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Distributed Computation for Solving the

Sylvester Equation Based on Optimization

Wen Deng, Xianlin Zeng, and Yiguang Hong, Fellow, IEEE

Abstract

This paper solves the Sylvester equation in the form of AX +XB = C in a distributed way, and

proposes three distributed continuous-time algorithms for three cases. We start with the basic algorithm

for solving a least squares solution of the equation, and then give a simplified algorithm for the case

when there is an exact solution to the equation, followed by an algorithm with regularization case. Based

on local information and appropriate communication among neighbor agents, we solve the distributed

computation problem of the Sylvester equation from the optimization viewpoint, and we prove the

convergence of proposed algorithms to an optimal solution in three different cases, with help of the

convex optimization and semi-stability.

Index Terms

Sylvester equation, distributed algorithm, convex optimization, least squares solution, regularization,

semi-stability.

I. INTRODUCTION

Under the influence of big data and large-scale systems, distributed optimization and computa-

tion have attracted more and more research attention. Both discrete-time algorithms [1]–[3] and

continuous-time algorithms [4]–[6] have been given for various distributed optimization prob-

lems. The basic idea is that many interconnected agents in a network, having local information
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separately, cooperate with their neighbors to exchange information and achieve global goals

eventually.

With the rapid development of distributed optimization algorithms, the idea of using distributed

methods to solve matrix equations has attracted much interest. The Sylvester equation is an

important class of matrix equations, which has wide application in control theory, systems theory

and many other fields [7]–[10]. For instance, the Sylvester equation plays a significant role in

computing invariant subspaces [11], achieving pole assignment [12] and model reduction [13].

There have been many centralized algorithms for solving matrix equations, such as Schur de-

composition methods, Krylov-subspace methods, and iterative methods [9], [14]–[16]. However,

those centralized algorithms for solving the Sylvester equation AX +XB = C mainly need to

deal with the whole two coefficient matrices A and B, which could not be applied directly to

many distributed scenarios, including the one we consider in this paper. Besides, the parallel

distributed computation for the Sylvester equation [17] could not work only for such local

information either, because it needs to transform A and B to real Schur form at first.

Recently, there have been several works about solving the linear algebraic equation in the form

of Ax = b by various distributed methods [18]–[22]. With the help of a network structure, every

node only gets access to the local information, for example, a row [18]–[20] or a column [22]

of the matrix A. In [21], there is a double-layered framework for all nodes and it enhances the

flexibility of the access to information. There is not much work about solving matrix equations

in a distributed way yet. Though we could transform a matrix equation into the form of a linear

algebraic equation sometimes, its partition structure has less flexibility to a certain extent. Due

to matrix multiplication rules, there are some differences between matrix equations and linear

algebraic equations. A class of matrix equations formed as AXB = F was first discussed in

[23], with different distributed algorithms according to different partition structures. However,

there are no results on the distributed computation of the Sylvester equation, which is more

complicated than AXB = F , to our knowledge.

The objective of this paper is to solve the Sylvester equation in a specific distributed formu-

lation. Notice that these methods in Ax = b [18]–[20] and AXB = F [23] cannot be applied

directly to the Sylvester equation AX +XB = C considered in this paper, because properties

of matrix multiplication and the given partition structure make it different from Ax = b and

AXB = F . In the distributed structure we consider, each agent only needs to know partial rows

or columns of information matrices A,B,C and communicate with its neighbors to exchange
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information. Therefore, appropriate conversion methods are introduced to deal with the given

partition structure of AX + XB = C in our problem formulation. Main contributions of this

paper are summarized as follows:

• We consider the distributed computation problem for the Sylvester equation with a special

distributed structure in two main cases: the least squares solution case and the regular-

ization case. To design the distributed algorithm, in which each agent exactly knows the

corresponding rows of A and columns of B, we introduce two new variables to deal with the

inconsistency caused by different partitions of rows or columns, and then reformulate the

problem as some distributed optimization problems by constructing an appropriate equivalent

transformation.

• We propose distributed algorithms to solve the Sylvester equation in different cases based

on saddle-point dynamics, and moreover, we propose a simplified algorithm for the case

when there exist exact solutions. It is worthwhile to mention that we employ the derivative

feedback technique in the (nonsmooth) regularization case for the optimization problem

with the penalty term for variable X , to solve the problem.

• We provide exponential convergence analysis of proposed algorithms for the least squares

(exact) solution case and the regularization case, respectively, under mild conditions. Since

solutions of the Sylvester equation may be not unique and the optimal solution obtained

by the algorithm trajectory may depend on initial conditions, we employ the semi-stability

theory of dynamical systems, which tackles convergence properties of dynamical systems

having a continuum of equilibria.

The rest paper is organized as follows. Section II introduces relevant mathematical prelimi-

naries, while Section III formulates distributed computation problems of the Sylvester equation

and reformulated distributed optimization problems. Then Sections IV and V present distributed

algorithms for the least squares solution case, the exact solution case, and the regularization case

with corresponding convergence analysis. Following that, Section VI provides a short discussion

and three numerical examples, and Section VII concludes this paper briefly.

II. PRELIMINARIES

In this section, we give related notations, some basic concepts, and some lemmas for the

analysis.
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Let Rm×n denote the set of m×n real matrices, 1n (or 0n) and In denote a vector in R
n with

all elements of 1 (or 0) and the n×n identity matrix, respectively. Let MT , Im(M), ker(M) and

spec(M) denote the transpose, the image, the kernel and the set of all eigenvalues of the matrix

M , respectively. Let vec(X) ∈ R
mn denote the vector that is a stack of all columns in matrix

X ∈ R
m×n and col {M1, . . . ,Mn} = [MT

1
, . . . ,MT

n ]
T for every Mi ∈ R

mi×n. Let ⊗ denote the

Kronecker product. Let || · ||F denote the Frobenius norm of a matrix, ||M ||F :=
√

∑

i,j M
2

i,j

and 〈·, ·〉F denote the Frobenius inner product of real matrices: 〈M1,M2〉F =
∑

i,j(M1)i,j(M2)i,j

with M1,M2 ∈ R
m×n. Define augmented matrices [Yi]R, [Zi]C ∈ R

m×r as

[Yi]R =
[

0Tm1×r, · · ·0
T
mi−1×r, Y

T
i , 0Tmi+1×r, · · · , 0

T
mn×r

]T

,

[Zi]C =
[

0m×r1 , · · · , 0m×ri−1
, Zi, 0m×ri+1

, · · · , 0m×rn

]

,

with Yi ∈ R
mi×r, Zi ∈ R

m×ri.

Definition 1 (see [24]): Let f be a convex function. A vector h is called a subgradient of

function f at point X0 ∈ domf if, for any X ∈ domf ,

f(X) ≥ f(X0) + 〈h,X −X0〉. (1)

The set of all subgradients ∂f(X0) is said to be the subdifferential of function f at point X0.

Consider a time-invariant dynamical system

ẋ(t) = φ(x(t)), x(0) = x0, t ≥ 0, (2)

where φ : Rd → R
d is Lipschitz continuous. Given x(t) : [0,∞) → R

d as a trajectory of system

(2), the point z ∈ R
d is a limit point of a solution x(t) if there exists a positive increasing

divergent sequence {ti}
∞
i=1

⊂ R such that z = limi→∞ x(ti). A set M is positively invariant

with respect to (2) if, for every x0 ∈ M,M contains the solution x(t) of (2) for all t > 0

with x(0) = x0. Then we introduce the following definition from [25] and Lemma 1, which are

useful for convergence analysis of algorithms in the least squares case.

