
Reinforcement Learning of Control Policy for
Linear Temporal Logic Specifications Using

Limit-Deterministic Generalized Büchi Automata
Ryohei Oura, Ami Sakakibara, Student Member, IEEE, and Toshimitsu Ushio, Member, IEEE

Abstract—This letter proposes a novel reinforcement learning
method for the synthesis of a control policy satisfying a control
specification described by a linear temporal logic formula. We
assume that the controlled system is modeled by a Markov
decision process (MDP). We convert the specification to a
limit-deterministic generalized Büchi automaton (LDGBA) with
several accepting sets that accepts all infinite sequences satisfying
the formula. The LDGBA is augmented so that it explicitly
records the previous visits to accepting sets. We take a product
of the augmented LDGBA and the MDP, based on which we
define a reward function. The agent gets rewards whenever state
transitions are in an accepting set that has not been visited for
a certain number of steps. Consequently, sparsity of rewards
is relaxed and optimal circulations among the accepting sets are
learned. We show that the proposed method can learn an optimal
policy when the discount factor is sufficiently close to one.

Index Terms—Reinforcement Learning, Linear Temporal
Logic, Limit-Deterministic Büchi Automata.

I. INTRODUCTION

REINFORCEMENT learning (RL) [1] is a useful ap-
proach to learning an optimal policy from sample behav-

iors of a controlled system with inherent stochasticity, e.g., a
Markov decision process (MDP) [2], when the probabilities
associated with the controlled system are unknown a priori.
In RL, we use a reward function that assigns a reward to each
transition in the behaviors and evaluate a control policy by the
return, namely an expected (discounted) sum of the rewards
along the behaviors. One of the recent trends is to apply
RL to synthesis problems under linear temporal logic (LTL)
constraints. LTL is a formal language with rich expressivity
and thus suitable for describing complex missions assigned to
a controlled system [3], [4].

It is known that any LTL formula can be converted into an
ω-automaton with a Büchi or a Rabin acceptance condition
[3]. In many studies on LTL synthesis problems using RL,
reward functions are formed systematically from automata
corresponding to the LTL specification. This direction was first
investigated by Sadigh et al. [5], where they defined a reward
function based on the acceptance condition of a deterministic
Rabin automaton [3] that accepts all words satisfying the LTL

This work was partially supported by JST-ERATO HASUO Project Grant
Number JPMJER1603, Japan, and JST-Mirai Program Grant Number JP-
MJMI18B4, Japan. The work of A. Sakakibara was supported by the Grant-
in-Aid for Japan Society for the Promotion of Science Research Fellow under
Grant JP19J13487.

The authors are with the Graduate School of Engineering Sci-
ence, Osaka University, Toyonaka 560-8531, Japan (e-mail: r-oura,
sakakibara@hopf.sys.es.osaka-u.ac.jp; ushio@sys.es.osaka-u.ac.jp).

constraint. Reward functions defined on specification automata
were also proposed for a deep reinforcement learning method
[6] and for an extension of LTL in collaboration with a control
barrier function [7].

Recently, a limit-deterministic Büchi automaton (LDBA)
or a generalized one (LDGBA) is paid much attention to
as an ω-automaton corresponding to the LTL specification
[8]. The RL-based approaches to the synthesis of a control
policy using LDBAs or LDGBAs have been proposed in [9]–
[12]. An (LD)GBA has multiple accepting sets and accepts
behaviors visiting all accepting sets infinitely often. One
possible approach to generalized Büchi acceptance conditions
is to convert a GBA into a corresponding BA, which has a
single accepting set. The conversion, however, fixes the order
of visits to accepting sets of the GBA [3] and causes the
sparsity of the reward, which is a critical issue in RL-based
controller synthesis. Another approach to RL-based synthesis
for generalized Büchi conditions is the accepting frontier
function introduced in [9], [10], based on which the reward
function is defined. However, the function is memoryless,
that is, it does not provide information of accepting sets that
have been visited, which is important to improve learning
performance.

In this letter, we propose a novel method to augment an
LDGBA converted from a given LTL formula. Then, we define
a reward function based on the acceptance condition of the
product MDP of the augmented LDGBA and the controlled
system represented as the MDP. The rest of the letter is
organized as follows. Section II reviews an MDP, LTL, and
automata. Section III proposes a novel RL-based method
for the synthesis of a control policy. Section IV presents a
numerical example to show the effectiveness of our proposed
method.

