

such that 0 < ψ < 1, is an ε̂-approximate alternating simulation relation, defined in [Tab09], from T̂ (Σ̂) to
T (Σ) with ε̂= α̃−1(ϕ).

Proof. The proof consists of showing that (i) ∀((x, p, l), (x̂, p, l)) ∈ R we have ‖H(x, p, l) − Ĥ(x̂, p, l)‖ ≤ ε̂;

(ii) ∀((x, p, l), (x̂, p, l)) ∈ R and ∀û ∈ Û , ∀(x′, p′, l′) ∈ F((x, p, l), û) ∃ (x̂′, p′, l′) ∈ F̂((x̂, p, l), û) satisfying
((x′, p′, l′), (x̂′, p′, l′)) ∈ R.
First observe that (6) can be written as

S̃((x′, p′, l′), (x̂′, p′, l′))≤max{̺S̃((x, p, l), (x̂, p, l)),ϕ}, (7)

where ̺ = 1−(1−ψ)(1−σ̃) < 1. Then the first item is a simple consequence of the definition of R and condition

(5) (i.e. α̃(‖H(x, p, l) − Ĥ(x̂, p, l)‖) ≤ S̃((x, p, l), (x̂, p, l)) ≤ ϕ), which results in ‖H(x, p, l) − Ĥ(x̂, p, l)‖ ≤
α̃−1(ϕ) = ε̂. The second item follows immediately from the definition of R, inequality (7), and the fact that

0 < ̺ < 1. In particular, we have S̃((x′, p′, l′), (x̂′, p′, l′)) ≤ ϕ which implies ((x′, p′, l′), (x̂′, p′, l′)) ∈ R. �

4. Compositionality Result

In this section, we consider networks of discrete-time switched subsystems and leverage dissipativity type
conditions under which one can construct an alternating simulation function from a network of abstractions
to the concrete network by using augmented-storage functions of the subsystems. In the following, we define
first a network of discrete-time switched subsystems.

4.1. Interconnected Systems. Here, we define the interconnected discrete-time switched system as the fol-
lowing.

Definition 7. Consider N ∈ N≥1 switched subsystems Σi = (Xi, Pi,Wi, Fi,Y1i ,Y2i , h1i , h2i), and a static ma-

trix M of an appropriate dimension defining the coupling of these subsystems, where1 M
∏N
i=1 Y2i ⊆

∏N
i=1 Wi.

The interconnected switched system Σ = (X, P, F,Y , h), denoted by I(Σ1, . . . ,ΣN ), is defined by X=
∏N
i=1Xi,

P =
∏N
i=1Pi, F =

∏N
i=1Fi, Y =

∏N
i=1Y1i, h(x) :=[h11(x1); . . . ;h1N (xN )], where x = [x1; . . . ;xN ], with the internal

inputs constrained according to [w1; . . . ;wN ] =M [h21(x1); . . . ;h2N (xN )].

Similarly, given transition subsystem Ti(Σi), i ∈ [1;N ], one can also define the network of those transition
subsystems as I(T1(Σ1), . . . , TN(ΣN )).

Next subsection provides one of the main results of the paper on the compositional construction of abstractions
for networks of switched systems.

1This condition is required to have a well-defined interconnection.
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4.2. Compositional Abstractions of Interconnected Switched Systems. In this subsection, we as-
sume that we are given N discrete-time switched subsystems Σi, or equivalently, Ti(Σi), together with their

corresponding abstractions T̂i(Σ̂i) and augmented-storage functions Si from T̂i(Σ̂i) to Ti(Σi).

The next theorem provides a compositional approach on the construction of abstractions of networks of
discrete-time switched subsystems and that of the corresponding augmented-storage functions.

