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Abstract

The recently developed Distributed Block Proximal Method, for solving stochastic big-data convex
optimization problems, is studied in this paper under the assumption of constant stepsizes and strongly
convex (possibly non-smooth) local objective functions. This class of problems arises in many learning
and classification problems in which, for example, strongly-convex regularizing functions are included
in the objective function, the decision variable is extremely high dimensional, and large datasets are
employed. The algorithm produces local estimates by means of block-wise updates and communication
among the agents. The expected distance from the (global) optimum, in terms of cost value, is shown
to decay linearly to a constant value which is proportional to the selected local stepsizes. A numerical
example involving a classification problem corroborates the theoretical results.

1 Introduction

In this paper, we address in a distributed way stochastic big-data convex optimization problems involving
strongly convex (possibly nonsmooth) local objective functions, by means of the Distributed Block Proximal
Method [1, 2]. Problems with this structure naturally arise in many learning and control problems in
which the decision variable is extremely high dimensional and large datasets are employed. Relevant
examples include: direct policy search in reinforcement learning [3], dynamic problems involving stochastic
functions generated from collected samples to be processed online [4], learning problems involving massive
datasets in which sample average approximation techniques are used [5], and settings in which only noisy
subgradients of the objective functions can be computed at each time instant [6].

Distributed algorithms for solving stochastic problems have been widely studied [6–11]. On the other
side, distributed algorithms for big-data problems through block communication have started to appear
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only recently [12–16]. The Distributed Block Proximal Method solves problems that can be together
non-smooth, stochastic and big-data, thus distinguishing from the above works (see [1] for a comprehensive
literature review). This algorithm evolves through block-wise communication and updates (involving
subgradients of the local functions and proximal mappings induced by some distance genereting functions)
and it has been already shown to achieve a sublinear convergence rate on problems with non-smooth
convex objective functions. The contribution of this paper is to extend this result by showing that, under
strongly convex (possibly non-smooth) local objective functions and constant stepsizes, the Distributed
Block Proximal Method exhibits a linear convergence rate (with a constant error term) to the optimal
cost in expected value. The main challenge in the linear-rate analysis relies in the block-wise nature of
the algorithm.

2 Set-up and preliminaries

2.1 Notation, definitions and preliminary results

Given a vector x ∈ Rn, we denote by x` the `-th block of x, i.e., given a partition of the identity matrix
I = [U1, . . . , UB], with U` ∈ Rn×n` for all ` and

∑B
`=1 n` = n, it holds x =

∑B
`=1 U`x` and x` = (U`)

>x.
In general, given a vector xi ∈ Rn, we denote by xi,` the `-th block of xi. Given a matrix A, we denote by
aij the element of A located at row i and column j. Given two vectors a, b ∈ Rn we denote by 〈a, b〉 their
scalar product. Given a discrete random variable r ∈ {1, . . . , R}, we denote by P (r = r̄) the probability
of r to be equal to r̄ for all r̄ ∈ {1, . . . , R}. Given a nonsmooth function f , we denote by ∂f(x) its
subdifferential at x.

The following preliminary result will be used in the paper.

Lemma 1. Given any two scalars δ 6= γ 6= 1, it holds that

(i)
∑t
s=r δ

s = δr−δt+1

1−δ

(ii)
∑t
s=0 δ

t−sγs = δt+1−γt+1

δ−γ . �

2.2 Distributed stochastic optimization set-up

Let us start by formalizing the optimization problem addressed in this paper. We consider problems in
the form

minimize
x∈X

N∑
i=1

E[hi(x; ξi)]. (1)

where ξi is a random variable and x ∈ Rn, n � 1, has a block structure, i.e., x = [x>1 , . . . , x
>
B]>., with

x` ∈ Rn` for all ` and
∑B
`=1 n` = n. The decision variable x can be very high-dimensional, which calls for

block-wise algorithms.
Let fi(x) , E[hi(x; ξi)]. Moreover, let gi(x; ξi) ∈ ∂hi(x; ξi) (resp. gi(x) ∈ ∂fi(x)) be a subgradient of

hi(x; ξi) (resp. fi(x)) computed at x. Then, the following assumption holds for problem (1).

