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Abstract— This paper solves the robust hybrid output reg-
ulation problem for arbitrary uncertain hybrid MIMO linear
systems with periodic jumps without the restrictive assumptions
used in all previous works on the subject. A necessary condition
for solving the problem is that the regulator must incorporate
an internal model of the flow zero-dynamics, which is typically
affected by uncertainties and then unknown. Hence, the pro-
posed regulator consists of three units: a data-driven estimator of
the dynamics that are invisible from the regulated output during
flows, a flow internal model in charge of achieving regulation
during flows, and a jump internal model in charge of imposing
a suitable reset of the state at each jump.

I. INTRODUCTION

The classic problem of output regulation, which includes
as special cases the problems of reference tracking and
disturbance rejection when references/disturbances are de-
terministically generated by an exogenous system, is one of
the key problems in control theory, perhaps second just to
the stabilization problem. For this reason a lot of efforts have
been devoted to solve this problem, starting from the classic
linear time invariant (LTI) setting considered in [1], [2], [3],
and then considering the nonlinear setting [4], [5], [6], the
use of adaptive or data driven mechanisms to estimate the
exosystem’s frequencies [7], [8], [9], the realization using
an external (as opposed to internal) device still satisfying
the internal model principle [10], [11], [12], [13], [14],
and contribution considering other structural features or
constraints, like saturations on inputs and outputs [15] or
overactuation [16], [17], [18], [19].

In comparison with the above listed developments, the
extension of output regulation theory to the case of hybrid
systems has turned out to be more problematic. Among the
early works, contributions related to tracking in mechanical
systems subject to impacts (see e.g. [20], [21], [22], [23] and
references therein) have evidenced that, when considering
hybrid systems whose jumps are state driven, even if the
underlying flow and jump dynamics are linear, the resulting
hybrid dynamics is strongly nonlinear, and the derivation of
sufficiently general and elegant results is very difficult. Based
on such evidence, the paper [24] introduced a much simpler
hybrid output regulation problem with time driven (and pe-
riodic) jumps, later studied in several papers including [25],
[26], [27], [28], [29]; as is easy to see, if the underlying flow
and jump dynamics are linear and the jumps are time driven,
linearity is preserved and the corresponding output regulation
problem is amenable to an essentially linear analysis, parallel
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to classic results as in [1], [2]; such analysis is fundamental
to gain highlights towards the understanding of the more
complex, nonlinear case of hybrid output regulation with
state driven jumps. In particular, [29] provided a structural
interpretation of the results in [24], [25], showing that the
internal model unit needs to be able to emulate not just
the exosystem’s dynamics, but also additional modes related
to the flow zero dynamics of a certain subsystem (the flow
zero dynamics internal model principle). The implication of
such principle is that, since the zero dynamics is affected by
plant uncertainties and must be considered unknown - thus
making it impossible to directly replicate it in the internal
model -, cannot be achieved by linear regulators unless
special assumptions are made (as in [25], where the zero
dynamics is implicitly required to be unaffected by parameter
variations, or as in [30], [31], where it is decoupled from the
flow dynamics thanks to a physically motivated structure).
However, the solution of the robust hybrid output regulation
problem in its generality, i.e. without the above restrictive
assumptions, requires at least some form of adaptation of
an otherwise linear regulator; such an approach, inspired by
the non hybrid output regulation results in [8], [14], [32], is
pursued for the first time here, in the form of a data driven
algorithm that tunes the regulator on the actual plant under
control.

The paper is organized as follows: Section II establishes
some preliminaries and the problem statement; the design of
the proposed regulator is detailed in Section III; a numerical
example showing the effectiveness of the proposed approach
is presented in Section IV; finally, some conclusions are
provided in Section IV. An Appendix provides some details
on the construction of a hybrid output feedback, observer-
based stabilizer. Although detailed proofs are omitted due
to the (6 pages) space constraints of joint CDC/L-CSS
submissions, motivating discussions appear along the paper
to provide the line of reasoning which allows to prove the
effectiveness of the proposed strategy.

Notation: For a matrix M , ker(M) denotes its kernel,
im(M) denotes its image, and if M is square, Λ(M) denotes
its spectrum (the set of its eigenvalues). Cg represents the
set of complex number with modulus less than one. The
Kronecker product is denoted by ⊗.