Notations: N0 is the set of nonnegative integers. R≥0 is
the set of nonnegative real numbers. For sets A and B, AB
denotes their concatenation, i.e., AB = {ab; a ∈ A, b ∈ B}.
Aω denotes the infinite concatenation of the set A and A∗

denotes the finite one, i.e., Aω = {a0a1 . . . ; an ∈ A,n ∈ N0}
and A∗ = {a0a1 . . . an; an ∈ A,n ∈ N0}, respectively. ε ∈
A∗ is the empty string.

II. PRELIMINARIES

A. Markov Decision Process

Definition 1: A (labeled) Markov decision process (MDP)
is a tuple M = (S,A, P, sinit, AP, L), where S is a finite set

ar
X

iv
:2

00
1.

04
66

9v
3

 [
ee

ss
.S

Y
]

 2
6

M
ar

 2
02

0

of states, A is a finite set of actions, P : S×S×A→ [0, 1] is
a transition probability function, sinit ∈ S is the initial state,
AP is a finite set of atomic propositions, and L : S × A ×
S → 2AP is a labeling function that assigns a set of atomic
propositions to each transition. Let A(s) = {a ∈ A;∃s′ ∈
S s.t. P (s′|s, a) 6= 0}. Note that

∑
s′∈S P (s′|s, a) = 1 for

any state s ∈ S and action a ∈ A(s).
In the MDP M , an infinite path starting from a state s0 ∈ S

is defined as a sequence ρ = s0a0s1 . . . ∈ S(AS)ω

such that P (si+1|si, ai) > 0 for any i ∈ N0. A finite path
is a finite sequence in S(AS)∗. In addition, we sometimes
represent ρ as ρinit to emphasize that ρ starts from s0 = sinit.
For a path ρ = s0a0s1 . . ., we define the corresponding
labeled path L(ρ) = L(s0, a0, s1)L(s1, a1, s2) . . . ∈ (2AP)ω .
InfPathM (resp., FinPathM) is defined as the set of infi-
nite (resp., finite) paths starting from s0 = sinit in the MDP
M . For each finite path ρ, last(ρ) denotes its last state.

Definition 2: A policy on an MDP M is defined as a
mapping π : FinPathM × A(last(ρ)) → [0, 1]. A policy
π is a positional policy if for any ρ ∈ FinPathM and any
a ∈ A(last(ρ)), it holds that π(ρ, a) = π(last(ρ), a); and
there exists one action a′ ∈ A(last(ρ)) such that π(ρ, a) = 1
if a = a′, and π(ρ, a) = 0 for any a ∈ A(last(ρ)) with
a 6= a′.

Let InfPathMπ (resp., FinPathMπ) be the set of infi-
nite (resp., finite) paths starting from s0 = sinit in the
MDP M under a policy π. The behavior of the MDP
M under a policy π is defined on a probability space
(InfPathMπ ,FInfPathMπ , P rMπ).

A Markov chain induced by the MDP M with a positional
policy π is a tuple MCπ = (Sπ, Pπ, sinit, AP, L), where
Sπ = S, Pπ(s′|s) = P (s′|s, a) for s, s′ ∈ S and a ∈ A(s)
such that π(s, a) = 1. The state set Sπ of MCπ can be
represented as a disjoint union of a set of transient states
Tπ and closed irreducible sets of recurrent states Rjπ with
j ∈ {1, . . . , h}, i.e., Sπ = Tπ ∪ R1

π ∪ . . . ∪ Rhπ [13]. In
the following, we say a “recurrent class” instead of a “closed
irreducible set of recurrent states” for simplicity.

In the MDP M , we define a reward function R : S × A×
S → R≥0. The function returns the immediate reward received
after the agent performs an action a at a state s and reaches
a next state s′ as a result.

Definition 3: For a policy π on an MDP M , any state s ∈ S,
and a reward function R, we define the expected discounted
reward as

V π(s) = Eπ[

∞∑
n=0

γnR(Sn, An, Sn+1)|S0 = s],

where Eπ denotes the expected value given that the agent
follows the policy π from the state s and γ ∈ [0, 1) is
a discount factor. The function V π(s) is often referred to
as a state-value function under the policy π. For any state-
action pair (s, a) ∈ S×A, we define an action-value function
Qπ(s, a) under the policy π as follows.

Qπ(s, a) = Eπ[

∞∑
n=0

γnR(Sn, An, Sn+1)|S0 = s,A0 = a].