Assumption 1 (Problem structure).

(A) The constraint set X has the block structure X = X1 × · · · ×XB, where, for ` = 1, . . . , B, the set

X` ⊆ Rn` is closed and convex, and
∑B
`=1 n` = n.
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(B) The function hi(x, ξi) : Rn → R is continuous, strongly convex and possibly nonsmooth for all
x ∈ X and every ξi, for all i ∈ {1, . . . , N}. In particular, there exists a constant m > 0 such that
fi(a) ≥ fi(b)− 〈gi(b), b− a〉+ m

2 ‖a− b‖2, for all a, b ∈ X and all i ∈ {1, . . . , N}.

(C) every subgradient gi(x; ξi) is an unbiased estimator of the subgradient of fi, i.e., E[gi(x; ξi)] = gi(x).
Moreover, there exist constants Gi ∈ [0,∞) and Ḡi ∈ [0,∞) such that E[‖gi(x; ξi)‖] ≤ Gi, and
E[‖gi(x; ξi)‖2] ≤ Ḡi, for all x and ξi, for all i ∈ {1, . . . , N}. �

Let us denote by gi,`(x; ξi) the `-th block of gi(x; ξi) and let g(x) ∈ ∂f(x) be a subgradient of f
computed at x. Then, Assumption 1(C) implies that E[‖gi,`(x; ξi)‖] ≤ Gi for all ` and ‖gi(x)‖ ≤ Gi.

Moreover, let Ḡ ,
∑N
i=1 Ḡi and G ,

∑N
i=1Gi. Then, ‖g(x)‖≤G and ‖gi(x)‖≤G for all i.

Problem (1) is to be cooperatively solved by a network of N agents. Agents locally know only a
portion of the entire optimization problem. Namely, agent i knows only gi(x; ξi) for any x and ξi, and the
constraint set X. The communication network is assumed to satisfy the next assumption.

Assumption 2 (Communication structure).

(A) The network is modeled through a weighted strongly connected directed graph G = (V, E ,W ) with
V = {1, . . . , N}, E ⊆ V × V and W ∈ RN×N being the weighted adjacency matrix. We define
Ni,out , {j | (i, j) ∈ E} ∪ {i} and Ni,in , {j | (j, i) ∈ E} ∪ {i}.

(B) For all i, j ∈ {1, . . . , N}, the weights wij of the weight matrix W satisfy

(i) wij > 0 if and only if j ∈ Ni,in;

(ii) there exists a constant η > 0 such that wii ≥ η and if wij > 0, then wij ≥ η;

(iii)
∑N
j=1 wij = 1 and

∑N
i=1 wij = 1. �

In order to solve problem (1) agents will be using ad-hoc proximal mappings (see, e.g., [17]). In
particular, a function ω` is associated to the `-th block of the optimization variable for all `. Let the
function ω` : X` → R, be continuously differentiable and σ`-strongly convex. Functions ω` are sometimes
referred to as distance generating functions. Then, we define the Bregman’s divergence associated to ω` as

ν`(a, b) = ω`(b)− ω`(a)− 〈∇ω`(a), b− a〉,

for all a, b ∈ X`. Moreover, given a ∈ X`, b ∈ Rn` and c ∈ R, the proximal mapping associated to ν` is
defined as

prox`(a, b, c) = arg min
u∈X`

(
〈b, u〉+

1

c
ν`(a, u)

)
. (2)

We make the following assumption on the functions ν`.

Assumption 3 (Bregman’s divergences properties).

(A) There exists a constant Q > 0 such that

ν`(a, b) ≤
Q

2
‖a− b‖2, ∀a, b ∈ X` (3)

for all ` ∈ {1, . . . , B}.
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(B) For all ` ∈ {1, . . . , B}, the function ν` satisfies

ν`

 N∑
j=1

θjaj , b

≤ N∑
j=1

θjν`(aj , b), ∀a1, . . . , aN , b∈X`, (4)

where
∑N
j=1 θj = 1 and θj ≥ 0 for all j. �

Notice that Assumption 3(A) implies that, given any two points a, b ∈ X,

B∑
`=1

ν`(a`, b`) ≤
Q

2

B∑
`=1

‖a` − b`‖2 =
Q

2
‖a− b‖2. (5)

Moreover, Assumption 3(B) is satisfied by many functions (such as the quadratic function and the
exponential function) and conditions on ω` guaranteeing (4) can be provided [18].