II. PRELIMINARIES AND PROBLEM STATEMENT

This paper focuses on the output regulation problem for
a class of hybrid system, introduced in [24], [25], whose
dynamics exhibit periodic jumps separated by a flow interval
of known length τM > 0 . As usual, two time variables (t, k)
are used, where t measures the flow of time and k counts
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the number of jumps. In our scenario, admissible values of
(t, k) belong to a hybrid time domain having the form:

T = {(t, k) : t ∈ [tk, tk+1], k ∈ N} , tk := kτM . (1)

Whenever the value of (t, k) is clear from the context, we
consider the short-hand notations :

ẋ =
d

dt
x(t, k) , x+ = x(tk, k) .

As discussed also in [31], for a class of systems of the form

ẋa = Aaxa , x+
a = Eaxa , (2)

with time domain T , global exponential stability (GES)
can be assessed by a simple test on the eigenvalues of the
monodromy matrix Ẽa := Eae

AaτM , without the need for a
Lyapunov function; and, in particular, it is not necessary that
Aa be Hurwitz or Ea be Schur. Moreover, since eigenvalues
depend continuously on the elements of Ẽa , GES of (2)
implies GES also of the systems obtained considering small
enough perturbations of (Ea, Aa) .
Consider the LTI hybrid plant P

ẋ = Ax+Bu+ Pw ,

e = Cx+Qw ,

x+ = Ex ,

(3a)
(3b)
(3c)

where x ∈ Rn, u ∈ Rm and e ∈ Rp represent the state, the
input and the output of P respectively; w ∈ Rq acts as an
exogenous input and represents the state of an exosystem E

ẇ = Sw , w+ = Jw . (4)

Note that, the flows and jumps of (3) and (4) are governed
by the time domain T , however the time arguments are
neglected since they are univocally derived from T . The
following assumption defines the class of models considered
in this paper.

Assumption 1. The plant P is over-actuated, namely m >
p , and rank (B) = m and rank (C) = p . Moreover, J̃ :=
JeSτM is semi-simple and Λ(J̃) ∩ Cg = ∅ . �

Remark 1. The full-rank conditions on B and C are
introduced to rule out trivialities. While m ≥ p is a well-
know necessary requirement for output regulation in the
presence of purely continuous-time systems, it has been
shown in [29] that a prerequisite for output regulation robust
to unstructured perturbation for the class of systems (3)
governed by (1) consists in possessing strictly more inputs
than outputs. Assuming J̃ to be semi-simple means that all
its Jordan blocks have dimension one. In addition, requiring
that Λ(J̃)∩Cg = ∅ implies that no signal generated by (4) for
non-zero initial states asymptotically converges to zero. N

A. Problem Definition
The main objective of this paper consists in presenting

a solution to the hybrid output regulation problem even if
the underlying plant P in (3) is described by an uncertain
plant with a (known) nominal description P0. In particular,
denoting with (A0, B0, P 0, C0, Q0, E0) the state space char-
acterization of P0 and let (∆A,∆B,∆P,∆C,∆Q,∆E)

be the possible perturbations affecting each matrix of P0,
namely the matrices in (3) are given by A = A0+∆A . . . , we
suppose that the plant P belongs to a family Fε of admissible
plants with ε > 0 such that ||∆|| < ε , ∆ ∈ {∆A, . . . ,∆E} .

Problem 1. Consider the nominal plant description P0 of
P as in (3) and the exosystem E as in (4), and suppose
that Assumption 1 holds. Find, if any, a data-driven tuning
algorithm for the error-feedback regulator

ẋc = Acxc +Bce , u = Ccxc , x+
c = Ecxc , (5)

ensuring, for some ε > 0 , it holds that for any P ∈ Fε:
• (GES) the interconnected system (3) , (5) with w ≡ 0

is globally exponentially stable;
• (OR) lim

t+k→∞
e(t, k) = 0 for all initial states of the

interconnected system (3), (4), (5). ◦

Remark 2. A similar formulation of Problem 1 (without the
request for a tuning algorithm) is given in [31], where, how-
ever, it is assumed that the nominal matrices A0 , B0 , . . . ,
and the perturbations ∆A ,∆B , . . . , possess a specially
structured partition such that the flow zero-dynamics internal
model principle discussed in [29] is trivially satisfied. This
structural assumption, namely of dealing only systems in
semiclassical form (see [29]) has deep implications on the
structure of the internal model units: robust output regulation
can be achieved by incorporating only a copy of the modes
of S and J̃ , and then there is no need for a tuning algorithm.
In this paper we remove such structural assumption and solve
the problem for general non-semiclassical systems. N