Definition 4: For any state s ∈ S, a policy π∗ is optimal if

π∗ ∈ arg max
π∈Πpos

V π(s),

where Πpos is the set of positional policies over the state set
S.

B. Linear Temporal Logic and Automata

In our proposed method, we use linear temporal logic (LTL)
formulas to describe various constraints or properties and to
systematically assign corresponding rewards. LTL formulas
are constructed from a set of atomic propositions, Boolean
operators, and temporal operators. We use the standard nota-
tions for the Boolean operators: > (true), ¬ (negation), and ∧
(conjunction). LTL formulas over a set of atomic propositions
AP are defined as

ϕ ::= > | α ∈ AP | ϕ1 ∧ ϕ2 | ¬ϕ | Xϕ | ϕ1Uϕ2,

where ϕ, ϕ1, and ϕ2 are LTL formulas. Additional Boolean
operators are defined as ⊥:= ¬>, ϕ1 ∨ ϕ2 := ¬(¬ϕ1 ∧ ¬ϕ),
and ϕ1 ⇒ ϕ2 := ¬ϕ1 ∨ ϕ2. The operators X and U are
called “next” and “until”, respectively. Using the operator U,
we define two temporal operators: (1) eventually, Fϕ := >Uϕ
and (2) always, Gϕ := ¬F¬ϕ.

Definition 5: For an LTL formula ϕ and an infinite path
ρ = s0a0s1 . . . of an MDP M with s0 ∈ S, the satisfaction
relation M,ρ |= ϕ is recursively defined as follows.

M,ρ |= >,
M, ρ |= α ∈ AP ⇔ α ∈ L(s0, a0, s1),

M, ρ |= ϕ1 ∧ ϕ2 ⇔M,ρ |= ϕ1 ∧M,ρ |= ϕ2,

M, ρ |= ¬ϕ ⇔M,ρ 6|= ϕ,

M, ρ |= Xϕ ⇔M,ρ[1 :] |= ϕ,

M, ρ |= ϕ1Uϕ2 ⇔
∃j ≥ 0, M, ρ[j :] |= ϕ2 ∧ ∀i, 0 ≤ i < j, M, ρ[i :] |= ϕ1,

where ρ[i :] be the i-th suffix ρ[i :] = siaisi+1
The next operator X requires that ϕ is satisfied by the next

state suffix of ρ. The until operator U requires that ϕ1 holds
true until ϕ2 becomes true over the path ρ. In the following,
we write ρ |= ϕ for simplicity without referring to M .

For any policy π, the probability of all paths starting from
sinit on the MDP M that satisfy an LTL formula ϕ under the
policy π, or the satisfaction probability under π is defined as

PrMπ (sinit |= ϕ) := PrMπ ({ρinit∈InfPathMπ ; ρinit |= ϕ}).
We say that an LTL formula ϕ is positively satisfied by a
positional policy π if

PrMπ (sinit |= ϕ) > 0.

Any LTL formula ϕ can be converted into various ω-
automata, namely finite state machines that recognize all
infinite words satisfying ϕ. We review a generalized Büchi
automaton at the beginning, and then introduce a limit-
deterministic generalized Büchi automaton [10].

Definition 6: A transition-based generalized Büchi automa-
ton (tGBA) is a tuple B = (X, xinit, Σ, δ, F), where X is a

finite set of states, xinit ∈ X is the initial state, Σ is an input
alphabet including ε, δ ⊂ X × Σ ×X is a set of transitions,
and F = {F1, . . . , Fn} is an acceptance condition, where for
each j ∈ {1, . . . , n}, Fj ⊂ δ is a set of accepting transitions
and called an accepting set. We refer to a tGBA with one
accepting set as a tBA.

An infinite sequence r = x0σ0x1 . . . ∈ X(ΣX)ω is called
an infinite run if (xi, σi, xi+1) ∈ δ for any i ∈ N0. An
infinite word w = σ0σ1 . . . ∈ Σω is accepted by Bϕ if and
only if there exists an infinite run r = x0σ0x1 . . . starting from
x0 = xinit such that inf(r)∩Fj 6= ∅ for each Fj ∈ F , where
inf(r) is the set of transitions that occur infinitely often in
the run r.