3 Distributed Block Proximal Method

Let us now recall the Distributed Block Proximal Method for solving problem (1) in a distributed way.
The pseudocode of the algorithm is reported in Algorithm 1, where, for notational convenience, we defined
gi,`(t) , gi,`(yi(t); ξi(t)). We refer to [1] for all the details.

Algorithm 1 Distributed Block Proximal Method

Initialization: xi(0)
Evolution: for t = 0, 1, . . .

Update for all j ∈ Ni,in

xj,`|i(t) =

{
xj,`(t), if ` = `j(t− 1) and sj(t− 1) = 1

xj,`|i(t− 1), otherwise

if sti = 1 then
Pick `i(t) ∈ {1, . . . , B} with P (`i(t) = `) = pi,` > 0
Compute

yi(t) =
∑

j∈Ni,in

wijxj|i(t)

Update

xi,`(t+ 1) =

prox`

(
yi,`(t), gi,`(t), αi

)
, if ` = `i(t)

xi,`(t), otherwise

Broadcast xi,`i(t)(t+ 1) to j ∈ Ni,out

else xi(t+ 1) = xi(t)

The algorithm works as follows. Each agent i maintains a local solution estimate xi(t) and a local
copy of the estimates of its in-neighbors (namely, xj|i(t) denotes the copy of the solution estimate of agent
j at agent i). The initial conditions are initialized with random (bounded) values xi(0) which are shared
between neighbors. At each iteration, agents can be awake or idle, thus modeling a possible asynchrony in
the network. The probability of agent i to be awake is denoted by pi,on ∈ (0, 1]. If agent i is awake at
iteration t, it picks randomly a block `i(t) ∈ {1, . . . , B}, some ξi(t), and performs two updates:
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(i) it computes a weighted average of its in-neighbors’ estimates xj|i(t), j ∈ Ni,in;

(ii) it computes xi(t+ 1) by updating the `i(t)-th block of xi(t) through a proximal mapping step (with
a constant stepsize αi) and leaving the other blocks unchanged.

Finally, it broadcasts xi,`i(t)(t+ 1) to its out-neighbors. The status (awake or idle) of node i at iteration t
is modeled as a random variable si(t) ∈ {0, 1} which is 1 with probability pi,on and 0 with probability
1− pi,on.

As already stated in [1], it is worth remarking that all the quantities involved in the Distributed Block
Proximal Method are local for each node. In fact, each node has locally defined probabilities (both of
awakening and block drawing) and local stepsizes. Moreover, it is worth recalling that, from [1, Lemma 5],
we have xj|i(t) = xj(t) for all t and hence, Algorithm 1 can be compactly rewritten as follows. For all
i ∈ {1, . . . , N} and all t, if si(t) = 1,

yi(t) =

N∑
j=1

wijxj(t), (6)

xi,`(t+ 1) =

prox`

(
yi,`(t), gi,`(t), αi

)
, if ` = `i(t),

xi,`(t), otherwise,
(7)

else, xi(t+ 1) = xi(t). We will use (6)-(7) in place of Algorithm 1, in the following analysis.

4 Algorithm analysis and convergence rate

Let x(τ) , [x1(τ)>, . . . , xN (τ)>]> and let S(t) , {x(τ) | τ ∈ {0, . . . , t}} be the se set of estimates
generated by the Distributed Block Proximal Method up to iteration t. Moreover, define the probability
of node i to both be awake and pick block ` as

πi,` , pi,onpi,`

and define a , [α1, . . . , αN ]>, aM , maxi αi and am , mini αi. Moreover, define the average (over the
agents) of the local estimates at t as

x̄(t) ,
1

N

N∑
i=1

xi(t). (8)

Finally, let us make the following assumption about the random variables involved in the algorithm.