Definition 2: A point z is semi-stable if z is Lyapunov stable and there exists an open subset

D0 of D containing z such that, for all initial conditions in D0, the solution of (2) converge to

a Lyapunov stable equilibrium point. Then system (2) is semi-stable with respect to D if every

solution with initial condition in D converges to a Lyapunov stable equilibrium. Moreover, (2)

is said to be globally semi-stable if it is semi-stable with respect to R
d.

Lemma 1 (Theorem 3.1 in [25]): Let D be an open positively invariant set with respect to

(2), V : D → R be a continuously differentiable function, and x(t) be a solution of (2) with
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x(0) ∈ D, contained in a compact subset of D. Assume d
dt
V (x(t)) ≤ 0, for all x ∈ D and

define Z = {x ∈ D : d
dt
V (x) = 0}. If every point in the largest invariant subset M of Z̄ ∩ D

is Lyapunov stable equilibrium, where Z̄ is the closure of Z , then the system (2) is semi-stable

with respect to D.

Consider a time-invariant differential inclusion

ẋ(t) ∈ F(x(t)), x(0) = x0, t ≥ 0, (3)

where F : Rd → B(Rd) is upper-semicontinuous, and the set F(x) is nonempty, compact and

convex for any x, which can guarantee the existence of solutions of (3) [26]. A set M is weakly

(strongly) positively invariant with respect to (3) if, for every x0 ∈ M,M contains a solution

x(t) (all solutions) of (3) for all t > 0 with x(0) = x0. An equilibrium x∗ of (3) satisfies

0d ∈ F(x∗). The definition of semi-stable about (3) [25] is similar to Definition 2. Then we

introduce the following Definition 3 and Lemmas 2 and 3 from [26], [27], which are useful for

convergence analysis of the algorithm in the regularization case.

Definition 3: The set-valued Lie derivative L̃Ff : Rd → B(R) of a locally Lipschitz function

f : Rd → R with respect to F : Rd → B(Rd) at x is defined as

L̃Ff(x) = {a ∈ R : there exists y ∈ F(x)such that

hTy = a, ∀h ∈ ∂f(x)}.
(4)

Remark 1: If f is differentiable at x, then L̃Ff(x) = {∇f(x)Ty : y ∈ F(x)}.

Lemma 2: Let x(t) be a solution of different inclusion (3), and let f : Rn → R be a locally

Lipschitz continuous and regular function [26]. Then d
dt
f(x(t)) exists and d

dt
f(x(t)) ∈ L̃Ff(x)

almost everywhere.

Lemma 3: Suppose that (3) has at least one solution and x∗ is an equilibrium of the (3). Let

f be locally Lipschitz continuous and regular, and satisfy (i) f(x) ≥ 0, f(x) = 0 if and only if

x = x∗; (ii) max L̃Ff(x) ≤ 0. Then x∗ is a Lyapunov stable equilibrium of (3).

Lemma 4 (Theorem 3.1 in [25]): Let D be an open strongly positively invariant set with

respect to (3), V : D → R be a locally Lipschitz continuous and regular function, and x(t) be a

solution of (3) with x(0) ∈ D, contained in a compact subset of D. Assume L̃FV (x) ≤ 0 for all

x ∈ D and define Z = {x ∈ D : 0 ∈ L̃FV (x)}. If every point in the largest weakly positively

invariant subset M of Z̄ ∩ D is a Lyapunov stable equilibrium, where Z̄ is the closure of Z ,

then the system (3) is semi-stable with respect to D.
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III. PROBLEM FORMULATION

In this section, we first formulate our problem, and then introduce some transformations which

will be helpful in the distributed reformulation.

Consider a continuous-time Sylvester equation of the following form

AX +XB = C, (5)

with A ∈ R
m×m, B ∈ R

r×r, C ∈ R
m×r and the unknown variable X ∈ R

m×r. Here we consider

a specific partition for n parts, Left-Row-Right-Column (LRRC) case, to solve the Sylvester

equation: dividing matrix A by row and matrix B by column. Specifically, the partition is

A =











A1

...

An











∈ R
m×m, B =

[

B1, · · · , Bn

]

∈ R
r×r,

with Ai ∈ R
mi×m, Bi ∈ R

r×ri and
∑n

i=1
mi = m,

∑n

i=1
ri = r. If there is a Lyapunov equation

with B = AT , it only needs to divide A by row, naturally. As for matrix C, we can divide it

like A by row or like B by column as required. The treatments for different partitions of C are

similar, then we focus on the partition of C by column

C =
[

C1, · · · , Cn

]

∈ R
m×r, Ci ∈ R

m×ri. (6)

This paper aims to solve two main problems for the Sylvester equation:

(I) Least squares solution and exact solution case: Aim to get a least squares solution or an exact

solution of the Sylvester equation (5) by solving a convex unconstrained optimization problem:

min
X

||AX +XB − C||2F , (7)

which minimizes the squared Frobenius norm of residual matrix.

(II) Regularization case: Aim to solve the equation with penalty requirement to the unknown

variable X by solving a regularized convex unconstrained optimization problem:

min
X

1

2
||AX +XB − C||2F + αg(X), (8)

where α > 0 is a tradeoff between minimizing the squared residual and the penalty term, g(·)

is a general convex function representing the regularization penalty of variables.

About the computation of matrix equations, an immediate idea is to use the Kronecker product

to rewrite (5) as a standard linear algebraic equation (Im ⊗ A + BT ⊗ Ir)vec(X) = vec(C). It
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can be obtained that the solution of (5) for each vec(C) is unique if and only if the matrix

Im ⊗ A + BT ⊗ Ir is nonsingular, which is equivalent to requiring spec(A) ∩ spec(−B) = ∅

[28]. Different from centralized situations, the distributed situation may spoil the information

structures because the sub-blocks of A and B are mixed up for the Kronecker product. Therefore,

inspired by the work about distributed algorithms of the liner algebraic equation [18]–[22], we

have to study a new method, distinguished from the centralized and parallel algorithms, to solve

the Sylvester equation (5) for given partition in a distributed way.

Consider a multi-agent network consisting of n agents, which is described by an undirected

graph G(V, E , AG), where V = {1, . . . , n} is the set of nodes, E ⊂ V × V is the set of edges,

and AG = [ai,j] ∈ R
n×n is the adjacency matrix with ai,j = aj,i > 0 if (i, j) ∈ E and ai,j = 0

otherwise. Denote the neighbor set of agent i as Ni = {j : (i, j) ∈ E , j ∈ V}. The Laplacian

matrix Ln = D − AG , where D ∈ R
n×n is diagonal with Di,i =

∑n

i=1
ai,j .

Assumption 1: The graph G is undirected and connected.

Suppose that each agent knows a row sub-block of A, a column sub-block of B, and a column

sub-block of C, that is, agent i holds Ai, Bi, Ci. As a result, agent i in the network needs to

estimate one common variable X∗, which is a solution for the Sylvester equation and their final

estimates are supposed to achieve consensus, that is, Xi = X∗ for all i ∈ V .