Definition 7: A transition-based limit-deterministic gen-
eralized Büchi automaton (tLDGBA) is a tGBA B =
(X,xinit,Σ, δ,F) such that X is partitioned into two disjoint
sets Xinitial and Xfinal such that
• Fj ⊂ Xfinal × Σ×Xfinal, ∀j ∈ {1, ..., n},
• |{(x, σ, x′) ∈ δ;σ∈Σ, x′ ∈ Xfinal}|=1, ∀x∈Xfinal,
• |{(x, σ, x′) ∈ δ;σ∈Σ, x′ ∈ Xinitial}|=0, ∀x∈Xfinal,
• ∀(x, ε, x′) ∈ δ, x ∈ Xinitial ∧ x′ ∈ Xfinal.

An ε-transition enables the tLDGBA to change its state with
no input and reflects a single “guess” from Xinitial to Xfinal.
Note that by the construction in [8], the transitions in each
part are deterministic except for ε-transitions from Xintial to
Xfinal. It is known that, for any LTL formula ϕ, there exists a
tLDGBA that accepts all words satisfying ϕ [8]. We refer to a
tLDGBA with one accepting set as a tLDBA. In particular, we
represent a tLDGBA recognizing an LTL formula ϕ as Bϕ,
whose input alphabet is given by Σ = 2AP ∪ {ε}.

III. REINFORCEMENT-LEARNING-BASED SYNTHESIS OF
CONTROL POLICY

We introduce an automaton augmented with binary-valued
vectors. The automaton can ensure that transitions in each
accepting set occur infinitely often.

Let V = {(v1, . . . , vn)T ; vi ∈ {0, 1}, i ∈ {1, . . . , n}}
be a set of binary-valued vectors, and let 1 and 0 be the n-
dimentional vectors with all elements 1 and 0, respectively. In
order to augment a tLDGBA Bϕ, we introduce three functions
visitf : δ → V , reset : V → V , and Max : V × V → V
as follows. For any e ∈ δ, visitf(e) = (v1, . . . , vn)T ,
where vi = 1 if e ∈ Fi and vi = 0 otherwise. For
any v ∈ V , reset(v) = 0 if v = 1 and reset(v) = v
otherwise. For any v, u ∈ V , Max(v, u) = (l1, . . . , ln)T ,
where li = max{vi, ui} for any i ∈ {1, . . . , n}.

Each vector v is called a memory vector and represents
which accepting sets have been visited. The function visitf
returns a binary vector whose i-th element is 1 if and only if
a transition in the accepting set Fi occurs. The function reset
returns the zero vector 0 if at least one transition in each
accepting set has occurred after the latest reset. Otherwise, it
returns the input vector without change.

Definition 8: For a tLDGBA Bϕ = (X,xinit,Σ, δ,F), its
augmented automaton is a tLDGBA B̄ϕ = (X̄, x̄init, Σ̄, δ̄, F̄),
where X̄ = X × V , x̄init = (xinit,0), Σ̄ = Σ, δ̄ is defined
as δ̄ = {((x, v), σ̄, (x′, v′)) ∈ X̄ × Σ̄× X̄; (x, σ̄, x′) ∈ δ, v′ =

reset(Max(v, visitf((x, σ̄, x′))))}, and F̄ = {F̄1, . . . , F̄n}
is defined as F̄j = {((x, v), σ̄, (x′, v′)) ∈ δ̄ ; (x, σ̄, x′) ∈ Fj ,
vj = 0} for each j ∈ {1, ..., n}.

The augmented tLDGBA B̄ϕ keeps track of previous visits
to the accepting sets of Bϕ. Intuitively, along a run of B̄ϕ, a
memory vector v is reset to 0 when at least one transition in
each accepting set of the original tLDGBA Bϕ has occurred.
We now show that a tLDGBA and its augmented automaton
accept the same language. Let L(B) ⊆ Σω be the accepted
language of an automaton B with the alphabet Σ, namely the
set of all infinite words accepted by B.

Proposition 1: Let B = (X,xinit,Σ, δ,F) and B̄ =
(X̄, x̄init, Σ̄, δ̄, F̄) be an arbitrary tLDGBA and its augmen-
tation, respectively. Then, we have L(B) = L(B̄).