Assumption 4 (Random variables).

(A) The random variables `i(t) and si(t) are independent and identically distributed for all t, for all
i ∈ {1, . . . , N}.

(B) For any given t, the random variables si(t), `i(t) and ξi(t) are independent of each other for all
i ∈ {1, . . . , N}.

(C) There exists a constants Ci ∈ [0,∞) such that E[‖xi(0)‖] ≤ Ci for all i ∈ {1, . . . , N} and hence

E[‖x(0)‖] ≤ C =
∑N
i=1 Ci. �
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In the following we analyze the convergence properties of the Distributed Block Proximal Method with
constant stepsizes under the previous assumptions. We start by showing that consensus is achieve in the
network, by specializing the results in [1]. Then, we show that also optimality is achieved in expected
value and with a constant error, by studying the properties of an ad-hoc Lyapunov-like function. Finally,
we show how the main result implies a linear convergence rate for the algorithm.

4.1 Reaching consensus

The following lemma characterizes the expected distance of xi(t) and yi(t) from the average x̄(t) (defined
in (8)).

Lemma 2. Let Assumptions 1, 2, 4 hold. Then, there exist constants M ∈ (0,∞) and µM ∈ (0, 1) such
that

E[‖xi(t)− x̄(t)‖] ≤ µt−1
M R̄+ S̄, (9)

E[‖yi(t)− xi(t)‖] ≤ 2µt−1
M R̄+ 2S̄ (10)

for all i ∈ {1, . . . , N} and all t ≥ 1, with R̄ = MB
(
C − aMG

σ(1−µM )

)
and S̄ = aM

MBG
σ

2−µM

1−µM
.

Proof. The proof follows by using constant stepsizes in [1, Lemma 7 and Lemma 8].

In the next section, in order to prove the convergence to the optimal cost with a linear rate, we will
need the following result assuring the boundedness of a particular quantity. In particular, given a scalar
c ∈ (0, 1), let us define

β(t) ,
t∑

τ=0

ct−τE[‖xi(τ)− x̄(τ)‖]. (11)

Then, the next lemma provides a bound on β(t) for all t.

Lemma 3. Let Assumptions 1, 2, 4 hold. Then, for any scalar c ∈ (0, 1),

(i) if c 6= µM ,

β(t) ≤ ct
(
C +

R̄

c− µM

)
+

1− ct
1− c S̄ (12)

(ii) if c = µM ,

β(t) ≤ ct
(
C +

tR̄

c

)
+

1− ct
1− c S̄ (13)

for all i ∈ {1, . . . , N}, for all t.

Proof. By using Assumption 4(C), for τ = 0, one has

E[‖xi(0)− x̄(0)‖] ≤ E[‖xi(0)‖] + E[‖x̄(0)‖]

≤ Ci +
1

N

N∑
j=1

Cj ≤ Ci + max
j
Cj ≤ C (14)
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Hence, β(t) ≤ ctC +
∑t
τ=1 c

t−τE[‖xi(τ)− x̄(τ)‖] and, from Lemma 2, we have

β(t) ≤ ctC + R̄

t∑
τ=1

ct−τµτ−1
M + S̄

t∑
τ=1

ct−τ (15)

Let us consider the case c 6= µM . By using Lemma 1, one easily gets

β(t) ≤ ctC +
ct − µtM
c− µM

R̄+
1− ct
1− c S̄

≤ ct
(
C +

R̄

c− µM

)
+

1− ct
1− c S̄

where in the second line we have removed the negative term depending on µtM . For the case c = µM we
have

t∑
τ=1

ct−τµτ−1
M =

t∑
τ=1

ct−1 = tct−1 (16)

and (13) is obtained by substituting (16) in (15) and using Lemma 1.

4.2 Reaching optimality

Let us start by defining a Lyapunov-like function

V τi ,
B∑
`=1

π−1
i,` ν`(x

τ
i,`, x

?
` ) (17)

and let V t ,
∑N
i=1 V

t
i . Moreover, define

fbest(x̄
t) , min

τ≤t
E[f(x̄τ )] (18)

and πm = mini,` πi,`. Then, the following result holds true and will be the key for proving the linear
convergence rate of the Distributed Block Proximal Method under the previous assumptions.

