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Abstract— Inactive constraints do not contribute to the solu-
tion of an optimal control problem, but increase the problem
size and burden the numerical computations. We present a
novel strategy for handling inactive constraints efficiently by
systematically removing the inactive and redundant constraints.
The method is designed to be used together with simultaneous
approaches under a mesh refinement framework, with mild
assumptions that the original problem has feasible solutions,
and the initial solve of the problem is successful. The method
is tailored for interior point-based solvers, which are known
to be very sensitive to the choice of initial points in terms of
feasibility. In the example problem shown, the proposed scheme
achieves more than a 40% reduction in computation time.

Index Terms— constrained control, optimal control, predic-
tive control

I. INTRODUCTION

Optimal control has been very popular for a wide range

of applications, thanks to its ability to handle various types

of constraints systematically. When formulating the optimal

control problem (OCP), it is common practice to impose a

large number of constraints to ensure all mission specifi-

cations are fulfilled. However, for the solution obtained, it

is often the case that only a small subset of the imposed

inequality constraints will actually be active. Furthermore,

even for the ones in this small subset, the duration for

which each constraint is active is generally much shorter

than the time dimension of the OCP. One example would be

for the design of flight control systems: although all limits

of the flight envelope need to be specified in the problem

formulation for safety requirements, only in rare (abnormal)

situations is it the case that some limits will be reached.

In numerical optimal control, the OCPs are transcribed

into sparse nonlinear programming (NLP) problems. A dis-

tinction can be made here between simultaneous and sequen-

tial approaches, depending on whether all or just the control

trajectories are discretized as decision variables [1]. For this

work, we focus on the simultaneous approach.

The main computational overheads for solving the NLP

problems are directly related to the number of decision

variables and constraints. Thus there exist significant com-

putational benefits to exclude inactive constraints in the
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problem formulation. One possibility is to only include the

constraints that are determined to be active. Based on this,

an external strategy for the handling of path constraints with

active-set based NLP solvers has been proposed in [2]. The

idea is to first solve the unconstrained problem and determine

which constraints are likely to be active based on constraint

violations. These constraints are then added in the OCP and

the problem is repetitively solved until all original constraints

are satisfied. However, a fundamental problem arises when

implementing the same idea on interior point method (IPM)

based solvers, since good performance hinges on the initial

point to be feasible, or at least close to feasible [3].

Another option is to remove constraints that are inac-

tive. Removal of constraints for model predictive control

(MPC) has been studied to accelerate computations for linear

MPC [4], tube-based robust linear MPC [5] and recently

nonlinear MPC [6], with computational benefits clearly

demonstrated. However, all of these are based on a quadratic

regulation cost, making their application specifically aimed

at receding horizon control of regulation tasks.

In this paper, we introduce an external constraint handling

(ECH) strategy that is tailored to IPM-based NLP solvers for

solving a variety of OCPs. Implemented together with mesh

refinement (MR) schemes, constraints that do not contribute

to the solution are systematically removed in the problem

formulation. Special attention is paid to ensure feasibility

of the initial point. As a result, significant computational

savings can be achieved. Section II gives an introduction

to numerical optimal control with direct collocation. This

is followed by a discussion of the proposed ECH strategy

in Section III. A flight control example is presented in

Section IV to demonstrate the computational benefits.

II. NUMERICAL OPTIMAL CONTROL

Generally speaking, optimization-based control requires

the solution of OCPs expressed in the general Bolza form:

min
x,u,p,t0,tf

Φ(x(t0), t0, x(tf ), tf , p)+

∫ tf

t0

L(x(t), u(t), t, p)dt

(1a)

subject to

ẋ(t) = f(x(t), u(t), t, p), ∀t ∈ [t0, tf ] (1b)

c(x(t), u(t), t, p) ≤ 0, ∀t ∈ [t0, tf ] (1c)

φ(x(t0), t0, x(tf ), tf , p) = 0, (1d)

with x : R → R
n is the state trajectory of the system, u :

R → R
m is the control input trajectory, p ∈ R

s are static
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parameters, t0 ∈ R and tf ∈ R are the initial and terminal

time. Φ is the Mayer cost functional (Φ: Rn × R × R
n ×

R× R
s → R), L is the Lagrange cost functional (L : Rn ×

R
m ×R×R

s → R), f is the dynamic constraint (f : Rn ×
R

m × R × R
s → R

n), c is the path constraint (c : Rn ×
R

m × R × R
s → R

ng ) and φ is the boundary condition

(φ : Rn × R× R
n × R× R

s → R
nq ).