Different from the cases given in [23], to make AX and XB simultaneously distributed

in design for the LRRC case, here we introduce two new variables Y, Z for coordinating the

inconsistency due to the different block partitions of A and B. The following statement shows

the idea.

For the LRRC case of matrices A and B, and C divided as (6), the Sylvester equation (5) is

equivalent to






















AX = Y

XB = C − Z

Y = Z

(9)

where supplementary variables Y and Z have corresponding block structures, Y = col{Y1, . . . , Yn}, Z =

[Z1, · · · , Zn] with Yi ∈ R
mi×r, Zi ∈ R

m×ri .

In the considered multi-agent network, agent i in the network G has knowledge of information

Ai, Bi, Ci and state set (Xi, Yi, Zi), and cooperates with its neighbors to compute Xi through

the exchange of local information.

May 1, 2019 DRAFT
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Remark 2: If C is divided by row like A, then the equivalent form of the Sylvester equation

(5) is AX = C − Z, XB = Y, Z = Y where Z = col{Z1, . . . , Zn}, Y =
[

Y1, · · · , Yn

]

with

Zi ∈ R
mi×r, Yi ∈ R

m×ri . Algorithms and analysis ideas are analogous to the case in (9), so we

will not discuss the case for space limitations.

In order to reformulate the equivalent form (9) as an optimization problem, the idea is to

take one or more residuals of the equations as an objective function and take others as equality

constrains. Unlike the unconstrained optimization problem (7), the reformulated problems are

standard optimization problems with equality constraints. Further, we need to consider the given

distributed situation. Since the coupling equality constraint Y = Z is not separable for each agent,

and consensus constraints Xi = Xj for all i, j ∈ V are hard to deal with directly, following

transformations are necessary to assign each constraint to each agent clearly.

Lemma 5: These two equivalent transformations hold for all i ∈ V .

Y = Z ⇐⇒ ∃{Wi}
n
i=1

, s.t.

[Yi]R − [Zi]C −
n

∑

j=1

ai,j(Wi −Wj) = 0m×r, (10a)

Xi = Xj, ∀j ∈ V ⇐⇒
n

∑

j=1

aij(Xi −Xj) = 0m×r, (10b)

where [ai,j ] is the corresponding adjacency matrix of an undirected and connected graph G,

Wi ∈ R
m×r are introduced to make up for the inconsistencies between [Yi]R and [Zi]C.

P roof : As for (10a), it is trivial that Y = Z holds by summing the right side of (10a)

from i = 1 to i = n. On the other hand, according to the structures of Y and Z, we have

Y =
∑n

i=1
[Yi]R, Z =

∑n

i=1
[Zi]C. Define L = Ln ⊗ Im, where Ln is the Laplacian matrix of

graph G. Therefore, ker(L) = {k1n ⊗ Im : k ∈ R} and Im(L) = ker(L)⊥ =
{

w ∈ R
nm :

∑n

i=1
wi = 0m, w = col{w1, . . . , wn}, wi ∈ R

m, i ∈ V
}

. Because
∑n

i=1
[Yi]R =

∑n

i=1
[Zi]C , the

equation
∑n

i=1
([Yi]R− [Zi]C) = 0m×r infers that every column of col{[Y1]R− [Z1]C, · · · , [Yn]R−

[Zn]C} belongs to Im(L). Thus, there exists W = col{W1, · · · ,Wn} ∈ R
nm×r, such that LW =

col{[Y1]R − [Z1]C, · · · , [Yn]R − [Zn]C}. Then we have (10a).

As for (10b), the equivalence is straightforward, and its proof is omitted here. �

Remark 3: The equality constraint (10a) is a typical coupling constraint, and (10b) is a typical

consensus constraint. The transformations in Lemma 5 are always effective to deal with these

two kinds of constraints.
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In brief, to reformulate the problem clearly, we have already introduced three types of variables,

where their purposes are presented in Table I.

TABLE I

THE PURPOSES OF INTRODUCED VARIABLES

Variable Purpose

Y = col{Y1, · · · , Yn} Yi = AiX , result of AiX stored by sub-row of Y

Z = [Z1, · · · , Zn] Zi = Ci −XBi, result of Ci −XBi stored by sub-column of Z

W = col{W1, · · · ,Wn} (Ln ⊗ Im)W = col{[Y1]R − [Z1]C , · · · , [Yn]R − [Zn]C}

IV. THE CASES OF LEAST SQUARES SOLUTION AND EXACT SOLUTION

A. Least Squares Solution Case

We first consider solving a least squares solution of the Sylvester equation (5) because it may

not have exact solutions. Additionally, since local information is stored by different agents, it is

not clear for each agent whether there are exact solutions. Of course, the proposed method for

a least squares solution still works when there exist exact solutions.

1) Optimization Model: Reformulate (9) as an optimization problem

min
X,Y,Z

1

2
||XB − C + Z||2F

s.t. AX = Y, Y = Z.

(11)

Next, we distribute the information to every agent i and add the consensus constraints Xi = Xj

for all i, j ∈ V . According to Lemma 5, (11) can be rewritten as a distributed optimization

problem

min
X̄,Y,Z,W

1

2

n
∑

i=1

||XiBi − Ci + Zi||
2

F

s.t.

n
∑

j=1

ai,j(Xi −Xj) = 0m×r, AiXi = Yi,

[Yi]R − [Zi]C −
n

∑

j=1

ai,j(Wi −Wj) = 0m×r, ∀i ∈ V,

(12)

with X̄ = col{X1, · · · , Xn},W = col{W1, · · · ,Wn} and Y, Z as in (9). In the optimization prob-

lem (12), Λi ∈ R
m×r,Υi ∈ R

mi×r and Θi ∈ R
m×r, i ∈ V are introduced as Lagrange multipliers

associated with these equality constraints and Λ = col{Λ1, · · · ,Λn},Υ = col{Υ1, · · · ,Υn},Θ =

May 1, 2019 DRAFT
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col{Θ1, · · · ,Θn}. Let (X̄∗, Y ∗, Z∗,W ∗) and (Λ∗,Υ∗,Θ∗) be a pair of primal and dual optimal

points. Then they satisfy the Karush-Kuhn-Tucker (KKT) condition, which leads to a necessary

and sufficient condition for optimality, for all i ∈ V ,










































































0m×r =
∑n

j=1
ai,j(X

∗
i −X∗

j ),

0mi×r = AiX
∗
i − Y ∗

i ,

0m×r = [Y ∗
i ]R − [Z∗

i ]C −
∑n

j=1
ai,j(W

∗
i −W ∗

j ),

0m×r = −(X∗
i Bi − Ci + Z∗

i )B
T
i −

∑n

j=1
ai,j(Λ

∗
i − Λ∗

j)

− AT
i Υ

∗
i ,

0mi×r = Υ∗
i − [Imi

]CΘ
∗
i ,

0m×ri = −(X∗
i Bi − Ci + Z∗

i ) + Θ∗
i [Iri]R,

0m×r =
∑n

j=1
ai,j(Θ

∗
i −Θ∗

j).