Proof: Recall that Σ = Σ̄. We prove set inclusions in
both directions.
⊂: Consider any w = σ0σ1 . . . ∈ L(B). Then, there exists

a run r = x0σ0x1 σ1x2 . . . ∈ X(ΣX)ω of B such that
x0 = xinit and inf(r) ∩ Fj 6= ∅ for each Fj ∈ F . For
the run r, we construct a sequence r̄ = x̄0σ̄0x̄1σ̄1x̄2 . . . ∈
X̄(Σ̄X̄)ω satisfying x̄i = (xi, vi) and σ̄i = σi for any
i ∈ N, where v0 = 0 and

vi+1 =reset
(
Max

(
vi, visitf((xi, σ̄i, xi+1))

))
,∀i ∈ N.

Clearly from the construction, we have (x̄i, σ̄i, x̄i+1) ∈ δ̄
for any i ∈ N. Thus, r̄ is a run of B̄ starting from x̄0 =
(xinit,0) = x̄init.
We now show that inf(r̄) ∩ F̄j 6= ∅ for each F̄j ∈ F̄ .
Since inf(r) ∩ Fj 6= ∅ for each Fj ∈ F , we have

inf(r̄)∩{(x̄,σ̄,x̄′)∈ δ̄; visitf(([[x̄]]X ,σ̄,[[x̄
′]]X))j=1} 6=∅

for any j ∈ {1, . . . , n}, where [[(x, v)]]X = x for each
(x, v) ∈ X̄ . By the construction of r̄, therefore, there are
infinitely many indices l ∈ N with vl = 0. Let l1, l2 ∈ N
be arbitrary nonnegative integers such that l1 < l2, vl1 =
vl2 = 0, and vl′ 6= 0 for any l′ ∈ {l1 + 1, . . . , l2 − 1}.
Then,

∀j ∈ {1, . . . , n}, ∃k ∈ {l1, l1 + 1, . . . , l2 − 1},
(xk, σk, xk+1) ∈ Fj ∧ (vk)j = 0,

where (vk)j is the j-th element of vk. Hence, we have
inf(r̄) ∩ F̄j 6= ∅ for each F̄j ∈ F̄ , which implies w ∈
L(B̄).

⊃: Consider any w̄ ∈ σ̄0σ̄1 . . . ∈ L(B̄). Then, there exists
a run r̄ = x̄0σ̄0x̄1σ̄1 x̄2 . . . ∈ X̄(Σ̄X̄)ω of B̄ such that
x̄0 = x̄init and inf(r̄) ∩ F̄j 6= ∅ for each F̄j ∈ F̄ , i.e.,

∀j ∈{1, . . . , n}, ∀k ∈ N, ∃l ≥ k,
([[x̄l]]X , σ̄l, [[x̄l+1]]X) ∈ Fj ∧ (v̄l)j = 0. (1)

For the run r̄, we construct a sequence r =
x0σ0x1σ1x2 . . . ∈ X(ΣX)ω such that xi = [[x̄i]]X and
σi = σ̄i for any i ∈ N. It is clear that r is a run of
B starting from x0 = xinit. It holds by Eq. (1) that
inf(r) ∩ Fj 6= ∅ for each Fj ∈ F , which implies
w̄ ∈ L(B).

For example, shown in Figs. 1 and 2 are a tLDGBA and
its augmented automaton, respectively, associated with the
following LTL formula.

ϕ = GFa ∧GFb ∧G¬c. (2)

The acceptance condition F of the tLDGBA is given by F =
{F1, F2}, where F1 = {(x0, {a}, x0), (x0, {a, b}, x0)} and
F2 = {(x0, {b}, x0), (x0, {a, b}, x0)}. Practically, states in
a strongly connected component that contains no accepting
transitions can be merged as shown in Fig. 2.

x0 x1

c
1⃝ 2⃝a ∧ b ∧ ¬c

1⃝a ∧ ¬b ∧ ¬c

2⃝¬a ∧ b ∧ ¬c

¬a ∧ ¬b ∧ ¬c

⊤

Fig. 1. The tLDGBA recognizing the LTL formula GFa∧GFb∧G¬c, where
X = {x0, x1} = Xfinal and xinit = x0. Red arcs are accepting transitions
that are numbered in accordance with the accepting sets they belong to.