In practice, most optimal control problems formulated

as (1) need to be solved with numerical schemes. Compared

to sequential methods, simultaneous methods have some

advantages with regards to computational efficiency, as well

as in the treatment of path constraints and unstable dynam-

ics [1]. In this paper, we will demonstrate our proposed ECH

strategy with the simultaneous approach of direct collocation.

A. Direct collocation methods

Direct collocation methods can be categorized into fixed-

order h methods [7], and variable-order p/hp methods [8],

[9]. Here, we only provide a high level overview. For a mesh

of size N :=
∑K

k=1 N
(k), the states can be approximated as

x(k)(τ) ≈ x̄(k)(τ) :=
N(k)∑
j=1

X
(k)
j B

(k)
j (τ),

within mesh interval k ∈ {1, . . . ,K}, where N (k) denotes

the number of collocation points for interval k and B
(k)
j (·) are

basis functions. For typical h methods, τ ∈ R
N takes values

on the interval [0, 1] representing [t0, tf ], and B
(k)
j (·) are el-

ementary B-splines of various orders. For p/hp methods, τ ∈

[−1, 1] and B
(k)
j (·) are Lagrange interpolating polynomials.

We use X
(k)
j and U

(k)
j to represent the approximated states

and inputs at collocation points, e.g. X
(k)
j = x̄(k)(τ

(k)
j ) ∈

R
n, where τ

(k)
j is the j th collocation point in mesh interval k.

Consequently, the OCP (1) can be approximated by

min
X,U,p,t0,tf

Φ(X
(1)
1 , t0, X

(K)
f , tf , p)

+
K∑

k=1

N(k)∑
i=1

w
(k)
i L(X

(k)
i , U

(k)
i , τ

(k)
i , t0, tf , p) (2a)

for i = 1, . . . , N (k) and k = 1, . . . ,K , subject to,

N(k)∑
j=1

A
(k)
ij X

(k)
j +D

(k)
i f(X

(k)
i , U

(k)
i , τ

(k)
i , t0, tf , p) =0 (2b)

c(X
(k)
i , U

(k)
i , τ

(k)
i , t0, tf , p) ≤0 (2c)

φ(X
(1)
1 , t0, X

(K)
f , tf , p) =0 (2d)

where w
(k)
j are the quadrature weights for the chosen dis-

cretization, A(k) is the numerical differentiation matrix with

element (i, j) denoted by A
(k)
ij and D

(k)
i is a row vector.

The discretized problem can then be solved with off-the-

shelf NLP solvers. The NLP solver generates a discretized

solution Z := (X,U, p, τ, t0, tf ) as sampled data points.

Interpolating splines may be used to construct an approxima-

tion of the continuous-time optimal trajectory t 7→ z̃(t) :=

(x̃(t), ũ(t), t, p). The quality of the interpolated solution

needs to be assured through error analysis, assessing the

level of accuracy and constraint satisfaction at a much higher

resolution than the discretization mesh.

If necessary, appropriate modifications must be made to

the discretization mesh, until the solutions obtained with the

new mesh fulfills all predefined error tolerance levels (e.g.

the absolute local error ηtol and the absolute local constraint

violation εctol ). This process of MR is crucial in solving

large-scale problems efficiently. For instance, it took 6 MR

iterations for the example problem to be solved to a specific

tolerance level. This level of accuracy was not achievable

with any uniform mesh using the same desktop computer.