(13)

2) Distributed Algorithm: Each agent i in the network knows Ai, Bi, Ci and has its own

state (Xi, Yi, Zi,Wi,Λi,Υi,Θi). Through the exchange of information, agent i can receive par-

tial state information (Xj,Wj ,Θj), j ∈ Ni from its neighbor agents. Then we propose Algo-

rithm 1 as the distributed algorithm for each agent i in the least squares solution case, where

Algorithm 1 Algorithm for the least squares solution case

Xi(0) ∈ R
m×r, Yi(0) ∈ R

mi×r, Zi(0) ∈ R
m×ri ,Wi(0) ∈ R

m×r,Λi(0) ∈ R
m×r,Υi(0) ∈ R

mi×r,Θi(0) ∈

R
m×r, i ∈ V ,







































































































Ẋi(t) = −(Xi(t)Bi − Ci + Zi(t))B
T
i −AT

i (AiXi(t)− Yi(t))

−AT
i Υi(t)−

∑n

j=1
ai,j(Λi(t)− Λj(t))

−
∑n

j=1
ai,j(Xi(t)−Xj(t)),

Ẏi(t) = Υi(t)− [Imi
]CΘi(t) +AiXi(t)− Yi(t),

Żi(t) = −(Xi(t)Bi − Ci + Zi(t)) + Θi(t)[Iri ]R,

Ẇi(t) =
∑n

j=1
ai,j(Θi(t)−Θj(t)),

Λ̇i(t) =
∑n

j=1
ai,j(Xi(t)−Xj(t)),

Υ̇i(t) = AiXi(t)− Yi(t),

Θ̇i(t) = [Yi(t)]R − [Zi(t)]C −
∑n

j=1
ai,j(Wi(t)−Wj(t))

−
∑n

j=1
ai,j(Θi(t)−Θj(t)).

(14)

(Xi(t), Yi(t), Zi(t),Wi(t)) and (Λi(t),Υi(t),Θi(t)) are the estimates of solutions to problem (12)

and the estimates of Lagrange multipliers by agent i at time t, respectively. Algorithm 1 can be
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viewed as the saddle-point dynamics of an augmented Lagrangian function Ll, that is, for all

i ∈ V,

Φ̇i = −∇Φi
Ll, when Φi = Xi, Yi, Zi or Wi,

Ψ̇i = ∇Ψi
Ll, when Ψi = Λi, Υi, or Θi,

where Ll is defined in (15) and the last three terms are augmented terms.

Ll =
1

2

n
∑

i=1

||XiBi − Ci + Zi||
2

F +

n
∑

i=1

〈Λi,

n
∑

j=1

ai,j(Xi −Xj)〉F +

n
∑

i=1

〈Υi, AiXi − Yi〉F

+
n

∑

i=1

〈Θi, [Yi]R − [Zi]C −
n

∑

j=1

ai,j(Wi −Wj)〉F −
1

2

n
∑

i=1

〈Θi,

n
∑

j=1

ai,j(Θi −Θj)〉F

+
1

2

n
∑

i=1

〈Xi,

n
∑

j=1

ai,j(Xi −Xj)〉F +
1

2

n
∑

i=1

||AiXi − Yi||
2

F

Lemma 6: Under Assumption 1, let P ∗
l = col{X̄∗, Y ∗, Z∗,W ∗,Λ∗, Υ∗,Θ∗}. Then (X̄∗, Y ∗, Z∗,W ∗)

is an optimal solution of problem (12) if and only if there exist Λ∗ ∈ R
mn×r,Υ∗ ∈ R

m×r, and

Θ∗ ∈ R
mn×r, such that P ∗

l is an equilibrium of system (14).

This lemma holds obviously because of the KKT condition (13).

Denote Pl = col{X̄, Y, Z,W,Λ,Υ,Θ}. The following result shows main convergence proper-

ties of Algorithm 1.

Theorem 1: Under Assumption 1, the following hold with Algorithm 1.

(i) Every equilibrium of the system (14) is Lyapunov stable and every solution is bounded;

(ii) The system (14) is globally semi-stable. Moreover, the solution Pl(t) with initial condition

Pl(0) converges to an equilibrium of (14) exponentially;

(iii) For every agent i, the limit of its estimation limt→∞Xi(t) = X∗ is a least squares solution

of the Sylvester equation (5).

Its proof is in Subsection IV-C.

B. Exact Solution Case

In the case when there exist exact solutions of the Sylvester equation (5), we can provide a

simplified algorithm with some conversions.

Assumption 2: The Sylvester equation (5) has at least one exact solution.

May 1, 2019 DRAFT



JOURNAL OF LATEX CLASS FILES 12

1) Optimization Model: Let Assumptions 1 and 2 hold. The set {(X, Y, Z) : AX = Y,XB =

C−Z, Y = Z} has at least one element. In this case, we can formulate the optimization problem

(11) as follows:

min
X,Y,Z

1

2
||XB − C + Z||2F +

1

2
||AX − Y ||2F

s.t. Y = Z.

(15)

Equivalently, the problems (11) and (15) have the same solution, because (11) can reach the

optimal value 0. Rewrite the objective function as the sum of each agent’s objective function;

then 1

2

∑n

i=1
||XiBi − Ci + Zi||2F + 1

2

∑n

i=1
||AiXi − Yi||2F can reach the minimum 0. In fact,

1

2

n
∑

i=1

||XiBi − Ci + Zi||
2

F +
1

2

n
∑

i=1

||AiXi − Yi||
2

F

≤
1

2

n
∑

i=1

||XiBi − Ci + Zi||
2

F +
1

2

n
∑

i=1

||AiXi − Yi||
2

F

+
1

2

n
∑

i=1

〈
n

∑

j=1

ai,j(Xi −Xj), Xi〉F .

(16)

When the right-hand side term reaches 0, Xi = Xj must hold for all i, j ∈ V . If the left-hand

side term reaches 0 with Xi = Xj as an exact solution of the original equation, the right-hand

side term equals 0 as well. Clearly, we can use the right-hand side of (16) as the objective

function to replace consensus constraints Xi = Xj. Then the following distributed optimization

problem is formulated:

min
X̄,Y,Z,W

1

2

n
∑

i=1

||XiBi − Ci + Zi||
2

F +
1

2

n
∑

i=1

||AiXi − Yi||
2

F

+
1

2

n
∑

i=1

〈
n

∑

j=1

ai,j(Xi −Xj), Xi〉F

s.t. [Yi]R − [Zi]C −
n

∑

j=1

ai,j(Wi −Wj) = 0m×r, ∀i ∈ V.

(17)

Remark 4: Denote an optimal point for problem (17) by (X̄∗, Y ∗, Z∗,W ∗). According to

Assumption 2, the objective function can reach 0, that is, X∗
i Bi −Ci +Z∗

i = 0, AiX
∗
i − Y ∗

i = 0

and X∗
i = X∗

j , where X∗
i = X∗

j = X∗ is an exact solution of (5) and (X∗, Y ∗, Z∗) is an exact

solution of (9).