Theorem 8. Consider the interconnected transition system T (Σ) = (X,U,F , Y,H) induced by N ∈ N≥1

transition subsystems Ti(Σi), ∀ i ∈ [1;N ]. Assume that each Ti(Σi) and its abstraction T̂i(Σ̂i) admit an
augmented-storage function Si as in Definition 4. If there exist µi > 0, i ∈ [1;N ], such that the matrix
inequality and inclusion

[
M

Iq

]T

Rδ
︷ ︸︸ ︷
[
R̃11 R̃12

R̃21 R̃22

] [
M

Iq

]

� 0, (8)

M

N∏

i=1

Ŷ2i ⊆

N∏

i=1

Ŵi, (9)

are satisfied, where R̃i′j′ = diag (µ1R
i′j′

1 , . . . , µNR
i′j′

N ), ∀i′, j′ ∈ [1; 2], and q is the number of columns in M ,
then

S̃((x, p, l), (x̂, p, l)) :=
N∑

i=1

µiSi((xi, pi, li), (x̂i, pi, li)),

is an alternating simulation function from T̂ (Σ̂) = I(T̂1(Σ̂1), . . . , T̂N(Σ̂N )), with the coupling matrix M , to
T (Σ) = I(T1(Σ1), . . . , TN(ΣN )).

Proof. First, we define z = [z1; . . . ; zN ], ẑ = [ẑ1; . . . ; ẑN ], z′ = [z′1; . . . ; z
′
N ], and ẑ′ = [ẑ′1; . . . ; ẑ

′
N ], where

zi = (xi, pi, li), ẑi = (x̂i, pi, li) z
′
i = (x′i, p

′
i, l

′
i), and ẑ

′
i = (x̂′i, p

′
i, l

′
i), ∀i ∈ [1;N ].

Now, we show that (5) holds for some K∞ function α̃. Consider any zi ∈ Xi, ẑi ∈ X̂i, ∀i ∈ [1;N ]. Then, one
gets

‖H(z)−Ĥ(ẑ)‖ ≤

N∑

i=1

‖H1i(zi)−Ĥ1i(ẑi)‖ ≤

N∑

i=1

α−1
i (Si(zi, ẑi)) ≤ α

(
S̃(z, ẑ)

)
,

where α(s) = max
ŝ≥0

{

∑N
i=1 α

−1
i (si)|µ

T ŝ = s

}

, ŝ = [s1; . . . ; sN ] ∈ R
N and µ = [µ1; . . . ;µN ]. Hence, (5) is

satisfied with α̃ = α−1.

Now, we show that (6) holds. Let σ̃ = max
i∈[1,N ]

{σi}, ε̃ =
∑N
i=1 µiεi, and consider the following chain of

inequalities

Ŝ(z′, ẑ′)=

N∑

i=1

µiS(z
′
i
, ẑ′i)

≤
N∑

i=1

µi

(

σiSi(zi, ẑi) + εi +

[
wi−ŵi

H2i(zi)−Ĥ2i(ẑi)

]T

Ri:=
︷ ︸︸ ︷
[
R11
i R12

i

R21
i R22

i

] [
wi−ŵi

H2i(zi)−Ĥ2i(ẑi)

])

. (10)
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Using condition (8), and the definition of matrix Rδ, the inequality (10) can be rewritten as

S̃(z′, ẑ′)≤

N∑

i=1

µiσiSi(zi, ẑi) +

N∑

i=1

µiεi +


















w1

...
wN




−






ŵ1

...
ŵN






H21(z1)−Ĥ21(ẑ1)
...

H2N (zN )− Ĥ2N (ẑN )













T

Rδ


















w1

...
wN




−






ŵ1

...
ŵN






H21(z1)−Ĥ21(ẑ1)
...

H2N (zN)−Ĥ2N (ẑN )













≤

N∑

i=1

µiσiSi(xi, x̂i)+

N∑

i=1

µiεi+






H21(z1)−Ĥ21(ẑ1)
...

H2N (zN)−Ĥ2N (ẑN )






T
[
M

I

]T

Rδ

[
M

I

]






H21(z1)−Ĥ21(ẑ1)
...

H2N (zN)−Ĥ2N (ẑN )






≤

N∑

i=1

µiσiSi(zi, ẑi) +

N∑

i=1

µiǫi

≤σ̃S̃(z, ẑ) + ε̃.

which satisfies (6), and implies that S̃ is indeed an alternating simulation function from T̂ (Σ̂) to T (Σ). �

Remark 9. Condition (8) is a linear matrix inequality which can be verified by some semi-definite program-
ming tools (e.g. YALMIP [Lof04]). Note that condition (9) is required to have a well-defined interconnection

of abstractions and is automatically fulfilled if one constructs the internal input sets of each abstractions T̂i(Σ̂i)

such that the equality M
∏N
i=1 Ŷ2i =

∏N
i=1 Ŵi holds.