III. EXTERNAL CONSTRAINT HANDLING

A. Active and inactive constraints

A constraint (1c) is considered active if its presence

influences the solution z∗(·) := (x∗(·), u∗(·), p∗, t∗0, t
∗
f ). A

constraint is inactive if it can be removed without affecting

the solution. To clarify, consider a simplified problem:

y∗ ∈ argmin
y

Φ(y) subject to c(y) ≤ 0,

where we need to identify conditions such that constraints

can be determined to be active. The most obvious criteria

is when the solution y∗ is at the boundary of ci(y) ≤
0, i.e. ci(y

∗) = 0. Additionally, consider the Lagrangian

L := Φ(y)+λT c(y) and the necessary optimality conditions

(Karush-Kuhn-Tucker (KKT) conditions):

∂Φ(y)

∂y
|y=y∗ + λ

∂c(y)

∂y
|y=y∗ = 0,

c(y∗) ≤ 0, λ ≥ 0, λ ◦ c(y∗) = 0,

with ◦ the Hadamard product. From the included com-

plementary slackness condition, we know that for strictly

positive Lagrange multipliers (λi > 0), the corresponding

solution will have ci(y
∗) = 0, i.e. the constraint is active.

B. Identifying active constraints in optimal control

Theoretically, the above-mentioned analysis applies only

to the continuous OCP formulation (1). Additional chal-

lenges will arise in practice when solving the discretized

problem (2) numerically: the NLP solver will only return

the values of the discretized state X , input U , and Lagrange

multipliers Λ at collocation points.

To estimate the constraint activation status in-between

collocation points, a criteria can be introduced based on the

interpolated continuous trajectory z̃. By definition, inequality

constraints are active if the magnitude of the differences

between the actual constraint cl(z̃(·)) and the user-defined

constraint bounds are zero. Due to numerical inaccuracies,

however, there will always be a remainder. Thus, we consider

a constraint to be potentially active if this difference is

smaller than the constraint violation tolerance ǫctol .

Note that the word potentially is used to emphasise that,

for numerical schemes under limited machine precision, no



concrete determination of constraint active status can be

made. On the other hand, we know that only if the identified

inactive constraints are truly inactive, then can they be

removed from the OCP without affecting the solutions. Thus,

it would be much more preferable to erroneously identify

inactive constraints as active, than the opposite situation.

For this reason, we also use the multiplier information to

enforce a larger (more conservative) selection of potentially

active constraints. Here, a similar numerical challenge arises:

with limited machine precision, even when the corresponding

constraints are inactive, the multiplier values are rarely truly

equal to zero. To identify the regions where the constraints

are likely to be active, the numerical multiplier data Λ
is first normalized between 0 and 1 for each constraint

cl(Z) ≤ 0. Signal processing algorithms can be used to

identify different intervals where the behaviour of Lagrange

multipliers have significant changes, for example using the

MATLAB findchangepts function.

For each identified interval Ti, the mean value of the

normalized multipliers (Λ̄Ti
) is calculated and compared

based on the following criteria:

if Λ̄Ti
≥ ζ constraint potentially active in interval Ti

otherwise constraint potentially inactive in interval Ti

with ζ a threshold parameter.

To sum up, the following definition is used to determine

whether the constraints are potentially active or potentially

inactive at different collocation points.

Definition 1: A constraint cl(Xi, Ui, τi, t0, tf , p) ≤ 0 is

potentially active at time ti := ti(τi, t0, tf ) if one of the

following criteria is met:

• Between adjacent collocation points (t ∈ [ti−1, ti+1]),
cl(x̃(t), ũ(t), t, p) ≥ −ǫctol holds, with ǫctol > 0.

• Λ̄Ti
≥ ζ, with ti ∈ Ti.

Otherwise, a constraint is potentially inactive at time ti.

In addition to identifying the time instances at which

certain constraints may be potentially inactive, it is also

preferable to determine the sets of constraints that never

become active at all times.

Definition 2: A constraint cl(Xi, Ui, τi, t0, tf , p) ≤ 0 is

potentially redundant if for all ti := ti(τi, t0, tf ) with

i = 1, . . . , N , the constraints cl(Xi, Ui, τi, t0, tf , p) ≤ 0
are potentially inactive. Otherwise, this set of constraints is

potentially enforced.