Lemma 4. Let Assumptions 1, 2, 3 and 4 hold. Moreover, let αi ≤ Q
m for all i. Then, for all t,

E[V (t+ 1)] ≤
(

1− mamπm
Q

)
E[V (t)]−

N∑
i=1

αi (E[fi(yi(t))]− fi(x?)) +
a2
M Ḡ

2σ
. (19)

Proof. In order to simplify the notation, let us denote gi(t) = gi(yi(t)). By using the same arguments
used in the proof of [1, Theorem 1] we have

E[Vi(t+ 1) | S(t)] ≤ Vi(t)−
B∑
`=1

ν`(xi,`(t), x
?
` ) +

B∑
`=1

ν`(yi,`(t), x
?
` )− αi〈gi(t), yi(t)− x?〉+

α2
i Ḡi
2σ

(20)
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Now, By exploiting Assumptions 1(B), 3(A) and (3), one has that, for all t,

αi〈gi(t), yi(t)− x?〉 ≥ αi
(
fi(yi(t))− fi(x?) +

m

2
‖yi(t)− x?‖2

)
≥ αi (fi(yi(t))− fi(x?)) +

mαi
Q

B∑
`=1

ν`(yi,`(t), x
?
` ). (21)

Now, by using (21) in (20) and by exploiting the fact that αi ≤ Q
m , we get

E[Vi(t+ 1) | S(t)] ≤ Vi(t)−
B∑
`=1

ν`(xi,`(t), x
?
` ) +

(
1− mαi

Q

) B∑
`=1

ν`(yi,`(t), x
?
` )

− αi (fi(yi(t))− fi(x?)) +
α2
i Ḡi
2σ

≤ Vi(t)−
B∑
`=1

ν`(xi,`(t), x
?
` ) +

(
1− mαi

Q

) N∑
j=1

wij

B∑
`=1

ν`(xj,`(t), x
?
` )

− αi (fi(yi(t))− fi(x?)) +
α2
i Ḡi
2σ

, (22)

where in the second inequality we used assumption 3(B). If we now sum over i, by noticing that am ≤ αi
for all i, we obtain

N∑
i=1

E[V t+1
i | S(t)] ≤

N∑
i=1

Vi(t)−
N∑
i=1

B∑
`=1

ν`(xi,`(t), x
?
` )

+

N∑
i=1

(
1− mαi

Q

) N∑
j=1

wij

B∑
`=1

ν`(xj,`(t), x
?
` )

−
N∑
i=1

αi (fi(yi(t))− fi(x?)) +

N∑
i=1

α2
i Ḡi
2σ

. (23)

Now, by using the fact that am ≤ αi ≤ aM for all i, the double stochasticity of W from Assumption 2,
and the definition of Ḡ, one easily obtains that

N∑
i=1

E[V t+1
i | S(t)] ≤

N∑
i=1

Vi(t)−
mam
Q

N∑
i=1

B∑
`=1

ν`(xi,`(t), x
?
` )−

N∑
i=1

αi (fi(yi(t))− fi(x?)) +
a2
M Ḡ

2σ
. (24)

Moreover, by using (17) we can rewrite

N∑
i=1

Vi(t)−
mam
Q

N∑
i=1

B∑
`=1

ν`(xi,`(t), x
?
` ) =

N∑
i=1

B∑
`=1

(
π−1
i,` ν`(xi,`(t), x

?
` )−

mam
Q

ν`(xi,`(t), x
?
` )

)
≤
(

1− mπmam
Q

)
V (t) (25)

where we have used the fact that
∑B
`=1 π

−1
m ν`(a, b) ≥

∑B
`=1 π

−1
i,` ν`(a, b). Finally, by plugging (25) in (24)

and by using tower property of conditional expectation one gets (19).
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Thanks to the previous results, we are now ready to state and prove the main result of this paper.

Theorem 1. Let Assumptions 1, 2, 3 and 4 hold. Moreover, let αi ≤ Q
m for all i and let c ,

(
1− mamπm

Q

)
.