Remark that similar compositionality result as in Theorem 8 was proposed in [ZA17]. Since [ZA17] is concerned
with infinite abstractions (a continuous-time control system with potentially a lower dimension), extra matrices

(i.e. W , Ŵ , H in [ZA17, equation (9)]) are required to formulate the dissipativity-type conditions. However,
as our work is mainly concerned with symbolic models, we formulate the dissipativity-type conditions without
requiring those extra matrices.

5. Construction of Symbolic Models

In this section, we consider Σ=(X,P,W,F,Y1,Y2,h1,h2) as an infinite, deterministic switched system, and assume
its external output map h1 satisfies the following general Lipschitz assumption: there exists ℓ∈K∞ such that:
‖h1(x)−h1(x

′)‖ ≤ ℓ(‖x−x′‖) ∀x, x′ ∈ X. In addition, the existence of an augmented-storage function between
T (Σ) and its symbolic model is established under the assumption that Σp is so-called incrementally passive
(δ-P) [SGZ18] as defined next.

Definition 10. System Σp is δ-P if there exist functions Sp : X × X → R≥0, αp ∈ K∞, a symmetric matrix
Qp of appropriate dimension, and constant 0 < κp < 1, such that for all x, x̂ ∈ X, and for all w, ŵ ∈ W

αp(‖x− x̂‖) ≤ Sp(x, x̂) (11)

Sp(fp(x,w), fp(x̂, ŵ))≤κpSp(x, x̂) +

[
w − ŵ

h2(x)− h2(x̂)

]T

Qp:=
︷ ︸︸ ︷
[
Q11
p Q12

p

Q21
p Q22

p

] [
w − ŵ

h2(x)− h2(x̂)

]

. (12)

We say that Sp and Qp, ∀p ∈ P , are multiple δ-P storage functions and supply rates, respectively, for system
Σ if they satisfy (11) and (12). Moreover, if Sp = Sp′ and Qp = Qp′ , ∀p, p

′ ∈ P , we omit the index p in (11),
(12), and say that S and Q are a common δ-P storage function and supply rate for system Σ.
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Now, we show how to construct a symbolic model T̂ (Σ̂) of transition system T (Σ) associated to the switched
system Σ where Σp is δ-P.

Definition 11. Consider a transition system T (Σ) = (X,U,W,F , Y1, Y2,H1,H2), associated to the switched
system Σ = (X, P,W, F,Y1,Y2, h1, h2), where X,W are assumed to be finite unions of boxes. Let Σp be

δ-P as in Definition 10. Then one can construct a finite transition system (a symbolic model) T̂ (Σ̂) =

(X̂, Û , Ŵ , F̂ , Ŷ1, Ŷ2, Ĥ1, Ĥ2) where:

• X̂ = X̂ × P × {0, · · · , kd − 1}, where X̂ = [X]η and 0 < η ≤ span(X) is the state set quantization
parameter;

• Û = U = P is the external input set;
• Ŵ = [W]̟, where 0 ≤ ̟ ≤ span(W) is the internal input set quantization parameter.

• (x̂′, p′, l′) ∈ F̂((x̂, p, l), û, ŵ) if and only if ‖fp(x̂, ŵ)− x̂
′‖ ≤ η, û = p and the following scenarios hold:

– l < kd − 1, p′ = p and l′ = l + 1;
– l = kd − 1, p′ = p and l′ = kd − 1;
– l = kd − 1, p′ 6= p and l′ = 0;

• Ŷ1 = Y1, Ŷ2 = Y2;
• Ĥ1 : X̂ → Ŷ1 is the external output map defined as Ĥ1(x̂, p, l) = H1(x̂, p, l) = h1(x̂);

• Ĥ2 : X̂ → Ŷ2 is the internal output map defined as Ĥ2(x̂, p, l) = H2(x̂, p, l) = h2(x̂);

Remark 12. Although one can freely construct Ŵ , in the context of networks of subsystems, it should be
constructed in such a way that the interconnection of finite transition subsystems is well-defined (cf. Remark
9).