C. Initialization for interior point methods

Interior point methods (IPMs) for solving NLPs were

introduced in the early 1960s [10]–[12] and have became

very popular in numerical optimal control. The idea is to

augment the objective function with barrier functions of

constraints in order to enforce their satisfaction. Potential

solutions will iterate only in the feasible region following the

so-called central path, resulting in a very efficient algorithm.

Standard interior point methods are sensitive to the choice

of a starting point. To ensure that the initial guess is strictly

feasible with respect to constraints, various initialization

methods have been developed (e.g. [13] and the collective

study in [7]) and implemented in modern solvers.

To ensure reliable and efficient computation of the initial-

ization algorithm, as well as the subsequent NLP iterations,

several criteria [3] can be formulated regarding ideal initial

points for IPMs. The ideal initial point should:

• satisfy or be close to primal and dual feasibility,

• be close to the central path,

• be as close to optimality as possible.

Because of these characteristics, external constraint han-

dling schemes developed for active-set based SQP solvers,

such as [2], are not suitable for IPM-based solvers. By first

solving the unconstrained problem and gradually adding con-

straints based on the constraint violation error, the solution

of previous solves will all be infeasible for the new OCP

formulation, and the solution may undergo drastic changes

as well. For IPM-based NLP solvers, this would lead to a

higher computational overhead for initialization, as well as

higher chances for the iterations to frequently enter the slow

and unreliable feasibility restoration phase.

D. Proposed Scheme for Constraint Handling

Based on the criteria presented in Section III-B and the

characteristics of IPMs as discussed in Section III-C, a

strategy for efficiently handling constraints in OCPs solved

with IPM-based NLP solvers is proposed, with the work-flow

presented in Figure 1. The approach is called external, since

the modifications to the OCP are made at the MR iteration

level, instead of during the NLP iterations.

The unmodified OCP is first solved on the initial coarse

mesh. Even with all constraint equations included, the com-

putation time will still be quite low at this stage due to the

small problem size. Once the solution is obtained, potentially

inactive constraints and potentially redundant constraint sets

can be identified, based on Definitions 1 and 2, with poten-

tially redundant constraints directly excluded from the OCP

formulation. Furthermore, if the problem has a fixed terminal

time, i.e. the time instance corresponding to a mesh point

will not change, then potentially inactive constraints in the

potentially enforced constraint sets may also be removed.

Recall that it is preferable to erroneously identify an inac-

tive constraint as potentially active, rather than the opposite.

It is therefore often a good idea in practice to enlarge the

intervals with potential constraint activation by an interval of

length β in each direction, with β either fixed or adapting

during the MR process. This adaptation also guarantees the

convergence of the overall scheme, i.e. in the worst case,

β can be sufficiently large to impose the constraints for the

whole trajectory, with the original problem recovered.

In-between MR iterations, special attention must be made

to constraints and constraint sets that were determined to be

potentially inactive or redundant in the previous solves. If

they never become active or enforced again, the constraint re-

moval process may continue until MR is converged. But there

will be the chance, after refining the mesh, the constraint

violation error analysis dictates that certain constraints and



Solve unmodified

OCP (coarse mesh)

Error analysis and mesh

refinement; identify potentially

inactive constraints and

potentially redundant

constraint sets based on

the unmodified problem

all errors within

tolerance?

Remove potentially redundant

constraint sets from OCP

fixed terminal

time problem?

Remove

potentially

inactive

constraints

from OCP

any constraint

reactivated?

Solve the auxiliary feasibility

problem and use the

solution as initial guess

Solve the

new OCP

stop
yes

no

yes

no

yes

no

Fig. 1. Overview of the proposed external constraint handling scheme

constraint sets that have been removed earlier may become

potentially active or enforced again. If this happens, they

need to be included again to ensure that the solution of the

modified OCP is equivalent to the unmodified problem.

