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A controller architecture with anti-windup
Henrik Niemann

Abstract—This paper presents a framework for anti-windup
controllers based on the Youla-Jabr-Bongiorno-Kucera (YJBK)
parameterization. Applying this architecture gives an additional
YJBK matrix transfer function related to the input saturation.
This additional YJBK transfer function can be applied for opti-
mizing the feedback loop around the input saturation. Further,
the connection with other anti-windup controller architectures is
also considered in this paper.

Index Terms—Control system architecture, linear systems

I. INTRODUCTION

SATURATION in control systems is a known problem.
Almost every system includes input saturation due to the

limitation in the actuators. It is therefore relevant to consider
a system with input saturation. This has been investigated
in a large number of papers and books in connection with
traditional control, as well as in connection with optimal and
robust control. Throughout the years, a number of results
dealing with analysis and design of anti-windup controllers
for actuator saturates have been published. These methods
include different design methods [1], [3], [4], [5], [8], [13],
[18], [19], different controller architectures, as well as the
robustness aspect in anti-windup controller design, [2], [7],
[17], to mention some of the central papers in the area. Some
open problems are discussed in the tutorial papers [15], [20].

The main focus in this paper is to apply the YJBK controller
architecture in connection with input saturation. The YJBK
architecture has previously been applied in connection with
saturation, see e.g. [14] and [7]. In [14], the YJBK param-
eterization is included in an existing anti-windup controller,
and applied for the optimization of the anti-windup part.
Equivalent in [7], the YJBK parameterization is included in
an existing anti-windup controller with respect to robustness
in the closed-loop system.

In this paper, the YJBK architecture is applied directly in
connection with input saturation. This can be done by using
some known results from the YJBK parameterization, [9],
[10], [16]. Together with the implementation of the YJBK
controller described in [11], a YJBK architecture including
an anti-windup part, gets a simple structure.

The relation with other anti-windup architectures is also
considered. The anti-windup architecture by Weston and
Postlethwaite (named as the W-P architecture in the following)
described in e.g. [4], [7], [13], [19] and the architecture by
Kothare et.al. described in [6] is considered. It is shown
that the W-P architecture and the YJBK architecture are
equivalent. A W-P controller can be implemented in the YJBK
architecture as well as the other way around. Further, it is
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shown that the architecture by Kothare et.al is as a special
case of the W-P architecture and the YJBK architecture.

The rest of this paper is organized as follows. The system
set-up and some preliminary results are given in Section
II. The saturation setup described in the YJBK architecture
is given in Section III. The relation between different anti-
windup controllers is described in Section IV. A closed-loop
stability is analyzed in Section V. An example is given in
Section VI, and the paper is closed with a conclusion in
Section VII.

II. SYSTEM SETUP AND PRELIMINARY RESULTS

Let a general system be given by:

Σ :

{ (

z
y

)

=

(

Gzw Gzu

Gyw Gyu

)(

w
u

)

(1)

where w ∈ Rk is an external input vector, u ∈ Rm is the
control input signal vector, z ∈ Rk is an external output vector,
and y ∈ Rp is the measurement vector.

A state space description of (1) is given by:

Σ :











ẋ
z
y



 =





A Bw Bu

Cz Dzw Dzu

Cy Dyw Dyu









x
w
u



 (2)

where x ∈ Rn is the state vector
The external output z and the external input w be connected

through the matrix ∆, i.e.

w = ∆z (3)

∆ represent uncertainties in the system. The general system
Σ∆ including uncertainties is given by:

Σ∆ = Fu(Σ,∆) (4)

where Fu(·, ·) is an upper linear fractional transformation
(LFT), [12].

The system is controlled by a stabilizing feedback controller
given by:

ΣC :
{

u = Ky (5)

The coprime factorization of the nominal system Gyu

from (1), and the stabilizing controller K from (5) are given
by:

Gyu = NM−1 = M̃−1Ñ , N,M, Ñ , M̃ ∈ RH∞

K = UV −1 = Ṽ −1Ũ , U, V, Ũ , Ṽ ∈ RH∞

(6)

where the eight matrices in (6) must satisfy the double Bezout
equation given by, see [16]:

I = Z̃Z = ZZ̃ (7)
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where the two Bezout matrices are given by

Z = Z̃−1 =

(

M U
N V

)

, Z̃ = Z−1 =

(

Ṽ −Ũ

−Ñ M̃

)