In the optimization problem (17), Θi ∈ R
m×r is introduced as the Lagrange multiplier

associated with the i-th equality constraint and Θ = col{Θ1, · · · ,Θn}. Let (X̄∗, Y ∗, Z∗,W ∗)
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and Θ∗ be a pair of primal and dual optimal points. Then they satisfy the corresponding KKT

condition (18), which proposes necessary and sufficient conditions for the optimality, for all

i ∈ V,


















































0m×r = [Y ∗
i ]R − [Z∗

i ]C −
∑n

j=1
ai,j(W

∗
i −W ∗

j ),

0m×r = −(X∗
i Bi − Ci + Z∗

i )B
T
i −

∑n

j=1
ai,j(Λ

∗
i − Λ∗

j)

−
∑n

j=1
ai,j(X

∗
i −X∗

j ),

0mi×r = (AiX
∗
i − Y ∗

i )− [Imi
]CΘ

∗
i ,

0m×ri = −(X∗
i Bi − Ci + Z∗

i ) + Θ∗
i [Iri]R,

0m×r =
∑n

j=1
ai,j(Θ

∗
i −Θ∗

j).

(18)

2) Distributed Algorithm: Each agent i in the network knows Ai, Bi, Ci and has its own

state (Xi, Yi, Zi,Wi,Θi). Through the exchange of information, agent i can receive partial state

information (Xj,Wj ,Θj), j ∈ Ni from its neighbor agents. Then we propose Algorithm 2, using

the similar idea of Algorithm 1, as the distributed algorithm for each agent i in the exact solution

case, where (Xi(t), Yi(t), Zi(t),Wi(t)) and Θi(t) are the estimates of solutions to problem (17)

Algorithm 2 Algorithm for the exact solution case

Xi(0) ∈ R
m×r, Yi(0) ∈ R

mi×r, Zi(0) ∈ R
m×ri ,Wi(0) ∈ R

m×r,Θi(0) ∈ R
m×r, i ∈ V ,



































































Ẋi(t) = − (Xi(t)Bi − Ci + Zi(t))B
T
i −AT

i (AiXi(t)− Yi(t))

−
∑n

j=1
ai,j(Xi(t)−Xj(t)),

Ẏi(t) = (AiXi(t)− Yi(t))− [Imi
]CΘi(t),

Żi(t) = − (Xi(t)Bi − Ci + Zi(t)) + Θi(t)[Iri ]R,

Ẇi(t) =
∑n

j=1
ai,j(Θi(t)−Θj(t)),

Θ̇i(t) = [Yi(t)]R − [Zi(t)]C −
∑n

j=1
ai,j(Wi(t)−Wj(t))

−
∑n

j=1
ai,j(Θi(t)−Θj(t)).

(19)

and the estimate of Lagrange multiplier by agent i at time t, respectively.

Remark 5: Compared with Algorithm 1, the state variables that every agent needs to calculate in

Algorithm 2 have changed from (Xi(t), Yi(t), Zi(t),Wi(t),Λi(t), Υi(t),Θi(t)) to (Xi(t), Yi(t), Zi(t),

Wi(t),Θi(t)). On the premise of exact solutions, the algorithm dimension has been reduced to

a certain extent.

Lemma 7: Under Assumptions 1 and 2, let P ∗
e = col{X̄∗, Y ∗, Z∗, W ∗,Θ∗}. Then (X̄∗, Y ∗, Z∗,W ∗)

is an optimal solution of problem (17) if and only if there exists Θ∗ ∈ R
mn×r such that P ∗

e is

an equilibrium of system (19).
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This lemma can be easily proved by the KKT optimality condition (18).

Denote Pe = col{X̄, Y, Z,W,Θ}. The following result shows main convergence properties of

Algorithm 2.

Theorem 2: Under Assumptions 1 and 2, the following hold with Algorithm 2.

(i) Every equilibrium of the system (19) is Lyapunov stable and every solution is bounded;

(ii) The system (19) is globally semi-stable. Moreover, the solution Pe(t) with initial condition

Pe(0) converges to an equilibrium of (19) exponentially;

(iii) For every agent i, the limit of its estimation limt→∞ Xi(t) = X∗ is an exact solution of

the Sylvester equation (5).

Its explanation is in the next subsection.

C. Proofs of Theorems 1 and 2

The Proof of Theorem 1: (i) First, note that P ∗
l = col{X̄∗, Y ∗, Z∗,W ∗,Λ∗,Υ∗, Θ∗} is an

equilibrium of (14), which satisfies the KKT condition (13). Define a positive definite function:

Vl(Pl) :=
1

2
||Pl − P ∗

l ||
2

F . By using Algorithm 1 and the KKT condition (13), we calculate the

derivative of Vl with respect to time t and obtain

d

dt
Vl =−

n
∑

i=1

||(Xi −X∗
i )Bi + (Zi − Z∗

i )||
2

F

−
n

∑

i=1

||Ai(Xi −X∗
i )− (Yi − Y ∗

i )||
2

F

−
1

2

n
∑

i=1

n
∑

j=1

ai,j(||Xi −Xj ||
2

F + ||Θi −Θj||
2

F ) ≤ 0.

Because Vl is positive definite and d
dt
Vl ≤ 0, the equilibrium P ∗

l of (14) is Lyapunov stable.

Moreover, because of Vl → ∞ as ||Pl −P ∗
l ||F → ∞, each solution with given initial conditions

of (14) is bounded for all t ≥ 0 (Theorem 4 in [29]).

(ii) With the condition of d
dt
Vl = 0, we define the set Rl = {Pl :

d
dt
Vl = 0} = {Pl : Xi =

Xj,Θi = Θj, (Xi − X∗
i )Bi = −(Zi − Z∗

i ), Ai(Xi − X∗
i ) = Yi − Y ∗

i }. Let Ml be the largest

invariant subset of R̄l. It follows from the LaSalle’s invariance principle [29] that Pl(t) =

col{X̄(t), Y (t), Z(t),W (t),Λ(t),Υ(t),Θ(t)} → Ml, as t → ∞ and Ml is positively invariant.

Assume that P̂l(t) ∈ Ml for all t ≥ 0 is a trajectory of (14). For all i, j ∈ V , P̂l(0) ∈ Ml,

X̂i(t) = X̂j(t), Θ̂i(t) = Θ̂j(t), (X̂i(t)−X̂∗
i )Bi = −(Ẑi(t)−Ẑ∗

i ), and Ai(X̂i(t)−X̂∗
i ) = Ŷi(t)−Ŷ ∗

i .