Then,

1. if c 6= µM ,

fbest(x̄
t)− f(x?) ≤ ct

1− ct+1
(Q+R1) + S, (26)

2. if c = µM ,

fbest(x̄
t)− f(x?) ≤ ct

1− ct+1
(Q+ tR2) + S, (27)

where Q = (1− c)
(

E[V 0]
am

+ 3GC
)
, R1 = (1−c)3GR̄

c−µM
, R2 = (1−c)3GR̄

c . and S =
a2M Ḡ
2σam

+ 3GS̄.

Proof. By recursively applying (19), one has

t∑
τ=0

ct−τ
N∑
i=1

αi (E[fi(yi(τ))]− fi(x?)) ≤ ct+1E[V 0] +

t∑
τ=0

ct−τ
a2
M Ḡ

2σ

Moreover, since am ≤ αi for all i,

t∑
τ=0

ct−τam

N∑
i=1

(E[fi(yi(τ))]− fi(x?)) ≤
t∑

τ=0

ct−τ
N∑
i=1

αi (E[fi(yi(τ))]− fi(x?))

≤ ct+1E[V 0] +

t∑
τ=0

ct−τ
a2
M Ḡ

2σ

= ct+1E[V 0] +
a2
M Ḡ

2σ

1− ct+1

1− c (28)

where in the last line we used Lemma 1, thanks to the fact that since by assumption αi ≤ Q
m , we have

c ∈ (0, 1). Then, from the convexity of f we have that, at any iteration t,

t∑
τ=0

ct−τam (E[f(x̄(τ))]− f(x?)) ≥
(
am

t∑
τ=0

ct−τ
)(

min
τ≤t

E[f(x̄(τ))]− f(x?)

)
=

(
am

1− ct+1

1− c

)
(fbest(x̄(t))− f(x?)) (29)

where we used Lemma 1 and the definition of fbest. Now, by making some manipulation on the term
E[f(x̄(τ))]− f(x?) = E[f(x̄(τ))− f(x?)], as in [1, Theorem 1] we get

E[f(x̄(τ))− f(x?)] ≤
N∑
i=1

E[(fi(yi(τ))− fi(x?))] +

N∑
i=1

Gi (E[‖yi(τ)− xi(τ)‖] + E[‖xi(τ)− x̄(τ)‖]) . (30)
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In the case c 6= µM , by substituting (30) in (29) and by using (28) and Lemma 3 one has(
am

1− ct+1

1− c

)
(fbest(x̄(t))− f(x?)) ≤ ct+1E[V 0] +

a2
M Ḡ

2σ

1− ct+1

1− c + 3amG

(
ct
(
C +

R̄

c− µM

)
+

1− ct
1− c S̄

)
.

Now, by dividing both sides by am and rearranging the term one has(
1− ct+1

1− c

)
(fbest(x̄(t))− f(x?)) ≤ ct+1E[V 0]

am
+ ct3G

(
C +

R̄

c− µM

)
+

1− ct+1

1− c
a2
M Ḡ

2σam
+

1− ct
1− c 3GS̄

≤ ct
(
E[V 0]

am
+ 3GC +

3GR̄

c− µM

)
+

1− ct+1

1− c

(
a2
M Ḡ

2σam
+ 3GS̄

)
where in the second line we used the fact that c ≤ 1. Finally, (26) is obtained by dividing both sides by
1−ct+1

1−c . The case c = µm can be proven in a similar way. In fact, by using the same arguments as before,
we have(

1− ct+1

1− c

)
(fbest(x̄(t))− f(x?)) ≤ ctE[V 0]

am
+ ct3G

(
C +

tR̄

c

)
+

1− ct+1

1− c

(
a2
M Ḡ

2σam
+ 3GS̄

)
≤ ct

(
E[V 0]

am
+ 3GC

)
+ tct

3GR̄

c
+

1− ct+1

1− c

(
a2
M Ḡ

2σam
+ 3GS̄

)
thus leading to (27) by dividing both sides by 1−ct+1

1−c .