Let us point out some differences between the symbolic model in Definition 11 and the one proposed in [GPT10].
There is no distinction between internal and external inputs and outputs in the symbolic model defined
in [GPT10], whereas their distinctions in our work play a major role in interconnecting subsystems and
providing the main compositionality result.

In the following, we impose assumptions on function Sp in Definition 10 which are used to prove some of the
main results later.

Assumption 13. There exists µ ≥ 1 such that

∀x, y ∈ X, ∀p, p′ ∈ P, Sp(x, y) ≤ µSp′(x, y). (13)

Assumption 13 is an incremental version of a similar assumption that is used to prove input-to-state stability
of switched systems under constrained switching assumptions [VCL07].

Assumption 14. Assume that ∀p∈P , ∃γp∈K∞ such that

∀x, y, z ∈ X, Sp(x, y) ≤ Sp(x, z) + γp(‖y − z‖). (14)

Assumption 14 is shown in [ZMEM+14] to be a non-restrictive condition provided that one is interested to
work on a compact subset of X ×X.

Now, we establish the relation between T (Σ) and T̂ (Σ̂), introduced above, via the notion of augmented-storage
function as in Definition 4.

Theorem 15. Consider a switched system Σ = (X, P,W, F,Y1,Y2, h1, h2) with its equivalent transition system
T (Σ) = (X,U,W,F , Y1, Y2,H1,H2). Let Σp be δ-P as in Definition 10. Consider a finite transition system

T̂ (Σ̂) = (X̂, Û , Ŵ , F̂ , Ŷ1, Ŷ2, Ĥ1, Ĥ2) constructed as in Definition 11. Suppose that Assumptions 13 and 14

hold. Let ǫ > 1 and define κ=maxp∈P {κp}. If, kd ≥ ǫ
ln(µ)

ln( 1
κ
)
+ 1, and there exists a symmetric matrix Q̃ such
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that ∀q ∈ {1, . . . , kd − 1}, Q̃− κ
−q
ǫ

∑m
p=1Qp � 0, then function V defined as

V((x, p, l), (x̂, p, l)) := κ
−l
ǫ

m∑

p=1

Sp(x, x̂), (15)

is an augmented-storage function from T̂ (Σ̂) to T (Σ).

Proof. Given the Lipschitz assumption on h1 and since, ∀p ∈ P , Σp is δ-P , from (11), ∀(x, p, l) ∈ X and

∀(x̂, p, l) ∈ X̂, we have

‖H1(x, p, l)− Ĥ1(x̂, p, l)‖=‖h1(x)− ĥ1(x̂)‖≤ℓ(‖x− x̂‖)≤ℓ ◦ α−1
p (Sp(x, x̂))<ℓ ◦ α

−1
p

(
m∑

p=1

Sp(x, x̂)

)

=ℓ ◦ α−1
p

(

κ
l
ǫV((x, p, l), (x̂, p, l))

)

≤ℓ ◦ α−1
p (V((x, p, l), (x̂, p, l)))≤ α̂ (V((x, p, l), (x̂, p, l))) ,

where α̂=max
p∈P

{ℓ ◦ α−1
p }. Hence (3) is satisfied with α= α̂−1.

Now from (14) and Definition 11, ∀x∈X, ∀x̂∈X̂, ∀w∈W, ∀ŵ ∈ Ŵ, we have

Sp(fp(x,w), x̂
′) ≤ Sp(fp(x,w), fp(x̂, ŵ))+γp(‖x̂

′−fp(x̂, ŵ)‖)

≤ Sp(fp(x,w), fp(x̂, ŵ)) + γp(η).

for any x̂′ such that (x̂′, p′, l′) ∈ F̂((x̂, p, l), û, ŵ). Let T (w, x, ŵ, x̂) := [w − ŵ;h2(x)−h2(x̂)] and note that by
(12), one gets

Sp(fp(x,w), fp(x̂, ŵ)) ≤κpSp(x, x̂) + T (w, x, ŵ, x̂)TQpT (w, x, ŵ, x̂).