B. A Useful Decomposition
As introduced in [16] and further stressed in [29], there

exists a coordinate change in the input, state and output
spaces that, combined with a preliminary state feedback, is
such to decompose the plant (3) in two subsystems which
evolve separately during flows and are coupled at jumps.
The change of coordinates mentioned above is obtained by
exploiting some geometrical concepts presented in [16] and
recalled here for clarity.
Define V? ⊂ Rn as the subspace of states for which there
exists an input function such that the output of (3a), (3b)
remains identically zero for all times, and define R? ⊂ Rn
as the subspace of states for which there exists an input
function steering the state of (3a), (3b) to zero in finite time
while keeping the output identically zero. Let ρ := dim(R?)
and ν := dim(V?) , where ν ≥ ρ since R? ⊂ V? . Choose
T ∈ Rn×n such that its first ρ columns span R? and its
first ν columns span V? whereas its last n − ν columns
define a basis for a subspace Z such that Z ⊕ V? = Rn .
Choose G =

[
G1 G2

]
∈ Rm×m as an invertible matrix

such that im(G1) = B−1R? and choose F ?V to satisfy
(A+BF ?V)V? ⊂ V? . Then, applying the coordinate change

z = T−1x , (6)

and the regular feedback transformation

u = G(G−1F ?VTz + ū) = G(F̄ ?Vz + ū)

= Gv̄ ,
(7)



where ū = v̄ − F̄ ?Vz , to the plant P , the dynamics in the
transformed coordinates are described by

ż = ĀF z + B̄ū+ P̄w ,

e = C̄z +Qw ,

z+ = Ēz ,

(8a)
(8b)
(8c)

where ĀF = T−1(A+BF ?V)T = Ā+ B̄F̄ ?V , B̄ = T−1BG ,
P̄ = T−1P , C̄ = CT and Ē = T−1ET have the form

ĀF =

ĀF11 ĀF12 ĀF13

0 ĀF22 ĀF23

0 0 ĀF33

 , B̄ =

B̄11 B̄12

0 B̄22

0 B̄32

 =
[
B̄1 B̄2

]
,

P̄ =

P̄1

P̄2

P̄3

 , Ē =

Ē11 Ē12 Ē13

Ē21 Ē22 Ē23

Ē31 Ē32 Ē33

 , C̄ =
[
0 0 C̄3

]
.

Remark 3. By definition the pair (ĀF11, B̄11) is controllable,
hence the spectrum of ĀF11 can be arbitrary assigned by an
appropriate selection of F ?V as described in [33]. Conversely,
Λ(ĀF22) cannot be assigned by F ?V and it coincides with the
set of invariant zeros of the plant (3). N

C. Structural Conditions for Output Regulation

The solvability of Problem 1 for a plant possessing the
structure of (8) is discussed in [31]. In particular, when
only error measurements are available, the output regulation
problem is solvable for a given family Fε if and only if,
∀P ∈ Fε :
ah) The plant (8) is stabilizable and detectable, namely

rank (RH(s)) = n ∀s ∈ Λ(ĒeĀ
F τM ) \ Cg ,

rank (OH(s)) = n ∀s ∈ Λ(ĒeĀ
F τM ) \ Cg ,

(9a)

(9b)

where

RH(s) :=
[
ĒeĀ

F τM − sI R(ĀF , B̄)
]
,

OH(s) :=
[
ĒeĀ

F τM − sI O(ĀF , C̄)
]
,

with R(ĀF , B̄) := [B̄ ĀF B̄ · · · (ĀF )n−1B̄] and
O(ĀF , C̄) = [C̄ ′ (ĀF )′C̄ ′ · · · ((ĀF )n−1)′C̄ ′]′ ;

bh) The following non-resonance conditions hold:

rank (PF,3(s)) = n3 + p ∀s ∈ Λ(S) ,

rank (PH(s)) = n ∀s ∈ Λ(J̃) ,

(9c)

(9d)

where

PF,3(s) :=

[
ĀF33 − sI B̄32

C̄3 0

]
,

PH(s) :=

Ē11 Ē12 Ē11

Ē21 Ē22 Ē21

Ē31 Ē32 Ē31

 eÃτM − s
I 0 0

0 I 0
0 0 0

 ,
with Ã := blkdiag

{[
ĀF

11 ĀF
12

0 ĀF
22

]
, 0
}

and n3 is the
dimension of ĀF33 .