Note that the previous solution will no longer be a feasible

initial guess for the new problem formulation. To assist the

subsequent solve of NLPs, the following auxiliary feasibility

problem (AFP) can be solved before proceeding:

J∗ := min
X,U,p,t0,tf

ng∑
l=1

sl (3a)

subject to, for i = 1, . . . , N (k) and k = 1, . . . ,K ,

Ñ∑
j=1

A
(k)
ij X

(k)
j +D

(k)
i f(X

(k)
i , U

(k)
i , τ

(k)
i , t0, tf , p) =0 (3b)

c(X
(k)
i , U

(k)
i , τ

(k)
i , t0, tf , p) ≤ s, with s ≥0 (3c)

φ(X
(1)
1 , t0, X

(K)
K , tf , p) =0 (3d)

with s ∈ R
ng slack variables. The initial guess for the AFP

will be Z̃ := (X̃, Ũ, p, τ̃, t0, tf ), the values of the interpolated

solution z̃ at the collocation points of the refined mesh.

E. Properties of the external constraint handling strategy

It is possible to derive proofs of feasibility and optimal-

ity invariance for the removal of constraints on a given

discretization mesh. However, with the size of the mesh

changing throughout the refinement process, the analysis

of errors, and identification of constraint activation status

(Section III-B) are all subject to considerable uncertainties.

When a constraint or constraint set must be included again

in the problem, it will be challenging to ensure that the

subsequent OCP solve can be supplied with a feasible initial

guess. The introduction of the AFP is the answer to this

challenge, with its solution guaranteed to be a feasible point

for the corresponding original OCP.

Proposition 1: If the original OCP (2) has feasible points,

then a solution to the auxiliary feasibility problem (3) will

be a feasible point of (2) on the same discretization mesh,

and (3) will have corresponding objective value J∗ = 0.

Proof: If Z := (X,U, τ, t0, tf , p) is a feasible point

of (2), then (2c) must hold. With s ≥ 0, the solution for

the AFP (3) will be the situation where
∑

sl = 0, and (2c)

guarantees the existence of such a solution.

Now, for the very same reason, we need to obtain a

suitable initial guess for the slack variables s in the AFP.

One possible way is by calculating the constraint violation

errors of the interpolated solutions on the refined mesh.

Proposition 2: Define s̃ ∈ R
N×ng as the absolute local

constraint violation error ǫc(t) calculated at the collocation

points of the refined mesh, with the updated initial guess

Z̃ := (X̃, Ũ, p, τ̃, t0, tf ). For any set {s̄ ∈ R
ng | s̄l ≥

maxi=1,...,N (s̃i,l), l = 1, . . . , ng} implemented as the initial

guess for s, the AFP (3) will have a strictly feasible initial

point with respect to the constraints (3c).

Proof: s̃i,l := |min(−cl(X̃i, Ũi, p, τ̃i, t0, tf ), 0)| by

definition, for all i = 1, . . . , N and l = 1, . . . , ng ,

• if cl(X̃i, Ũi, p, τ̃i, t0, tf ) < 0, i.e. the constraint is

satisfied and the solution is not on the boundary, then

s̃i,l = 0, thus cl(Xi, Ui, τi, t0, tf , p) < s̃i,l holds.

• if cl(X̃i, Ũi, p, τ̃i, t0, tf ) = 0 (constraint satisfied

and solution is on the boundary) or cl(X̃i, Ũi, p,

τ̃i, t0, tf ) > 0 (constraint violation occurs), then

cl(Xi, Ui, τi, t0, tf , p) = s̃i,l holds.

Therefore, cl(Xi, Ui, τi, t0, tf , p) ≤ s̃i,l will always be true.

From s̄l ≥ maxi=1,...,N (s̃i,l), it can be concluded that

cl(Xi, Ui, τi, t0, tf , p) ≤ s̄l holds.

We can now show that, except for the initial solve, all

subsequent solves will have feasible initial guesses.

Proposition 3: If the unmodified OCP has feasible points,

and the initial solve of the discretized OCP has been success-

ful, then all subsequent solves of OCPs and AFPs with mesh

refinement schemes and the proposed external constraint

handling method will have a feasible initial point with respect

to the constraints (2c) or (3c).