Hence, ∀x ∈ X, ∀x̂ ∈ X̂, and ∀w ∈ W, ∀ŵ ∈ Ŵ, one obtains

Sp(fp(x,w), x̂
′) ≤κpSp(x, x̂)+T (w, x, ŵ, x̂)TQpT (w, x, ŵ, x̂)+γp(η), (16)

for any x̂′ such that (x̂′, p′, l′) ∈ F̂((x̂, p, l), û, ŵ). Now, in order to show function V defined in (15) satisfies
(4), we consider the different scenarios in Definition 11 as follows.

• l < kd − 1, p′ = p and l′ = l + 1, using (16), we have

V((x′

, p
′

, l
′), (x̂′

, p
′

, l
′))=

∑m

p′=1
Sp′(x

′, x̂′)

κ
l′

ǫ

=

∑m

p=1
Sp(fp(x,w), x̂′)

κ
l+1

ǫ

≤

∑m

p=1
κpSp(x, x̂)

κ
1
ǫ κ

l
ǫ

+

∑m

p=1
(T̃ (w, x, ŵ, x̂, Qp)+γp(η))

κ
l+1

ǫ

≤ κ
ǫ−1

ǫ V((x, p, l), (x̂, p, l))+

∑m

p=1
T̃ (w, x, ŵ, x̂, Qp)

κ
l+1

ǫ

+

∑m

p=1
γp(η)

κ
kd
ǫ

.

• l = kd − 1, p′ = p and l′ = kd − 1, using (16) and ǫ−1
ǫ < 1, one gets

V((x′

, p
′

, l
′), (x̂′

, p
′

, l
′))=

∑m

p′=1
Sp′(x

′, x̂′)

κ
l′

ǫ

=

∑m

p=1
Sp(fp(x,w), x̂′)

κ
l
ǫ

≤

∑m

p=1
κpSp(x, x̂)

κ
l
ǫ

+

∑m

p=1
(T̃ (w, x, ŵ, x̂, Qp)+γp(η))

κ
l
ǫ

≤ κ
ǫ−1

ǫ V((x, p, l), (x̂, p, l))+

∑m

p=1
T̃ (w, x, ŵ, x̂, Qp)

κ
l
ǫ

+

∑m

p=1
γp(η)

κ
kd
ǫ

.

• l = kd − 1, p′ 6= p and l′ = 0, using (16), kd ≥ ǫ
ln(µ)

ln( 1
κ
)
+ 1 ⇔ µκ

kd−1

ǫ
p ≤ 1, and ǫ−1

ǫ < 1, one has

V((x′

, p
′

, l
′), (x̂′

, p
′

, l
′))=

∑m

p′=1
Sp′(x

′, x̂′)

κ
l′

ǫ

≤µ

m
∑

p=1

Sp(fp(x,w), x̂′)≤
µκ

kd−1

ǫ

(

∑m

p=1
(κpSp(x, x̂)+T̃ (w, x, ŵ, x̂, Qp)+γp(η))

)

κ
kd−1

ǫ

≤

∑m

p=1
κpSp(x, x̂)

κ
kd−1

ǫ

+

∑m

p=1
(T̃ (w, x, ŵ, x̂, Qp)+γp(η))

κ
kd−1

ǫ

≤κ
ǫ−1

ǫ V((x, p, l), (x̂, p, l))+

∑m

p=1
T̃ (w, x, ŵ, x̂, Qp)

κ
kd−1

ǫ

+

∑m

p=1
γp(η)

κ
kd
ǫ

.
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Let γ̃ = κ
−kd

ǫ

∑m
p=1 γp, ∀(x, p, l) ∈X , ∀(x̂, p, l) ∈ X̂ , ∀w ∈W , and ∀ŵ ∈ Ŵ . Since Ĥ2(x̂, p, l) = h2(x̂) and

H2(x, p, l) = h2(x), one obtains

V((x′, p′, l′), (x̂′, p′, l′)) ≤ κ
ǫ−1

ǫ V((x, p, l), (x̂, p, l)) + γ̃(η) +

[
w−ŵ

H2(x, p, l)−H2(x̂, p, l)

]T

Q̃

[
w−ŵ

H2(x, p, l)−Ĥ2(x̂, p, l)

]

,

Hence, inequality (4) is satisfied with σ = κ
ǫ−1

ǫ , R = Q̃, ε = γ̃(η). Thus, V is an augmented-storage function

from T̂ (Σ̂) to T (Σ). Using exactly the same argument, we can show the V is an augmented-storage function

from from T (Σ) to T̂ (Σ̂). �

Remark 16. If equation (12) is satisfied with the same Qp, ∀p∈P , then function V in Theorem 15 reduces to

V((x, p, l), (x̂, p, l)):=κ
−l
ǫ Sp(x, x̂). In addition, if Σ admits a common δ-P storage function, function V reduces

to V((x, p, l), (x̂, p, l)) := S(x, x̂).