Then we have
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a)
˙̂
Λi(t) = 0m×r because X̂i(t) = X̂j(t).

b)
˙̂
Wi(t) = 0m×r because Θ̂i(t) = Θ̂j(t).

c) Since Ai(X̂i(t) − X̂∗
i ) = Ŷi(t) − Ŷ ∗

i and AiX̂
∗
i = Ŷ ∗

i , there hold AiX̂i(t) = Ŷi(t) and

˙̂
Υi(t) = 0mi×r.

d)
˙̂
Xi(t) = −(X̂i(t)Bi−Ci+Ẑi(t))B

T
i −

∑n

j=1
ai,j(Λ̂i(t)−Λ̂j(t))−AT

i Υ̂i(t)−
∑n

j=1
ai,j(X̂i(t)−

X̂j(t))−AT
i (AiX̂i(t)− Ŷi(t)) = −(X̂∗

i Bi−Ci+ Ẑ∗
i )B

T
i −

∑n

j=1
(Λ̂i(0)− Λ̂j(0))−AT

i Υ̂i(0)

is a constant matrix. If
˙̂
Xi(t) 6= 0m×r, X̂i(t) will be unbound, which is a contradiction from

the boundedness in (i), so
˙̂
Xi(t) = 0m×r.

e) Note that Ŷi(t) = AiX̂i(t) = AiX̂i(0) is a constant matrix. Then
˙̂
Yi(t) = 0mi×r.

f) Due to (X̂i(t)− X̂∗
i )Bi = −(Ẑi(t)− Ẑ∗

i ), and
˙̂
Xi(t) = 0m×r, Ẑi(t) = Ẑ∗

i − (X̂i(0)− X̂∗
i )Bi

is a constant matrix. Because of the boundedness of the solution in (i),
˙̂
Zi(t) = 0m×ri.

g) Recall that
˙̂
Θi(t) in (14) is a constant matrix because

˙̂
Yi(t) = 0mi×r,

˙̂
Zi(t) = 0m×ri,

˙̂
Wi(t) =

0m×ri . Then
˙̂
Θi(t) = 0m×r.

To sum up, Ml ⊂ {Pl(t) : Ẋi(t) = 0m×r, Ẏi(t) = 0mi×r, Żi(t) = 0m×ri, Ẇi(t) = 0m×r, Λ̇i(t) =

0m×r, Υ̇i(t) = 0mi×r, Θ̇i(t) = 0m×r} and any point in Ml is an equilibrium of (14), which is

Lyapunov stable. In view of Lemma 1 and the fact that every solution is bounded, (14) is globally

semi-stable. In other words, for any initial conditions Pl(0), with Algorithm 1 the solution Pl(t)

converges to a Lyapunov stable equilibrium of (14).

If, for any given initial conditions, the solution of a linear time-invariant system converges,

then it converges exponentially [23]. In fact, (14) is a linear time-invariant system, hence, every

solution for given initial conditions of system (14) converges to an equilibrium exponentially.

(iii) Evidently, due to Lemma 6, for given initial value Pl(0), every trajectory (X̄(t), Y (t), Z(t),W (t))

converges to an equilibrium which is an optimal solution of problem (12). Thus, X∗
i = X∗

j , for

all i, j ∈ V from the equality constraints. In other word, for every agent i, the limit of its

estimation limt→∞ Xi(t) = X∗ is a least squares solution of the Sylvester equation (5). �

As for Theorem 2, we define a similar Lyapunov function Ve(Pe) :=
1

2
||Pe − P ∗

e ||
2

F , whose

derivative with respect to time t satisfying d
dt
Ve ≤ 0. Then Theorem 2 can be proved by using

the analogical analytical method about the proof of Theorem 1. More details are omitted here.

V. REGULARIZATION CASE

The regularization technique, such as Tikhonov regularization and LASSO [30], has been

widely applied to statistics and machine learning to deal with practical problems. Similar ideas
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can also be applied to the study of matrices, whose regularization also has many applications,

such as multi-task learning, matrix completion and multivariate regression. Matrix regularization

penalty functions are typically chosen to be convex. Specifically, the l1-norm can be selected to

enforce sparsity; the l2,1-norm can be selected to enforce structured sparsity in feature selection;

and the nuclear norm can be selected to enforce low rank approximation properties [31]–[35].

For the problem (8), we present the following regularization distributed optimization problem

with a constant α > 0,

min
X̄,Y,Z,W

1

2

n
∑

i=1

||XiBi − Ci + Zi||
2

F + α

n
∑

i=1

g(Xi)

s.t.

n
∑

j=1

ai,j(Xi −Xj) = 0m×r, AiXi = Yi,

[Yi]R − [Zi]C −
n

∑

j=1

ai,j(Wi −Wj) = 0m×r, ∀i ∈ V.

(20)

Then we introduce Λi ∈ R
m×r,Υi ∈ R

mi×r and Θi ∈ R
m×r, i ∈ V as the Lagrange multipliers

associated with these equality constraints and Λ = col{Λ1, · · · ,Λn}, Υ = col{Υ1, · · · ,Υn}, Θ =

col{Θ1, · · · ,Θn}. Let (X̄∗, Y ∗, Z∗,W ∗) and (Λ∗,Υ∗,Θ∗) be a pair of primal and dual optimal

points. They satisfy the KKT condition, which leads to a necessary and sufficient condition for

optimality, for all i ∈ V ,










































































0m×r =
∑n

j=1
ai,j(X

∗
i −X∗

j ),

0mi×r = AiX
∗
i − Y ∗

i ,

0m×r = [Y ∗
i ]R − [Z∗

i ]C −
∑n

j=1
ai,j(W

∗
i −W ∗

j ),

0m×r ∈ −(X∗
i Bi − Ci + Z∗

i )B
T
i − α∂g(Xi)

−
∑n

j=1
ai,j(Λ

∗
i − Λ∗

j)−AT
i Υ

∗
i ,

0mi×r = Υ∗
i − [Imi

]CΘ
∗
i + AiX

∗
i − Y ∗

i ,

0m×ri = −(X∗
i Bi − Ci + Z∗

i ) + Θ∗
i [Iri]R,

0m×r =
∑n

j=1
ai,j(Θ

∗
i −Θ∗

j ).

(21)

The fourth formula in (21) means that there exists h∗
i ∈ ∂g(X∗

i ) such that

0m×r =− (X∗
i Bi − Ci + Z∗

i )B
T
i − αh∗

i

−
n

∑

j=1

ai,j(Λ
∗
i − Λ∗

j)− AT
i Υ

∗
i .

(22)

Note that each agent i in the network can get access to the information about Ai, Bi, Ci and

has its own state (Ẋi, Xi, Yi, Zi,Wi,Λi,Υi,Θi). Through the exchange of information, agent i
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can receive partial state information (Ẋj, Xj,Wj ,Θj), j ∈ Ni from its neighbor agents. Then

we propose Algorithm 3 as the distributed algorithm for each agent i in the regularization case,

where (Xi(t), Yi(t), Zi(t),Wi(t)) and (Λi(t),Υi(t),Θi(t)) are estimates of solutions to problem

Algorithm 3 Algorithm for the regularization case

Xi(0) ∈ R
m×r, Yi(0) ∈ R

mi×r, Zi(0) ∈ R
m×ri ,Wi(0) ∈ R

m×r,Λi(0) ∈ R
m×r,Υi(0) ∈ R

mi×r,Θi(0) ∈

R
m×r, i ∈ V ,


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


































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





Ẋi(t) ∈ − (Xi(t)Bi − Ci + Zi(t))B
T
i − α∂g(Xi)−AT

i Υi(t)

−
∑n

j=1
ai,j(Λi(t)− Λj(t))−AT

i (AiXi(t)− Yi(t))

−
∑n

j=1
ai,j(Xi(t)−Xj(t)),

Ẏi(t) = Υi(t)− [Imi
]CΘi(t) +Ai

(

Xi(t)− Ẋi(t)
)

− Yi(t),

Żi(t) = −
((

Xi(t)− Ẋi(t)
)

Bi − Ci + Zi(t)
)

+Θi(t)[Iri ]R,

Ẇi(t) =
∑n

j=1
ai,j (Θi(t)−Θj(t)) ,

Λ̇i(t) =
∑n

j=1
ai,j

(

Xi(t)−Xj(t) + Ẋi(t)− Ẋj(t)
)

,

Υ̇i(t) = Ai

(

Xi(t) + Ẋi(t)
)

− Yi(t),

Θ̇i(t) = [Yi(t)]R − [Zi(t)]C −
∑n

j=1
ai,j (Wi(t)−Wj(t))

−
∑n

j=1
ai,j(Θi(t)−Θj(t)).