Based on the above coprime factorization, a parameteriza-
tion of all controllers that stabilize the system in terms of a
stable YJBK matrix transfer function Q. Using a right factored
form, all stabilizing controllers are given by [16]:

K(Q) = (U +MQ)(V +NQ)−1, Q ∈ RH∞ (8)

or by using a left factored form:

K(Q) = (Ṽ +QÑ)−1(Ũ +QM̃), Q ∈ RH∞ (9)

Using the Bezout equation, the controller given either by (8)
or by (9) can be realized as a linear fractional transformation
in the parameter Q:

K(Q) = Fl

((

UV −1 Ṽ −1

V −1 −V −1N

)

, Q

)

= Fl(JK , Q)

(10)
The YJBK parameterization for the left factored form in (9)

is shown in Fig. 1, where Z̃ and Q are given by:

Z̃ = Z̃ − Iu, Q = Q, Iu = diag(I, 0) (11)

Σ

Z̃−I Q

✲ ✲

✲

✛✛

✛ ✛

zw

yu

Fig. 1. An implementation of the YJBK parameterization based on the left
factored form where Z̃ and Q are given by (11).

Fig. 1 gives a direct relation between the Bezout equation
and the YJBK controller architecture. This representation has
been discussed in more details in [11]. The output vectors
from Z̃ is given by

(

−u
εQ

)

= Z̃

(

u
y

)

(12)

where εQ is the standard residual vector.
Further, we need some results from [10] dealing with

coprime factorization of systems including additional sensors.
Let additional sensors be included in the original system Σ in
(1) resulting in an extra set of measurements given by ys. Σ
is then given by:

Σext :











z
y
ys



 =





Gzw Gzu

Gyu Gyu

Gysw Gysu





(

w
u

)

(13)

where ys ∈ Rps . The coprime factorization of the extended
system is then given by the following Bezout matrices, [10]:

Zext =





M
(

U 0
)

(

N
Ns

) (

V 0
Vs I

)





Z̃ext =





Ṽ
(

−Ũ 0
)

−

(

Ñ

Ñs

) (

M̃ 0

M̃s I

)





(14)

Further, the two matrix transfer functions Z̃ and Q in (11) are
given by:

Z̃ = Z̃ext − Iu Q =
(

Q Qs

)

(15)

where Qs is related to the the extra measurements including
in the system.

It is also possible to derive a parameterization of all systems
that are stabilized by one controller in terms of a stable matrix
transfer function S, i.e. the dual YJBK parameterization. The
dual YJBK parameterization is given by [9], [16]:

Gyu(S) = (M̃ + SŨ)−1(Ñ + SṼ ), S ∈ RH∞ (16)

using the left form. There exists also a right form for the dual
YJBK parameterization. Further, S is given as an upper LFT
by, [16]:

S = Fu(JK , Gyu(S)) (17)

The matrix transfer function S is a function of the uncer-
tainties in the system described with ∆ as described in (4).
S(∆) is given by, [9]:

S(∆) = M̃Gyw∆(I − (Gzw +GzuUM̃Gyw)∆)−1GzuM
(18)

Note that the dual YJBK matrix transfer function S can be
applied in different connections. From [9], [16], the closed-
loop uncertain system is stable if the nominal closed-loop
system is stable and the resulting S is stable. Here in the
following, S will be used in connection with analysis of
closed-loop stability when the YJBK controllers includes an
anti-windup part.

III. SATURATION SET-UP

Consider now the system in (1) with a saturated control
input vector given by us. The saturated input vector us is
given by

us = sat(u) = [sat(u1), · · · , sat(um)]T (19)

where sat(ui) = sign(ui) × min{|ui|, umax,i}, umax,i >
0 ∀i ∈ {i, · · · ,m}. Further, let U be given by:

U := U1 × · · · × Um (20)

where Ui := [−umax,i, umax,i]. It is assumed that us can be
measures or estimated. To simplify the equations, it is assumed
in the following, that the inputs has been scaled such that all
inputs has the same saturation, i.e. umax,i = umax.