(x0, (0, 1)
T)

(x0, (0, 0)
T) (x0, (1, 0)

T)

(x1, (∗, ∗)T)c

¬a ∧ b ∧ ¬c

c

¬a ∧ ¬b ∧ ¬c

1⃝a ∧ ¬b ∧ ¬c

c

2⃝a ∧ b ∧ ¬c

2⃝¬a ∧ b ∧ ¬c
a ∧ ¬b ∧ ¬c

⊤

1⃝a ∧ b ∧ ¬c

1⃝a ∧ ¬b ∧ ¬c

¬a ∧ ¬b ∧ ¬c

2⃝¬a ∧ b ∧ ¬c

1⃝ 2⃝a ∧ b ∧ ¬c

¬a ∧ ¬b ∧ ¬c

Fig. 2. The augmented automaton for the tLDGBA in Fig. 1 recognizing
the LTL formula GFa∧GFb∧G¬c, where the initial state is (x0, (0, 0)T).
Red arcs are accepting transitions that are numbered in accordance with the
accepting sets they belong to. All states corresponding to x1 are merged into
(x1, (∗, ∗)T).

We modify the standard definition of a product MDP to deal
with ε-transitions in the augmented automaton.

Definition 9: Given an augmented tLDGBA B̄ϕ and an
MDP M , a tuple M ⊗ B̄ϕ = M⊗ = (S⊗, A⊗, s⊗init, P

⊗, δ⊗,
F⊗) is a product MDP, where S⊗ = S × X̄ is the finite
set of states; A⊗ is the finite set of actions such that A⊗ =
A ∪ {εx̄′ ;∃x̄′ ∈X s.t. (x̄, ε, x̄′) ∈ δ̄}, where εx̄′ is the action
for the ε-transition to the state x̄′∈X̄; s⊗init = (sinit, x̄init) is
the initial state; P⊗ : S⊗×S⊗×A⊗ → [0, 1] is the transition
probability function defined as

P⊗(s⊗′|s⊗, a)

=


P (s′|s, a) if (x̄, L((s, a, s′)), x̄′) ∈ δ̄, a ∈ A(s)

1 if s = s′, (x̄, ε, x̄′) ∈ δ̄, a = εx̄′ ,

0 otherwise,

where s⊗ = (s, (x, v)) and s⊗′ = (s′, (x′, v′)); δ⊗ =
{(s⊗, a, s⊗′) ∈ S⊗ × A⊗ × S⊗;P⊗(s⊗′|s⊗, a) > 0} is

the set of transitions; and F⊗ = {F̄⊗1 , . . . , F̄⊗n } is the
acceptance condition, where F̄⊗i = {((s, x̄), a, (s′, x̄′)) ∈
δ⊗; (x̄, L(s, a, s′), x̄′) ∈ F̄i} for each i ∈ {1, . . . , n}.

Definition 10: The reward function R : S⊗ ×A⊗ × S⊗ →
R≥0 is defined as

R(s⊗, a, s⊗′) =

{
rp if ∃i ∈{1, . . . , n}, (s⊗, a, s⊗′) ∈ F̄⊗i ,
0 otherwise,

where rp is a positive value.
Remark 1: When constructing a tBA from a tGBA, the order

of visits to accepting sets of the tGBA is fixed. Consequently,
the rewards based on the acceptance condition of the tBA tends
to be sparse. The sparsity is critical in RL-based controller
synthesis problems. The augmentation of the tGBA relaxes
the sparsity since the augmented tGBA has all of the order
of visits to all accepting sets of the original tGBA. For the
acceptance condition F of the tGBA, the size of the state
space of the augmented tGBA is about 2|F|−1

|F| times larger than
the tBA constructed from the tGBA. However, the number of
accepting transitions to all transitions in the augmented tGBA
is much greater than the tBA. Therefore, our proposed method
is expected to be better than using the tLDBA in the sense of
sample efficiency.

In the following, we show that a positional policy positively
satisfying ϕ on the product MDP M⊗ is synthesized by using
the reward function R in Definition 10, which is based on the
acceptance condition of M⊗.

For a Markov chain MC⊗π induced by a product MDP M⊗

with a positional policy π, let S⊗π = T⊗π ∪ R⊗1
π ∪ . . . ∪ R⊗hπ

be the set of states in MC⊗π , where T⊗π is the set of transient
states and R⊗iπ is the recurrent class for each i ∈ {1, . . . , h},
and let R(MC⊗π) be the set of all recurrent states in MC⊗π . Let
δ⊗iπ be the set of transitions in a recurrent class R⊗iπ , namely
δ⊗iπ = {(s⊗, a, s⊗′) ∈ δ⊗; s⊗ ∈ R⊗iπ , P⊗(s⊗′|s⊗, a) > 0},
and let P⊗π : S⊗π × S⊗π → [0, 1] be the transition probability
function under π.