Remark 17. For affine switched systems
(
i.e.,x(k+1) = Ap(k)x(k)+Dp(k)ω(k)+Bp(k),y1(k)=C1x(k),y2(k)=

C2x(k)
)
, we can restrict attention to δ-P storage functions of the form Sp(x, x̂) = (x−x̂)TZp(x−x̂), Zp≻ 0.

It is readily seen that such functions always satisfy (11) and (13). Moreover, inequality (12) reduces to the
linear matrix inequality

[
θpA

T
p ZpAp ATp ZpDp

DT
p ZpAp θpD

T
p ZpDp

]

�

[
κpZp+C

T
2 Q

22
p C2 CT2 Q

21
p

Q12
p C2 Q11

p

]

(17)

in which Zp and Qp can be determined by semi-definite programming, where θp > 1, 0 < κp < 1. Consequently,
it can be readily verified that ε in (4) would be defined as ε = cpλmax(Zp), for some cp>0 depending on θp and
the dimensions of Zp.

6. Case Study

6.1. Model of road traffic. Consider the switched system Σ which is adapted from [dWOK12] and described
by

Σ :

{
x(k + 1) = Ax(k) +Bp(k),

y(k) = x(k),

where A ∈ R
50×50 is a matrix with elements {A}qq = 0.9 − τv

d if q ∈ Q1 = {q is odd |q ∈ [1; 50]} and
{A}qq = 0.65− τv

d if q ∈ Q2 = {q is even |q ∈ [1; 50]}, {A}(q+1)q = {A}1(50) =
τv
d , ∀q ∈ [1; 50], and all other

elements are identically zero, where τ = 10
60×60 , d = 1, and v = 120 are sampling time interval in hours, length

in kilometers, and the flow speed of the vehicles in kilometers per hour, respectively. The vector Bp ∈ R
50

is defined as Bp = [b1p1 ; . . . ; b25p25 ] such that bipi = [0; 0] if pi = 1, and bipi = [0; 12] if pi = 2, ∀i ∈ [1, 25],
[p1; . . . ; p25] ∈ P = {1, 2}25, where P is the set of modes of Σ.

The chosen switched system Σ here is the model of a circular road around a city (Highway) divided in 50 cells
of 1000 meters each. The road has 25 entries and 50 exits. A cell q has an entry and exit if q ∈ Q1 and has
an exit and no entry if q ∈ Q2. All the entries are controlled by traffic signals, denoted sr, r ∈ [1; 25]. In Σ,
the dynamic we want to observe is the density of traffic, given in vehicles per cell, for each cell q of the road.
During the sampling time interval τ , we assume that 12 vehicles can pass the entry controlled by a traffic
signal sr when it is green. Moreover, 10% of vehicles that are in cells q ∈ Q1, and 35% of vehicles that are in
cells q ∈ Q2 go out using available exits.

Now, in order to apply the compositionality result, we introduce subsystems Σi, ∀i ∈ [1; 25]. Each subsystems
Σi represents the dynamic of one link of the entire highway, where each link contains 2 cells, one entry, and
two exits, as schematically illustrated in Figure 1. The subsystems Σi is described by

Σi :







xi(k + 1) = Aixi(k) +Diwi(k) +Bipi(k),

y1i(k) = xi(k),
y2i(k) = C2ixi(k),
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Σ1 Σ2

.

Σ25

Road Traffic

Network

Σ1

.

.

Cell2Cell1

ExitExitEntry

with traffic signal

Figure 1. Model of a road traffic network in a circular highway composed of 25 identical links,

each link has two cell.