The saturation problem can be described by the general
system setup given by (4). Let the input saturation be described
by

us = sat(u) = (1 + ψsat(u))u

ψsat(u) = diag(ψ1(u1), · · · , ψm(um))
(21)

where ψi(ui) ∈ R is a non-linear function given by:

ψi(ui) =

{

0 for ui ∈ Ui

sat(ui)
|ui|

− 1 for ui ∈/ Ui

(22)
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Using this description of the saturation, it can be formulated
in the general system set-up in (1). This is obtained by
describing us as:

us = u+ ws, ws = ψsatzs, zs = u (23)

where zs is the input vector to ψsat and output ws is the output
vector from ψsat. The general system set-up in (13) with the
above extensions is now given by:

ΣS :











zs
y
ys



 =





0 I
Gyu Gyu

I I





(

ws

u

)

(24)

The feedback controller given by (5) is now given by:

ΣC,S :

{

u =
(

K 0
)

(

y
ys

)

= KS

(

y
ys

)

(25)

A coprime factorization of the above ΣS and KS are given
by:
(

Gyu

I

)

=

(

N
M

)

M−1 =

(

M̃ 0
0 I

)−1 (
Ñ
I

)

KS =
(

U 0
)

(

V 0
0 I

)−1

= Ṽ −1
(

Ũ 0
)

(26)
by using (14).

With the coprime factorization given above, it is simple
to give a complete description of the YJBK parameterized
controller using the compact description given in Fig. 1. In
this case, Z̃ , Q and εQ are given by:

Z̃ =





Ṽ − I −Ũ 0

−Ñ M̃ 0
−I 0 I





Q =
(

Q Qs

)

(

−u
εQ

)

=





−u
εQ
εs



 = Z̃





u
y
ys





(27)

where εs is the saturation error vector, i.e. εs = us − u and
Qs is the YJBK matrix transfer function for feedback control
from the saturation error vector.

The formulation of input saturation as a special case of
system extension gives a controller that can be implemented
directly in the YJBK controller architecture shown in Fig. 1.
Further, the anti-windup part of the controller is related only
to the YJBK matrix transfer function Qs and separated from
Q.

In the following, only the part of the parameterization
related to the input saturation in the system is considered,
i.e. Q = 0. The case with Q 6= 0 is shortly discussed in Sec.
V.

IV. RELATION TO OTHER ANTI-WINDUP ARCHITECTURES

The YJBK architecture including an anti-windup part is
related to other anti-windup architectures. Here we will con-
sider the architecture by Weston and Postlethwaite described
in e.g. [4], [7], [13], [19] and the architecture by Kothare et.al.
described in [6].

First, let’s consider the W-P architecture. The setup is shown
in Fig. 2, where Θ1 and Θ2 are the design parameters.

K sat(u) Σ

Θ2

Θ1

+

-

- +

w
z

yus

εs

Fig. 2. The Weston-Postlethwaite controller architecture for systems with
input saturation.

Note that the residual vector εs given in (27), and in the W-
P controller architecture shown in Fig. 2 is the same vector.
The control vector u from the YJBK architecture in Fig. 1
with Z̃ in (27) is given by:

u = Ky + Ṽ −1Qsεs (28)

The control input u for the W-P architecture shown in Fig.
2 is given by:

u = Ky −KΘ2εs +Θ1εs (29)

Let (29) be rewritten into:

u = Ky − Ṽ −1(ŨΘ2 − ṼΘ1)εs (30)

It is now easy to see that the W-P anti-windup controller
architecture described by (29) can be implemented in the
YJBK architecture. Selecting Qs as:

Qs = −ŨΘ2 + ṼΘ1 =
(

Ṽ −Ũ
)

(

Θ1

Θ2

)

(31)

shows directly that two control vectors in (28) and (30) are
identical. This shows that the W-P anti-windup controller can
easily be implemented in the YJBK architecture. From [19],
we have the following design of Θ1 and Θ2 are given by:

(

Θ1

Θ2

)

=

(

M − I
GyuM

)

=

(

M − I
N

)

(32)

Based on these matrices, Qs take then the following form:

Qs =
(

Ṽ −Ũ
)

(

M − I
N

)

= Ṽ M − Ṽ − ŨN

= I − Ṽ

(33)

One of the important issues in the W-P architecture, com-
pared with the YJBK architecture, is the implementation of the
anti-windup part. An advantage in the W-P implementation,
compared with the YJBK implementation, is that the additional
control vectors from the anti-windup part are included in the
loop before and after the controller. In the YJBK implemen-
tation, a single control input vector for the anti-windup part is
injected into the nominal controller. This will in some cases
not be acceptable because the nominal controller is modified.