It can be shown that the following property holds.

K IM G

E

P
uJ

uF

ux

v̄1
v̄2

u

w

Fig. 1: The internal model based regulator.

Proposition 1. Suppose that conditions (9) hold for P0.
Then there exists ε̄ > 0 such that any P ∈ Fε with ε ∈ (0, ε̄)
satisfies (9). �

As a consequence, the following assumption can be con-
sidered towards the solution of Problem 1.

Assumption 2. The nominal plant P0 satisfies (9). �

Remark 4. The conditions (9) are formulated for a system
of the form proposed in (8) for simplicity. Nonetheless, it can
be easily shown that P0 in (3) satisfies such conditions if
and only if the plant transformed via (6), (7) satisfies (9). N

III. HYBRID REGULATOR

As pointed out in [31], under Assumptions 1 and 2, a
regulator of the form of (5) can be designed, based only on
knowledge of the exosystem and of the nominal description
P0 , to guarantee (OR) in Problem 1 for all plants P ∈ Fε
having the form described in (8) and satisfying (9) for which
the system in closed-loop with a controller designed on the
knowledge of P0 preserves the global exponential stability.
Such regulator consists of the so called heart of the hybrid
regulator, whose role is to solve a classic purely continuous-
time output regulation problem associated to the system
(ĀF33, B̄32, C̄3, 0) with exogenous input w entering through
matrices P̄3 and Q , and of a second internal model unit that
takes care of an auxiliary regulation problem at jumps. In
particular, the former unit must contain a copy of the modes
of S while the latter must incorporate a copy of those of J̃ .

Remark 5. Since in [29] the plant is assumed to belong
to the class of systems described by (8) that satisfy (9),
hence it is not required to include the term −F̄ ?Vz in (7),
the construction of the internal model units can be carried
out only relying on information about the exosystem that is
assumed precisely known. Here, instead, due to the generic
presence of the term −F̄ ?Vz in (7), a solution to Problem 1
can be obtained only having a precise knowledge of the
exosystem E and of the dynamics of ĀF11 and ĀF22 . However,
while the former is assumed given, the latter are in general
affected by uncertainty. Therefore, an estimation procedure
becomes necessary. N

A. Estimation of ĀF11, ĀF22 and G

Consider the uncertain system (3) and suppose that the pair
(A,C) is observable. By defining a zero-order-hold (ZOH)
with sampling time τ , the following discrete-time description

η[i+1] = ADη[i] +BDu[i] , η
+
[n] = Eη[n] , y[i] = Cη[i] ,

(10)



IJ

IF

CJ1

CJ2

CF

IM

uJ

uF

v̄1

v̄2

Fig. 2: Structure of the internal model IM .

with i ∈ N, can be obtained where

AD = eAτ , BD =

(∫ τ

0

eAθdθ

)
B . (11)

Let [1, an−1, . . . , a0] be the coefficients of the characteristic
polynomial of AD, then the flow dynamics of (10) are
immersed in those of a system described by

ηO[i+1] = AOηO[i] +BOu[i] ,

y[i] = COηO[i] ,
(12)

where
AO := Ip ⊗AO0 ∈ Rnp×np ,
CO := Ip ⊗ CO0 ∈ Rp×np ,
BO :=

[
B′O1 . . . , B

′
Onp

]′ ∈ Rnp×m ,

and

AO0 =


0 1 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 1 0
-a0 . . . -an−3 -an−2 -an−1

 ,
CO0 =

[
1 0 . . . 0 0

]
.

A straightforward implication of the dynamics (10) is that

Y[i] = ηO[i] + D̃U[i] , (13)

where

D̃ =


0 · · · 0 0

BO1
. . .

...
...