Lemma 1: For any policy π and any recurrent class R⊗iπ in
the Markov chain MC⊗π , MC⊗π satisfies one of the following
conditions.

1) δ⊗iπ ∩ F̄⊗j 6= ∅ , ∀j ∈ {1, . . . , n},
2) δ⊗iπ ∩ F̄⊗j = ∅ , ∀j ∈ {1, . . . , n}.

Proof: Suppose that MC⊗π satisfies neither conditions 1
nor 2. Then, there exist a policy π, i ∈ {1, . . . , h}, and j1,
j2 ∈ {1, . . . , n} such that δ⊗iπ ∩ F̄⊗j1 = ∅ and δ⊗iπ ∩ F̄⊗j2 6= ∅.
In other words, there exists a nonempty and proper subset
J ∈ 2{1,...,n} \ {{1, . . . , n}, ∅} such that δ⊗iπ ∩ F̄⊗j 6= ∅ for
any j ∈ J . For any transition (s, a, s′) ∈ δ⊗iπ ∩ F̄⊗j , the
following equation holds by the properties of the recurrent
states in MC⊗π [13].

∞∑
k=0

pk((s, a, s′), (s, a, s′)) =∞, (3)

where pk((s, a, s′), (s, a, s′)) is the probability that the tran-
sition (s, a, s′) reoccurs after it occurs in k time steps. Eq.
(3) means that each transition in R⊗iπ occurs infinitely often.

However, the memory vector v is never reset in R⊗iπ by the
assumption. This directly contradicts Eq. (3).

Lemma 1 implies that, for an LTL formula ϕ, if a policy
π does not satisfy ϕ, then the agent obtains no reward in
recurrent classes; otherwise there exists at least one recurrent
class where the agent obtains rewards infinitely often.

Theorem 1: For a product MDP M⊗ of an MDP M and
an augmented tLDGBA B̄ϕ corresponding to a given LTL
formula ϕ and the reward function given by Definition 10, if
there exists a positional policy positively satisfying ϕ on M⊗,
then there exists a discount factor γ∗ such that any algorithm
that maximizes the expected discounted reward with γ > γ∗

will find a positional policy positively satisfying ϕ on M⊗.

Proof: Suppose that π∗ is an optimal policy but does not
satisfy the LTL formula ϕ. Then, for any recurrent class R⊗iπ∗
in the Markov chain MC⊗π∗ and any accepting set F̄⊗j of the
product MDP M⊗, δ⊗iπ∗ ∩ F̄⊗j = ∅ holds by Lemma 1. Thus,
the agent under the policy π∗ can obtain rewards only in the
set of transient states. We consider the best scenario in the
assumption. Let pk(s, s′) be the probability of going to a state
s′ in k time steps after leaving the state s, and let Post(T⊗π)
be the set of states in recurrent classes that can be transitioned
from states in T⊗π by one action. For the initial state sinit in
the set of transient states, it holds that

V π
∗
(sinit)

=

∞∑
k=0

∑
s∈T⊗

π∗

γkpk(sinit, s)
∑

s′∈T⊗
π∗∪Post(T

⊗
π∗)

P⊗π∗(s
′|s)R(s, a, s′)

≤rp
∞∑
k=0

∑
s∈T⊗

π∗

γkpk(sinit, s),

where the action a is selected by π∗. By the property of
the transient states, for any state s⊗ in T⊗π∗ , there exists a
bounded positive value m such that

∑∞
k=0 γ

kpk(sinit, s) ≤∑∞
k=0 p

k(sinit, s) < m [13]. Therefore, there exists a bounded
positive value m̄ such that V π

∗
(sinit) < m̄. Let π̄ be a

positional policy satisfying ϕ. We consider the following two
cases.