It is therefore also relevant to consider the other way around.
The starting point for calculating Θ1 and Θ2 based on Qs
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from the YJBK implementation is to consider (28). Using the
Bezout equation in (7), Ṽ −1 can be

Ṽ −1 =M − Ṽ −1ŨN =M −KN (34)

Using (34) in (28) gives directly:

u = Ky + (M −KN)Qsεs

= Ky +MQsεs −KNQsεs
(35)

Compare (35) with (29) gives directly that Θ1 and Θ2 are
given by:

(

Θ1

Θ2

)

=

(

M
N

)

Qs +

(

Θ10

Θ20

)

(36)

where Θ10 and Θ20 are free parameters that need to satisfy:

(

Ṽ −Ũ
)

(

Θ10

Θ20

)

= 0

Note that Θ1 and Θ2 are not unique when the calculation is
based on Qs from the YJBK parameterization.

Note that the reformulation of the control input vector from
the YJBK controller is not only restricted to the anti-windup
case, but can also be used in the YJBK architecture.

The W-P anti-windup controller given by Qs in (33) has an
interesting implementation in the general YJBK architecture.
To see this, first, let the control vector in (28) be rewritten
into:

Ṽ u = Ũy +Qsεs

which gives

u = Ũy − (Ṽ − I)u+Qsεs (37)

(33) together with (37) gives now:

u = Ũy − (Ṽ − I)u+ (I − Ṽ )εs

= Ũy − (Ṽ − I)(u+ εs)

= Ũy − (Ṽ − I)us

(38)

by using εs = us − u.
Based on this control vector, the controller architecture from

Fig. 1 takes the form as shown in Fig. 3.

Σsat(u)

−(Ṽ − I) Ũ

✲ ✲

✲ ✲

✛

✛

z
w

u

y
us

Fig. 3. The implementation of a feedback controller with anti-windup based
on the left factored form.

The controller architecture showed in Fig. 3 is the same anti-
windup architecture shown in [6]. The implementation showed
in Fig. 3 demonstrates a simple way to include anti-windup
in an existing controller. However, the controller still needs to
be factorized and implemented using the coprime factors, so
there is an internal feedback of the control vector. It is then
simple to include the anti-windup part by moving the control

feedback loop from the input side of the saturation block to
the output side of the saturation block. The design freedom in
this controller architecture is the coprime factorization of the
controller. However, some controllers are implemented directly
with this structure. An example of a controller with this
structure is an observer based controller. The matrix transfer
functions for the controller implementation shown in Fig. 3
are given by, [16]:

(

−(Ṽ − I) Ũ
)

=

(

A+ LCy −(Bu + LDyu) L
F 0 0

)

(39)
where F and L are the state feedback gain and observer gain,
respectively. An implementation of the full-order observer
based feedback controller including an anti-windup part is
shown in Fig. 4.

Σ
sat(u)

F

−L

A

∫

CyBu

Dyu

+

+

- +

yusu

zw

Fig. 4. An implementation on a full-order observer based feedback controller
including an anti-windup part.

Fig 4 shows that the anti-windup controller from [6], or the
W-P anti-windup controller given by the parameters in (32),
can be implemented directly in an observer-based controller
without including extra terms.

Using an observer-based feedback controller, it is possible
to give a coprime factorization of system and controller as used
in (39). A state space description for coprime factorization of
general feedback controllers can be found in e.g. [16].

V. CLOSED-LOOP ANALYSIS

The stability analysis is based on the dual YJBK matrix
transfer function S(∆) given in (18). The closed-loop system
is stable if the nominal closed-loop system is stable, and the
dual YJBK matrix transfer function S is stable, [9], [16].
Using ∆ = ψsat where ψsat is the non-linear function in (22)
describing the input saturation. S(ψsat) can be then calculated
by using the system ΣS in (24), and the associated coprime
matrices for the system in (26). S(ψsat) is given by:

S(ψsat) =

(

Ñ
I

)

ψsat(I − UÑψsat)
−1M (40)
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S(ψsat) is stable if and only if

(I − UÑψsat)
−1 ∈ RH∞ (41)

The stability can be checked using an LMI formulation, see
e.g. [3].

Now, include Qs in the controller as described in (28). This
gives the closed-loop:

S(Qs, ψsat) = S(ψsat)(I −QS(ψsat))
−1

=

(

Ñ
I

)

ψsat(I − (UÑ +MQs)ψsat)
−1M

(42)
The closed-loop is stable if:

(I − (UÑ +MQs)ψsat)
−1 ∈ RH∞ (43)

Consider the W-P controller given by Qs in (33). This gives
the following stability condition:

(I − (M − I)ψsat)
−1 ∈ RH∞ (44)

This gives the same stability condition as given in [13], [18],
[19]. Due to the fact that the coprime factorization is not
unique, the coprime factorization of Gyu needs to be optimized
with respect to the anti-windup controller as described in [13],
[18], [19].