Ai=

[
0.9−τv

d 0
τv
d 0.65−τv

d

]

, Di=

[
τv
d
0

]

, Bi1=

[
0
0

]

,Bi2=

[
12
0

]

, C2i=

[
0
1

]T

,

and the set of modes is Pi = {1, 2}, ∀i ∈ [1; 25]. Clearly, Σ = I(Σ1, . . . ,Σ25), where the elements of the
coupling matrix M are {M}(i+1)i = {M}1(25) = 1, ∀i ∈ [1; 25], and all other elements are identically zero.

Note that, for any i ∈ [1; 25], conditions (11) and (12) are satisfied with Sipi(xi, x̂i)=(xi − x̂i)
TZipi(xi − x̂i),

Zipi = I2, αipi(s) = s2, κipi = 0.98, Q11
ip = 0.3527, Q12

ip = Q21
ip = 0.0937, Q22

ip = −0.6785 ∀pi ∈ Pi. More-

over, since Sipi = Sip′i , ∀p, p
′ ∈ P , and according to Remarks 16 and 17, function Vi((xi, pi, li), (x̂i, pi, li)) =

Si(xi, x̂i) is an augmented-storage function from T̂i(Σ̂i), constructed as in Definition 11, to Ti(Σi), de-

fined in Definition 2. Now, by choosing µi = 1, ∀i ∈ [1; 25] and finite internal input sets Ŵi of T̂i(Σ̂i)

in such a way that
∏25
i=1Ŵi =M

∏25
i=1X̂i, condition (8) and (9) are satisfied. Therefore, applying Theo-

rem 8, function S̃((x, p, l), (x̂, p, l))=
∑25

i=1Vi((xi, pi, li), (x̂i, pi, li)) is an alternating simulation function from

Î(T̂1(Σ̂1), . . . , T̂25(Σ̂25)) to I(T1(Σ1), . . . , T25(Σ25)).

Let us now design a controller for Σ via symbolic models T̂i(Σ̂i) such that controllers maintain the density of
traffic lower than 30 vehicles per cell (safety constraint), and to allow only 2 consecutive red lights for each
traffic signal (fairness constraint). The former constraint implies that each vehicle can keep a 30-meter safe
distance from the one directly in front. The latter constraint is a way to avoid the trivial solution (always red)
of the safety constraint and ensures fairness between modes 1 and 2. The idea here is to design local controllers
for symbolic models T̂i(Σ̂i), and then refine them to the ones for concrete switched subsystems Σi. To do so,
the local controllers are designed while assuming that the other subsystems meet their specifications. This
approach, called assume-guarantee reasoning [HSR98], allows for the compositional synthesis of controllers.

Note that the direct computation of the symbolic model for the original 50-dimensional system Σ is not possible
monolithically. To the best of our knowledge, there does not exist any software toolbox for constructing
symbolic models of systems with this number of state variables. On the other hand, we are able to construct
the interconnected symbolic model and controllers for the 50-dimensional system Σ by applying the proposed
compositionality method here. We leverage software tool SCOTS [RZ16] for constructing symbolic models and
controllers for Σi compositionally with the state quantization parameter ηi = 0.03 and the computation times
are amounted to 10.2s and 0.014s, respectively. Figure 2 shows the applied modes of sample subsystem Σi.
Moreover, the closed-loop state trajectories of Σ, consisting of 50 cells, are illustrated in Figure 3.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1

2

Figure 2. Applied modes of sample subsystem Σi.

Figure 3. Closed-loop state trajectories of system Σ consisting of 50 cells.

6.2. Fully Connected Network. In this example, we apply our results to an interconnected switched systems
Σ composed of N ≥ 2 linear switched subsystems Σi, i ∈ [1;N ], admitting multiple δ-P storage functions and
supply rates. In this respect, we choose the dynamics’ parameters such that neither condition (11) nor (12)
holds with common δ-P storage functions and supply rates for all subsystems. In particular, as all subsystems
are affine switched systems, we choose their the dynamics’ parameters such that the solution of the linear
matrix inequality (17) with common Zi and Qi (i.e. Zipi = Zip′i and Qipi = Qip′i , ∀p, p′ ∈ P, i ∈ [1;N ])
is infeasible. Hence, non of the subsystems admits a common δ-P storage function and supply rate. The
dynamic of the interconnected switched system Σ has the set of modes P={1, 2}N , N∈N≥2, and it is given by

Σ :

{
x(k + 1) = Ap(k)x(k) +Bp(k),

y(k) = x(k).