...
. . . 0 0

BOnp−1 . . . BO1 0

 ,
and Y[i] = [y′[i], · · · , y

′
[i+n−1]]

′, U[i] = [u′[i], . . . , u
′
[i+n−1]]

′

are a collection of n consecutive measurements of the
inputs and the outputs. At the same time, defining a :=
[a0, . . . , an−1]′, provided the input is identically equal to
zero, equation (10) and (13) can be combined to obtain that

y[n+i] = (−a′ ⊗ Ip)Y[i] = −Ȳ[i]a , (14)

where Ȳ[i] = [y[i], · · · , y[i+n−1]] . Therefore, imposing
u[h] = 0 for h = 0, . . . , 2n − 1, equation (14) can be
recursively exploited to conclude that

Y[n] = −Ya , (15)

with Y = −
[
Ȳ ′[0], . . . , Ȳ

′
[n−1]

]′
.

Proposition 2. If the matrix Y is full row rank, then

a = −Y†Y[n] ,

with Y† denoting the Moore-Penrose pseudo inverse of Y .
�

Knowing AO, CO and ηO[2n−1] = AnOY[n−1], each col-
umn of the matrix BO can be calculated imposing m(np+1)
consecutive samples of the input equal to Im ⊗ U0, with
U0 = [1, 0, . . . , 0]′ ∈ Rnp+1 and exploiting the fact that

[
Y[i]

y[i+n]

]
=

[
Inp

COA
n
O

]
ηO[i] +


0 · · · 0

BO1
. . .

...
...

. . . 0
BOnp . . . BO1

U[i] .

Once a discrete time estimation of the considered system
(3) has been obtained, the corresponding continuous time
estimation can be obtained inverting relations (11). Through
the procedure described in Section II-B, a description of the
continuous time evolution of (3) as in (8a), (8b) is easily
obtained and the matrices ĀF11, ĀF22 and G can be calculated.

B. Regulator design

As shown in Fig. 1, the proposed regulator is composed
of two main dynamical blocks: an “internal model” IM and
a dynamic stabilizer K . The internal model is composed
by a jump internal model IJ and a flow internal model IF
interconnected as in Fig. 2. In turn, the dynamic stabilizer K
is made-up by a discrete-time controller KD with a discrete-
time observer OD, both designed on the same step size time,
whose task consists in stabilizing the system Σ in Fig. 1

1) The Internal Model IM : The jump internal model IJ
has to be designed to provide at each period the correct
initialization of P and IF such to ensure e(t, k) = 0 for
all (t, k) with t ∈ [tk, tk+1] . To that end, the jump internal
model must contain m1 + nF independent copies of the
dynamics of the exosystem, where m1 is the size of the
plant input that acts through the first column block of B̄ in
(8), while nF represents the dimensions of IF .

Algorithm 1. Design of IF (see Fig. 2)
Assume to have an estimation ÂF11, ÂF22 of the dynamics of
ĀF11, ĀF22 as proposed in Section III-A. Let µh(s) be the
minimal polynomial of blkdiag (ÂF11, ÂF22, S) , and define
nh := deg(µh(s)) . Let AF0 ∈ Rnh×nh be the lower
companion matrix with det(sI −AF0) = µh(s) and CF0 =
[1 0 . . . 0] ∈ R1×nh . Define IF according to

ẋF = AFxF + uF , x
+
F = CJ2xJ , yF = CFxF , (16)

where AF = Ip ⊗ AF0 , CF = Ip ⊗ CF0 , xF ∈ RnF and
nF = pnh .

Algorithm 2. Design of IJ (see Fig. 2)
Let q be the dimension of w and CJ0 = [0 . . . 0 1] ∈ Rq .
Define IJ according to

ẋJ = AJxJ + uJ , x+
J = EJxJ , yJ = CJxJ ,

(17)
where AJ = Im1+nF

⊗ S , EJ = Im1+nF
⊗ J and CJ =

Im1+nF
⊗CJ0 =

[
C ′J1 C ′J2

]′
with CJ1 ∈ Rm1×nJ , CJ2 ∈

R(m−m1)×nJ and nJ = (m1 + nF )q .