Proof: For any interpolated solution Z̃ :=
(X̃, Ũ, p, τ̃, t0, tf ) on the new mesh, if (2c) is not satisfied,

then the corresponding AFP will be solved and Proposition 2

ensures that AFP will have a feasible initial guess. From



Proposition 1 the solution of the AFP will be a feasible initial

guess for the subsequent OCP solve.

F. A practically more efficient alternative implementation

The proposed external constraint handling scheme can

guarantee feasible initial points under conditions stated in

Proposition 3. Nevertheless, it is not efficient in practice.

The frequent solve of AFPs are not only time consuming,

but are often not necessary.

Recall the conditions regarding ideal initial guesses for

IPM methods. It is not necessary to satisfy primal and

dual feasibility — rather, one only needs to be close to

fulfillment. In practice, the computational performance of

a modern IPM that uses near-feasible initial guesses is

very much comparable to using feasible initial points. In

addition, constraint satisfaction for simple bounds can be

computationally much easier to achieve by the NLP solver,

thus there is no need to enforce those through the solve of

an AFP.

Thus, a practically more efficient version of the exter-

nal handling scheme can be formulated, by restricting the

conditions for solving the AFP to the MR iteration when

a potentially redundant path constraint set turns into a

potentially enforced path constraint set.

IV. EXAMPLE

To demonstrate the computational benefits of the proposed

ECH scheme, we show an problem that is relatively large in

the horizon length. The task involves finding a fuel-optimal

flight path of a commercial aircraft where authorities have

identified five non-flight zones (NFZ) for the aircraft to avoid.

From simple flight mechanics with a flat earth assumption,

both the longitudinal and lateral motion of the aircraft can

be described by the dynamic equations

ḣ(t) =vT (t) sin(γ(t))

˙POSN (t) =vT (t) cos(γ(t)) cos(χ(t))

˙POSE(t) =vT (t) cos(γ(t)) sin(χ(t))

v̇T (t) =
1

m(t)
(T (vC(t), h(t),Γ(t))

−D(vT (t), h(t), α(t)) −m(t)g sin(γ(t)))

γ̇(t) =
1

m(t)vT (t)
(L(vT (t), h(t), α(t)) cos(φ(t))

−m(t)g cos(γ(t)))

χ̇(t) =
L(vT (t), h(t), α(t)) sin(φ(t))

cos(γ(t))m(t)vT (t)

ṁ(t) =FF (h(t), vC(t),Γ(t))

with h the altitude [m], POSN and POSE the north and

east position [m], vT the true airspeed [m/s], γ the flight

path angle [rad], χ the tracking angle [rad], and m the mass

[kg]. T , L, D are the thrust, lift and drag forces. FF is the

fuel flow model, requiring an input of calibrated airspeed vC ,

which can be related to vT via a conversion.
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Fig. 2. The fuel-optimal flight profile for the example problem

Additionally, g = 9.81m/s2 is gravitational acceleration.

We have three control inputs, the roll angle φ in [rad], the

throttle settings Γ normalized between 0 and 1, and the angle

of attack α in [rad]. Further details of the modelling of a

Fokker 50 aircraft can be obtained from [14].

The avoidance of NFZs can be implemented with the

following path constraints

(POSN (t)− POSNN
)2 + (POSE(t)− POSEN

)2 ≥ r2N

with POSNN
and POSEN

the north and east position of the

center of the non-flight zones, and rN the radius.

The problem will have the boundary cost

Φ(x(t0), t0, x(tf ), tf , p) = −m(tf ) (maximize the mass at

the end of the flight, with fixed tf = 7475 s), subject to the

dynamics and path constraints. Furthermore, variable simple

bounds are imposed together with the boundary conditions.

The OCP is transcribed using the optimal control software

ICLOCS2 [15] with Hermite-Simpson discretization, and

solved with IPM-based NLP solver IPOPT [16] (version

3.12.4). All computation results shown were obtained on an

Intel Core i7-4770 computer with 16G of RAM. Figure 2

illustrates the results solved to a user-defined tolerance.