(23)

(20) and estimates of Lagrange multipliers by agent i at time t, respectively. Algorithm 3 is

inspired by the saddle-point dynamics and derivative feedback. Derivative feedback is a useful

method to make the algorithm convergent [36], [37].

Lemma 8: Under Assumption 1, let P ∗
r = col{X̄∗, Y ∗, Z∗,W ∗,Λ∗, Υ∗,Θ∗}. Then (X̄∗, Y ∗, Z∗,W ∗)

is an optimal solution of problem (20) if and only if there exist Λ∗ ∈ R
mn×r,Υ∗ ∈ R

m×r, and

Θ∗ ∈ R
mn×r, such that P ∗

r is an equilibrium of system (23).

Obviously, Lemma 8 can be easily proved by the KKT condition (21).

Denote Ẋi(t) ∈ FXi
, Pr = col{X̄, Y, Z,W,Λ,Υ,Θ} and Ṗr ∈ FPr

(Pr(t)). Let P ∗
r be an

equilibrium of system (23). The next result shows main convergence properties of Algorithm 3.

Theorem 3: Under Assumption 1, the following hold with Algorithm 3.

(i) Every equilibrium of the system (23) is Lyapunov stable and every solution is bounded;

(ii) The system (23) is globally semi-stable.

(iii) For every agent i, the limit of its estimation limt→∞Xi(t) = X∗ is an optimal solution of

the problem (8) based on the Sylvester equation (5).

The proof of Theorem 3 follows some statements. According to Lemma 2 and the convexity

of g, d
dt
g(Xi(t)) ∈ L̃FXi

g, that is d
dt
g(Xi(t)) = 〈hi, Ẋi〉F , for all hi ∈ ∂g(Xi). Because g(·) is a
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convex function, for any h∗
i ∈ ∂g(X∗

i ) and any hi ∈ ∂g(Xi), there holds

〈hi − h∗
i , Xi −X∗

i 〉F ≥ 0, ∀i ∈ V. (24)

Define a scalar function

V1 :=
r

∑

i=1

(αg(Xi)− αg(X∗
i )− α〈h∗

i , Xi −X∗
i 〉F )

+
1

4

r
∑

i=1

r
∑

j=1

ai,j||Xi −Xj ||
2

F ,

where h∗
i satisfies (22). Then V1 is nonnegative. Define a scalar function Vr(Pr) := V1 + V2,

where

V2 :=
1

2
||Pr − P ∗

r ||
2

F +
1

2

r
∑

i=1

||Ai(Xi −X∗
i )||

2

F

+
1

2

r
∑

i=1

||(Xi −X∗
i )Bi||

2

F .

Then the function Vr has the following properties:

(a) Vr(P
∗
r ) = 0, Vr(Pr) > 0 for all Pr 6= P ∗

r ; V → ∞ as ||Pr − P ∗
r ||F → ∞.

(b) d
dt
Vr(Pr(t)) ∈ L̃FPr

Vr(Pr) = {∇V Ty : y ∈ FPr
(Pr)}.

Next, it is time to prove Theorem 3.

The Proof of Theorem 3: (i) Note that P ∗
r = col{X̄∗, Y ∗, Z∗,W ∗,Λ∗,Υ∗,Θ∗} is an equilib-

rium of (23). First, we calculate d
dt
V1(Pr(t)), for hi ∈ ∂g(Xi), denote Ẋi = − (XiBi − Fi + Zi)B

T
i −

αHi(Xi)−
∑n

j=1
ai,j(Λi − Λj)− AT

i Υi −
∑n

j=1
ai,j(Xi −Xj)− AT

i (AiXi − Yi) , then

d

dt
V1 =

r
∑

i=1

〈αHi(Xi)− αh∗
i +

r
∑

j=1

ai,j(Xi −Xj), Ẋi〉F

=−
r

∑

i=1

〈Ẋi, Ẋi〉F −
r

∑

i=1

〈(XiBi − Fi + Zi)B
T
i +

r
∑

j=1

ai,j(Λi

− Λj) + AT
i Υi + AT

i (AiXi − Yi) + αh∗
i , Ẋi〉F .

Denote the second term in d
dt
V1 by β With the help of the definition of h∗

i , β can be rewritten as

β = −
∑n

i=1
〈(Xi−X∗

i )BiB
T
i , Ẋi〉F −

∑n

i=1
〈(Zi−Z∗

i )B
T
i , Ẋi〉F −

∑n

i=1

∑n

j=1
ai,j〈Λi−Λ∗

i , Ẋi−

Ẋj〉F −
∑n

i=1
〈AT

i (Υi −Υ∗
i ), Ẋi〉F −

∑n

i=1
〈AT

i (Ai(Xi −X∗
i ), Ẋi〉F +

∑n

i=1
〈AT

i (Yi − Y ∗
i ), Ẋi〉F .
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Next, we calculate d
dt
V2. Then, from Vr = V1 + V2, we have the derivative of Vr with respect to

time t,

d

dt
Vr = −

n
∑

i=1

||(Xi −X∗
i )Bi + (Zi − Z∗

i )||
2

F

−
n

∑

i=1

||Ai(Xi −X∗
i )− (Yi − Y ∗

i )||
2

F

−
1

2

n
∑

i=1

n
∑

j=1

ai,j||Xi −Xj||
2

F −
1

2

n
∑

i=1

n
∑

j=1

ai,j ||Θi −Θj||
2

F

−
n

∑

i=1

||Ẋi||
2

F − α〈Xi −X∗
i , hi − h∗

i 〉F ≤ 0.

Thus, every element in L̃FPr
Vr is nonpositive; that is max L̃FPr

V ≤ 0. As a result, from the

properties of Vr and Lemma 3, the equilibrium P ∗
r is Lyapunov stable. Moreover, because Vr

is radially unbounded, each solution with given initial conditions of system (23) is bounded for

all t ≥ 0.

(ii) Define the set Rr = {Pr : d
dt
Vr = 0} = {Pr : Ẋi = 0, Xi = Xj ,Θi = Θj, (Xi − X∗

i )Bi =

−(Zi−Z∗
i ), Ai(Xi−X∗

i ) = Yi−Y ∗
i , 〈Xi−X∗

i , hi−h∗
i 〉F = 0} ⊂ {Pr : Ẋi = 0, Xi = Xj ,Θi =

Θj, (Xi−X∗
i )Bi = −(Zi−Z∗

i ), Ai(Xi−X∗
i ) = Yi−Y ∗

i }. It follows from the invariant principle

of the nonsmooth system [27], [38] that Pr(t) = col{X̄(t), Y (t), Z(t),W (t),Λ(t),Υ(t),Θ(t)} →

Mr, as t → ∞ and Mr is the largest weakly positively invariant subset of R̄r.