2) The Stabilizer K: The design of an output feedback
stabilizer for the interconnection, as in Fig. 1, of the plant
P and the internal model IM is now addressed.
In particular, assuming to apply the coordinate change (6),
such interconnection has the following form

ξ̇ = Âξ + B̂v̂ + P̂w ,

e = Ĉξ + Q̂w ,

ξ+ = Êξ ,

(18a)

(18b)

(18c)

where ξ =
[
z′ x′F x′J

]′
, v̂ =

[
u′x u′F u′J

]′
and

Â =

Ā B̄2CF B̄1CJ1

0 AF 0
0 0 AJ

 , Ĉ =
[
C̄ 0 0

]
,

B̂ =

B̄ 0 0
0 InF

0
0 0 InJ

 , Ê =

Ē 0 0
0 0 CJ2

0 0 EJ

 ,
P̂ =

[
P̄ ′ 0 0

]′
, Q̂ = Q .

Since P is stabilizable (by Assumption 2), it can be shown
that also the system in (18) is stabilizable, then the input v̂
in (7) can be designed, as described in Appendix B, in order
to stabilize the system (18) with w ≡ 0 .

IV. EXAMPLE

Consider the system (3) described by the matrices

A =

-0.505 0.707 0
0.303 -0.303 0
0.303 0.707 -0.505

 , B =

1.012 1.012
0 1.012
0 1.012

 ,
P =

0 0
0 0
0 0

 , E =

0.1854 0.1720 0.0423
0.2384 0.3006 0.0698
0.0979 0.3018 0.0173

 ,
C =

[
0 0 1.05

]
,

and the exosystem (4) characterized by

S =

[
0 1
-1 0

]
, J =

[
0 1
-1 0

]
,

with the initial conditions x(0) =
[
0.559 0.259 0.415

]′
,

w(0) =
[
1 0

]′
and τM = 6.5 . Note that, according to

the proposed approach, the only information provided for
the design of the regulator (5) are S, J , τM and a nominal
description of the plant. The results obtained by the regulator
proposed in Section III are presented in Fig. 3. Output
regulation is achieved as shown in the upper diagram of
Fig. 3. Moreover, in the middle and in the bottom diagrams
the evolution of the internal model output and the vanishing
action of the stabilizer control are shown, respectively.

V. CONCLUSIONS

This paper proposes the first general solution to the robust
hybrid output regulation problem for the class of systems
proposed in [24], thus removing the restrictive structural
assumptions exploited in all previous contributions on the
subject. Future work will deal with the development of alter-
native solutions, possibly including more efficient adaptation
schemes or some form of optimality, e.g. in the LQR sense
along the lines in [34], [35].

APPENDIX

A. Discrete-Time Observer
A straightforward implication of the relations (10) is that

Y[i] = C̃η[i] + D̃U[i] , (19)

where

C̃ =
[
C ′ (CAD)′ . . . (CAn−1

D )′
]′
,

D̃ =


0 · · · 0 0

CBD
. . .

...
...

...
. . . 0 0

CAn−2
D BD . . . CBD 0

 , (20)

and Y[i] = [y′[i], · · · , y
′
[i+n−1]]

′, U[i] = [u′[i], . . . , u
′
[i+n−1]]

′

are a collection of n consecutive measurements of the inputs
and the outputs.
Consequently, if (3) is detectable, a hybrid observer of the
following form can be designed

η̂[h+1] = ADη̂[h] +BDu[h] , for h ∈ {0, . . . , n− 1} ,

η̂+
[n] = Eη̂[n] − L(Y[0] − D̃U[0] − C̃η̂[0]) ,

where L ∈ Rn×pn is defined in order to obtain that
Λ(EAnD − LC̃) ⊂ Cg .

B. Discrete-Time Stabilizer
The relations (10) can be exploited to deduce that

η+
[n] = EAnDη[0] +

n−1∑
i=0

EAiDBDu[i] ,

which can be equivalently written as

η+
[n] = EAnDη[0] + E · R(AD, BD)U[0] , (21)

with U[0] =
[
u′[0] . . . u′[n−1]

]′
and R(AD, BD) :=[

BD ADBD · · · (AD)n−1BD
]

.
Consequently, if a condition like (9b) holds for the system
(3), a control U[0] := Kη̂[0], with η̂[0] as η[0] whenever its
measurements are available or otherwise as an estimation
of η[0] achieved with an observer like the one described
in Appendix A, can be defined in order to obtain that
Λ(EAnD + E · R(AD, BD)K) ⊂ Cg .
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