Using the proposed external constraint handling scheme,

we first solved the problem with a worst-case buffer interval

setting of β = 0 s. The history for constraint activation inter-

vals implemented in the OCP are demonstrated in Table I.

It can be seen that in the initial solve (MR iteration 1), all

constraint sets are enforced and all constraints are treated as

potentially active. Based only on the solution from this coarse

grid, the ECH method correctly identified that the constraint

sets related to NFZ 2, 3 and 5 are all potentially redundant.

It also determined that constraints related to NFZ 1 are only

potentially active near the end of the flight, whereas for

NFZ 4 they are at the beginning of the mission.

In later iterations of the MR, these intervals had only some

minor adjustments. It can be seen that without implement-

ing any buffer interval, we do see occasions where active

constraints got erroneously identified as inactive for finer

meshes. However, the constraint violation error analysis in

the MR process correctly identified these situations and made

corrections accordingly.



TABLE I

EXTERNAL CONSTRAINT HANDLING HISTORY: AIRCRAFT FLIGHT PROFILE (t0 =0 S, tf = 7475 S, β = 0 S)

Constraint Activation Intervals Implemented in the OCP [s]
MR Iteration 1 MR Iteration 2 MR Iteration 3 MR Iteration 4 MR Iteration 5 MR Iteration 6

(K = 40) (K = 81) (K = 136) (K = 176) (K = 207) (K = 256)

NFZ 1 [t0, tf ] [6900 7092] [6996 7114] [7056 7162] [7071 7140] [7074 7150]

NFZ 2/3/5 [t0, tf ] ∅ ∅ ∅ ∅ ∅

NFZ 4 [t0, tf ] [671 863] [743 942] [767 875] [774 880] [774 878]

TABLE II

COMPUTATIONAL PERFORMANCE COMPARISON

Standard With ECH With ECH
Solve (β = 0 s) (β = 747.5 s)

Total Comp.
130.54

92.14 78.27
Time [s] (29% lower) (40% lower)

MR Iterations 6 6 6

Re-comp.
21.82

13.50 10.78
Time [s] (38% lower) (50% lower)

Fuel Used [kg] 1787.6 1787.6 1787.6

Table II compares the computational performance of the

standard solve, as well as solves with external constraint

handling using the alternative ECH implementation (allowing

near-feasible initial guesses) described in Section III-F, with

two different buffer interval settings. With the worst-case

setting of β = 0, the total computation time saw a 29%

reduction, while the number of MR iterations remained the

same. Choosing a much more conservative buffer interval

setting of β = 0.1(tf − t0) = 747.5 s further improved this

time reduction to 40%, due to the fact that initial guesses

were feasible for all later MR iterations.

For real-time applications, it is useful to consider the re-

computation time for solving the OCP problem again with

the final (refined) discretization mesh, using the obtained

solutions as initial guesses. For the ECH method with

β = 747.5 s, the time taken was only half compared to

the standard solve. Therefore, the benefits of the proposed

scheme can be seen for both off-line and online applications.

V. CONCLUSIONS

A strategy has been developed to systematically identify

and handle inactive constraints and redundant constraint sets

for numerically solving optimal control problems together

with mesh refinement schemes. Unlike previous work that

would always result in infeasible initial guesses for inter-

mediate steps, the proposed scheme is capable of provid-

ing guarantees on the feasibility of initial points in mesh

refinement iterations. The method only requires some mild

conditions — the original OCP to have feasible points, and

the initial solve of the discretized OCP to be successful,

making it particularly suitable for OCP toolboxes that utilize

IPM-based NLP solvers in lowering the computational cost.

Due to limitations in time and space, we only illustrated

the proposed external constraint handling method with di-

rect collocation. We note that similar benefits should be

obtainable, after some adaptations, with other simultaneous

methods, such as direct multiple shooting. This might also

be possible for sequential methods, such as direct single

shooting. Moreover, it would be interesting to test a slightly

altered version of our proposed constraint removal method

with active-set based NLP solvers — this could be compared

under a mesh refinement scheme against earlier work [2],

which exploits constraint addition instead.
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