Assume that P̂r(t) ∈ Mr for all t ≥ 0 is a trajectory of (23). Then we have

a)
˙̂
Xi(t) = 0m×r.

b)
˙̂
Λi(t) = 0m×r, because X̂i(t) = X̂j(t) and

˙̂
Xi(t) = 0m×r .

c)
˙̂
Wi(t) = 0m×r, because Θ̂i(t) = Θ̂j(t).

d) Since
˙̂
Xi(t) = 0, and AiX̂i(t) = Ŷi(t) due to Ai(X̂i(t)−X̂∗

i ) = Ŷi(t)− Ŷ ∗
i and AiX̂

∗
i = Ŷ ∗

i ,

there holds
˙̂
Υi(t) = 0mi×r.

e) Note that Ŷi(t) = AiX̂i(t) = AiX̂i(0) is a constant matrix.
˙̂
Yi(t) = 0mi×r.

f) Due to (X̂i(t)− X̂∗
i )Bi = −(Ẑi(t)− Ẑ∗

i ), and
˙̂
Xi(t) = 0m×r, Ẑi(t) = Ẑ∗

i − (X̂i(0)− X̂∗
i )Bi

is a constant matrix. Because of the boundedness of the solution in (i),
˙̂
Zi(t) = 0m×ri.

g) Recall that
˙̂
Θi(t) in (14) is a constant matrix because

˙̂
Yi(t) = 0mi×r,

˙̂
Zi(t) = 0m×ri,

˙̂
Wi(t) =

0m×ri . Then
˙̂
Θi(t) = 0m×r.

To sum up, Mr ⊂ {Pr(t) : Ẋi(t) = 0m×r, Ẏi(t) = 0mi×r, Żi(t) = 0m×ri , Ẇi(t) = 0m×r, Λ̇i(t) =

0m×r, Υ̇i(t) = 0mi×r, Θ̇i(t) = 0m×r}. That is, any point in Mr is an equilibrium of (23), which
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is Lyapunov stable. In view of Lemma 4 and the fact that every solution is bounded, this system

is globally semi-stable. In other words, for any initial value Pr(0), with Algorithm 3 the solution

Pr(t) converges to a Lyapunov stable equilibrium of (23).

(iii) Evidently, due to Lemma 8, for given initial value Pr(0), every trajectory (X̄(t), Y (t), Z(t),W (t))

converges to an equilibrium, which is an optimal solution of problem (20). Thus, X∗
i = X∗

j for

all i, j ∈ V. Furthermore, the conclusion follows. �

VI. DISCUSSIONS AND NUMERICAL SIMULATIONS

In this section, we first give a brief comparison for three cases in Table II, and then give three

examples for illustration of the validity of algorithms and theorems. Denote

F1 =
1

2

∑n

i=1
||XiBi − Ci + Zi||2F ,

F2 =
1

2

∑n

i=1
||AiXi − Yi||2F ,

F3 =
1

2

∑n

i=1
〈
∑n

j=1
ai,j(Xi −Xj), Xi〉F ,

I :
∑n

j=1
ai,j(Xi −Xj) = 0m×r, II : AiXi = Yi,

III : [Yi]R − [Zi]C −
∑n

j=1
ai,j(Wi −Wj) = 0m×r.

TABLE II

THE COMPARISON OF THE THREE CASES

Least Squares Case Exact Solution Case Regularization Case

Objective Function F1 F1 + F2 + F3 F1 + α
∑n

i=1
g(Xi)

Constraints I, II, III III I, II, III

Primal Variables Xi, Yi, Zi,Wi Xi, Yi, Zi,Wi Xi, Yi, Zi,Wi

Dual Variables Λi,Υi,Θi Θi Λi,Υi,Θi

Derivative Feedback - - Ẋi

Exchange Status Xi,Wi,Θi Xi,Wi,Θi Ẋi, Xi,Wi,Θi

Convergence of Xi Xi

exponentially
−−−−−−−→ X∗ Xi

exponentially
−−−−−−−→ X∗ Xi → X∗

Example 1: Consider a 8-node network in a label set V = {1, · · · , 8}, whose interactions form

an undirected complete graph (which has E = {(i, j), ∀i, j ∈ V}). There is a Sylvester equation

that has an exact solution: AX +XB = C,A,B, C ∈ R
8×8. Select a random initial value and
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appropriate ai,j > 0, and plot the estimations for the first row of Xi over time in Fig. 1 using

Algorithm 1. As a reference, the first row of the exact solution X∗ is

X∗(1, :) = [0.5183, 0.9633, 0.2613, 0.1600,

0.6670, 0.2552, 0.1219, 0.4817].

Then Fig. 1 shows that the trajectories of the first row of Xi converge to X∗(1, :). In fact, we can

also use Algorithm 2 to solve this equation. The results show that both two algorithms derive

the solutions that converge to the exact solution. Denote the error of all estimations E(t) =

1

n

∑n

i=1
||Xi−X∗||2F . Then we plot the evolution of log(E(t)) in Fig. 2, using Algorithms 1 and

2, respectively. Fig. 2 verifies the exponentially convergence of proposed distributed algorithms,

which is consistent with the aforementioned theorems.

0 100 200 300 400 500
-1

-0.5

0

0.5

1

1.5

2

Fig. 1. The estimations of all Xi(1, :) over time using Algorithm 1.

Example 2: Consider a regularization problem for the Sylvester equation AX + XB =

C,A,B, C ∈ R
20×20 over a 10-node network whose interactions form an undirected complete

graph. We assign two rows of A and two columns of B and C to each agent and select the

regularization penalty function as g(X) := |X|1 =
∑

i,j |Xij |. l1-norm of a vector is usually
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Algorithm 1
Algorithm 2

Fig. 2. The evolution of log(E(t)) using Algorithms 1 and 2, respectively.

used to be a regularization term to get a sparse solution; similarly, we denote the sum of the

absolute value of each entry of a matrix by the norm |X|1. Choose h(X) as a subgradient of

g(X), h(X) ∈ ∂g(X), X ∈ R
m×r and it satisfies

h(X) ∈ R
m×r, [h(X)]ij =























1, if Xij > 0,

0, if Xij = 0,

−1 if Xij < 0.

Our aim is to obtain a solution with smaller | · |1. With α = 1, we compare the | · |1 in Fig.

3 between the exact solution and the solution trajectories by Algorithm 3, and plot the error

of consensus 1

n

∑n

i=1

∑n

j=1
‖Xi −Xj‖2F in Fig. 4. Figs. 3 and 4 show that the solutions for all

agents can reach a consensus and | · |1 of the solution has been reduced relatively.
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Fig. 3. The evolution of |X∗|1 and all |Xi(t)|1, i ∈ {1, · · · , 10}.

VII. CONCLUSIONS

This paper has proposed distributed algorithms over the multi-agent network with the help

of convex optimization for solving the Sylvester equation in different cases, the least squares

solution (the exact solution) case and the (nonsmooth) regularization case. In the LRRC partition

case, each agent only has knowledge of some rows of A and some corresponding columns of B

and C, and holds its own state set with exchanging partial state information among its neighbors

for achieving the consensus solution. Both theoretical proofs and numerical simulations have

been presented to verify the convergence of proposed distributed algorithms.
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