The vector Bp ∈ R
n, where n = 2N , is defined as {B}i1 = Bpi such that Bpi = [−0.9; 0.5] if pi = 1, and

Bpi = [0.9;−0.2] if pi = 2, ∀i, j ∈ [1;N ], i 6= j. The elements of the matrix Ap ∈ R
n×n are as follows:

{A}ij=

[
0.015 0
0 0.015

]

, {A}ii=Api=







[
0.05 0
0.9 0.03

]

if pi = 1,

[
0.02 −1.2
0 0.05

]

if pi = 2.
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Now, by introducing Σi described by

Σi :







xi(k + 1) = Aipi(k)xi(k) + ωi(k) +Bipi(k),

yi1(k) = xi(k),
yi2(k) = xi(k),

Ai1=

[
0.05 0
0.9 0.03

]

, Ai2=

[
0.02 −1.2
0 0.05

]

, Bi1=

[
−0.9
0.5

]

, Bi2=

[
0.9
−0.2

]

,

and the set of modes is Pi={1, 2}, one can readily verify that Σ= I(Σ1, . . . ,ΣN), where the elements of the
coupling matrix M are {M}ii=02 and {M}i,j={A}i,j, ∀i, j ∈ [1;N ], i 6= j. Note that, for any i ∈ [1;N ],
conditions (11) and (12) are satisfied with Sipi(xi, x̂i)=(xi − x̂i)

TZipi(xi − x̂i),

Zi1 =

[
0.3030 0.0087
0.0087 0.4938

]

, Zi2 =

[
0.4899 −0.0033
−0.0033 0.4291

]

,

Qi1 = 10−3Li1, κi1=0.7, αi1(s)=0.3s2, , Qi2 = 10−3Li2, κi2=0.7, αi2(s)=0.4s2, where

Li1=







2.7 0 −1 −3
0 1 −3 0
−1 −3 −201.3 −17
−3 0 −1.7 270.8






, Li2=







2.9 0 −1.4 2.7
0 1.6 2.7 0

−1.4 2.7 156 17.5
2.7 0 17.5 −294







Since Assumption 13 and kd ≥ ǫ
ln(µ)

ln(1/κp)
+ 1 hold with µ = 1.63, kd = 3, ǫ = 1.01, one can easily find

a matrix Q̃ such that ∀q ∈ {1, 2}, Q̃ − 0.7
−q
ǫ

∑2
p=1Qp � 0 by using semi-definite programming such that

function Vi((xi, pi, li), (x̂i, pi, li)) =
∑N

i=1 Sipi (xi, x̂i)κ
−l/ǫ
pi is an augmented-storage function from T̂i(Σ̂i) to

Ti(Σi). Choose an arbitrary N , then by choosing µ1 = · · · = µN = 1 and finite internal input sets Ŵi of

T̂i(Σ̂i) in such a way that
∏N
i=1 Ŵi = M

∏N
i=1 X̂i, condition (8) and (9) are satisfied. Hence, using Theo-

rem 8, function S̃((x, p, l), (x̂, p, l))=
∑N

i=1Vi((xi, pi, li), (x̂i, pi, li)) is an alternating simulation function from

Î(T̂1(Σ̂1), . . . , T̂N(Σ̂N )) to I(T1(Σ1), . . . , TN(ΣN )).

Given N ≥ 5, Xi = [0, 1], and ηi = 0.1, we observe that constructing the symbolic model for the original
system Σ is only possible compositionally even with this small range of state set and coarse quantization
parameters. The computation time for constructing symbolic models of Σi is amounted to 0.53s, using tool
SCOTS [RZ16] with the state quantization parameter ηi = 0.1.

7. Conclusion

In this work, we proposed a compositional scheme for the construction of symbolic models of interconnected
discrete-time switched systems. First, we used a notion of augmented-storage functions in order to construct
compositionally an alternating simulation function that is used to quantify the error between the output behav-
ior of the interconnected switched system and that of its abstraction. Furthermore, under some assumptions
ensuring incremental passivity of each mode of switched subsystems, we showed how to construct symbolic
models together with their corresponding augmented-storage functions of the concrete systems.
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