Consider the stability condition in (43). This condition can
be satisfied by using a Qs given by:

Qs = −M−1UÑ = −ŨGyu (45)

This Qs can only be applied if the system is open-loop stable.
Further, it will decouple the controller and the saturation with
respect to the closed-loop stability. This can be seen from (28)
by including Qs from (45). The control vector is then given
by:

u = Ky − Ṽ −1ŨGyuεs

= KGyuus −KGyu(us − u)

= KGyuu

(46)

This shows that the closed-loop system is stable if the system
without saturation is closed-loop stable.

Until now, it has been assumed that the original YJBK
matrix transfer function Q in (27) is set to zero. Using a
feedback controller based on the YJBK architecture, it is
natural to apply Q for optimization of closed-loop performance
or robust stability. It is therefore relevant to consider the
stability of the saturation loop for a non-zero Q. Including
Q in the controller gives the following S(Q, ψsat):

S(Q, ψsat) =

(

Ñ
I

)

ψsat(I − (UÑ +MQÑ +MQs)ψsat)
−1M

(47)
The stability of the saturation loop depends on Q. The extra
term that occurs in (47) from a non-zero Q can be compen-
sated by selecting Qs as:

Qs(Q) = Qs −QÑ (48)

The influence from Q on the stability of the saturation loop has
then been removed completely. A redesign of the controller,
using the YJBK matrix transfer function Q, can be done
without a redesign of the anti-windup part of the controller.

VI. EXAMPLE

Consider the system and controllers from [17] given by:

Gyu,0 = 10
s2+10s+10 Gyu = 10

s2−0.05s+10

Kfeedback = 135(s+5)2

s(s+80) Kforward = 2.5
s+2.5Kfeedback

The maximal control input signal is limited to umax = 1.0.
Gyu,0 is the nominal model used for design of the anti-windup
controller where Gyu is the system used in the simulations.

A simulation of the system with the nominal controller with
and without saturation is shown in Fig. 5. The amplitude
of the reference input is 1.1. The feedback system without
saturation is closed loop stable whereas it is unstable when
input saturation is included.

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5

2

Time [sec]

Ou
tpu

t y

Fig. 5. Simulation of the system with the nominal controller. Solid line is
the system without saturation and dashed line is system with saturation.

Let’s consider three different anti-windup controllers for the
system. The anti-windup parts are given by:

Qs =







I − Ṽ W-P controller
k constant Qs

−Gyu,0Ũ decoupling controller

The constant Qs = k is designed by using a simple optimiza-
tion. This gives Qs = 10. The simulation results of the three
anti-windup controllers are shown in Fig. 6.
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Fig. 6. Simulation of the system with three different anti-windup controllers.
The top plot shows the output from the system y when the W-P controller is
applied, the middle plot shows y when Qs = k is applied and the lower plot
shows y when the decoupling Qs is applied.

All three anti-windup controllers results in stable closed-
loop systems. The first two anti-windup controllers results in
almost the same output with the first one as a little bit better
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than the second controller. The decoupling controller gives an
output with a smaller oscillation than the other two controllers.
The control signal generated by the anti-windup controllers
are shown in Fig. 7. It can be seen from Fig. 7 that the W-P
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Fig. 7. Control signal from the three different anti-windup controllers. The
top plot shows the control signal u when the W-P controller is applied, the
middle plot shows u when Qs = k is applied and the lower plot shows u
when the decoupling Qs is applied.

controller results in a high control signal compared with the
two other controllers. Qs = k results in reasonable control
signal, and the decoupling controller gives a smaller and a
more smooth signal control signal than from the two other
controllers, but have some spikes.

It is important to point out that the above results depend
strongly on the applied coprime factorization of the system
and the nominal controller. Other coprime factorizations of the
system and nominal controller will give other results, special
for the first two anti-windup controllers.

VII. CONCLUSION

A YJBK controller architecture has been applied in con-
nection with input saturation. The YJBK architecture gives
an additional YJBK transfer function related to the input
saturation part of the system. This makes it easy to include
anti-windup in the controller architecture. Standard analysis
and design methods for input saturation can be applied.

Relations between the described YJBK architecture and
other anti-windup controllers have also been considered. It is
shown how the well-known Weston-Postlethwaite architecture
can be implemented in the YJBK architecture, as well as the
other way around.
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