Notice that Theorem 1 implies that convergence with a constant error is attained, i.e., define f̃? =
f(x?) + S, then

lim
t→∞

fbest(x̄
t)− f̃? = 0. (31)

Moreover, the convergence rate is linear. In fact, recall that c ∈ (0, 1). Then, if c 6= µM one has

lim
t→∞

fbest(x̄
t+1)− f̃?

fbest(x̄t)− f̃?
≤ lim
t→∞

ct+1

1−ct+2

ct

1−ct+1

= c,

while, if c = µM ,

lim
t→∞

fbest(x̄
t+1)− f̃?

fbest(x̄t)− f̃?
≤ lim
t→∞

ct+1

1−ct+2

(
β̄ + (t+ 1)η

)
ct

1−ct+1

(
β̄ + tη

) = c.

Remark 1. Our block-wise algorithm has two main benefits in terms of communication and computation
respectively. First, when a limited bandwidth is available in the communication channels, data that exceed
the communication bandwidth are transmitted sequentially in classical algorithms. For example, if only
one block fits the communication channel, our algorithm performs an update at each communication
round, while classical ones need B communication rounds per update. Second, in general, solving the
minimization problem in (7) on the entire optimization variable or on a single block results in completely
different computational times.
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Figure 1: Numerical example: Evolution of the cost error normalized on the number of blocks.

5 Numerical example

We consider as a numerical example a learning problem in which agents have to classify samples belonging
to two clusters. Formally, each agent i ∈ {1, . . . , N} has mi training samples q1

i , . . . , q
mi
i ∈ Rd each of

which has an associated binary label bri ∈ {−1, 1} for all r ∈ {1, . . . ,mi}. The goal of the agents is to
compute in a distributed way a linear classifier from the training samples, i.e., to find a hyperplane of the
form {z ∈ Rd | 〈θ, z〉+ θ0 = 0}, with θ ∈ Rd and θ0 ∈ R, which better separates the training data. For
notational convenience, let x = [θ>, θ0]> ∈ Rd+1 and q̂ri = [(qri )

>, 1]>. Then, the presented problem can
be addressed by solving the following convex optimization problem, in which a regularized Hinge loss is
used as cost function,

minimize
x∈Rd+1

N∑
i=1

1

mi

mi∑
r=1

max (0, 1− bri 〈x, q̂ri 〉) +
λ

2
‖x‖2,

where λ > 0 is the regularization weight. This problem can be written in the form of (1) by defining
ξri = (q̂ri , b

r
i ) and

E[hi(x; ξi)] =
1

mi

mi∑
r=1

(
max (1− bri 〈x, q̂ri 〉) +

λ

2N
‖x‖2

)
for all i ∈ {1, . . . , N}. In fact, as long as each data ξri is uniformly drawn from the dataset, Assumption 1(C)
is satisfied. We implemented the algorithm in DISROPT [19] and we tested it in this scenario with N = 48
agents, x ∈ R50 and different number of blocks, namely B ∈ {1, 2, 5, 10, 25}. We generated a synthetic
dataset composed of 480 points and assigned 10 of them to each agent, i.e., m1 = · · · = mN = 10. Agents
communicate according to a connected graph generated according to an Erdős-Rènyi random model with
connectivity parameter p = 0.5. The corresponding weight matrix is built by using the Metropolis-Hastings
rule. Finally, we set λ = 1, pi,` = 1/B for all i and all `, pi,on = 0.95 for all i and local (constant) stepsizes
αi randomly chosen according to a normal distribution with mean 0.005 and standard deviation 10−4.
The evolution of the cost error adjusted with respect to the number of blocks is reported in Figure 1 for
the considered block numbers. The linear convergence rate can be easily appreciated from the figure and
confirms the theoretical analysis.
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6 Conclusions

In this paper, we studied the behavior of the Distributed Block Proximal Method when applied to
problems involving (non-smooth) strongly convex functions and when agents in the network employ
constant stepsizes. A linear convergence rate (with a constant error) has been obtained in terms of the
expected distance from the optimal cost. A numerical example involving a learning problem confirmed
the theoretical analysis.
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