1) Assume that the initial state sinit is in a recurrent class
R⊗iπ̄ for some i ∈ {1, . . . , h}. For any accepting set F̄⊗j ,
δ⊗iπ̄ ∩F̄⊗j 6= ∅ holds by the definition of π̄. The expected
discounted reward for sinit is given by

V π̄(sinit)

=

∞∑
k=0

∑
s∈R⊗iπ̄

γkpk(sinit, s)
∑

s′∈R⊗iπ̄

P⊗π̄ (s′|s)R(s, a, s′),

where the action a is selected by π̄. Since sinit is in
R⊗iπ̄ , there exists a positive number k̄ = min{k ; k ≥
n, pk(sinit, sinit) > 0} [13]. We consider the worst

scenario in this case. It holds that

V π̄(sinit) ≥
∞∑
k=n

pk(sinit, sinit)

n∑
i=1

γk−irp

≥
∞∑
k=1

pkk̄(sinit, sinit)

n−1∑
i=0

γkk̄−irp

>rp

∞∑
k=1

γkk̄pkk̄(sinit, sinit),

whereas all states in R(MC⊗π̄) are positive recurrent
because |S⊗| < ∞ [14]. Obviously, pkk̄(sinit, sinit) ≥
(pk̄(sinit, sinit))

k > 0 holds for any k ∈ (0,∞) by the
Chapman-Kolmogorov equation [13]. Furthermore, we
have limk→∞ pkk̄(sinit, sinit) > 0 by the property of
irreducibility and positive recurrence [15]. Hence, there
exists p̄ such that 0 < p̄ < pkk̄(sinit, sinit) for any
k ∈ (0,∞] and we have

V π̄(sinit) >rpp̄
γk̄

1− γk̄ .

Therefore, for any rp < ∞ and any m̄ ∈
(V π

∗
(sinit),∞), there exists γ∗ < 1 such that γ > γ∗

implies V π̄(sinit) > rpp̄
γk̄

1−γk̄ > m̄.

2) Assume that the initial state sinit is in the set of transient
states T⊗π̄ . PM

⊗

π̄ (sinit |= ϕ) > 0 holds by the definition
of π̄. For a recurrent class R⊗iπ̄ such that δ⊗iπ̄ ∩ F̄⊗j 6= ∅
for each accepting set F̄⊗j , there exist a number l̄ > 0,
a state ŝ in Post(T⊗π̄) ∩R⊗iπ̄ , and a subset of transient
states {s1, . . . , sl̄−1} ⊂ T⊗π̄ such that p(sinit, s1) > 0,
p(si, si+1) > 0 for i ∈ {1, . . . , l̄−2}, and p(sl̄−1, ŝ) > 0
by the property of transient states. Hence, it holds that
pl̄(sinit, ŝ) > 0 for the state ŝ. Thus, by ignoring rewards
in T⊗π̄ , we have

V π̄(sinit) ≥ γ l̄pl̄(sinit, ŝ)

∞∑
k=0

∑
s′∈R⊗iπ̄

γkpk(ŝ, s′)

∑
s′′∈R⊗iπ̄

P⊗π̄ (s′′|s′)R(s′, a, s′′)

> γ l̄pl̄(sinit, ŝ)rpp̄
γk̄
′

1− γk̄′ ,

where k̄′ ≥ n is a constant and 0 < p̄ < pkk̄
′
(ŝ, ŝ) for

any k ∈ (0,∞]. Therefore, for any rp < ∞ and any
m̄ ∈ (V π

∗
(sinit),∞), there exists γ∗ < 1 such that

γ > γ∗ implies V π̄(sinit) > γ l̄pl̄(sinit, ŝ)
rpp̄γ

k̄′

1−γk̄′ > m̄.
The results contradict the optimality assumption of π∗.
Theorem 1 implies that, for the product MDP M⊗ of an

MDP M and an augmented tLDGBA corresponding to a
given LTL formula ϕ, we obtain a positional policy positively
satisfying ϕ on M⊗ by an algorithm maximizing the expected
discounted reward with a discount factor sufficiently close to
1 if there exists a positional policy on M⊗ satisfying ϕ.

IV. EXAMPLE

In this section, we apply the proposed method to a path
planning problem of a robot in an environment consisting

Fig. 3. The environment consisting of eight rooms and one corridor. Red arcs
are the transitions that we want to occur infinitely often, while blue arcs are
the transitions that we never want to occur. s7 is the initial state.

of eight rooms and one corridor as shown in Fig. 3. The
state s7 is the initial state and the action space is speci-
fied with A(s) = {Right, Left, Up,Down} for any state
s 6= s4 and A(s4) = {to s0, to s1, to s2, to s3, to s5,
to s6, to s7, to s8}, where to si means attempting to go to
the state si for i ∈ {0, 1, 2, 3, 5, 6, 7, 8}. The robot moves
in the intended direction with probability 0.9 and it stays in
the same state with probability 0.1 if it is in the state s4. In
the states other than s4, it moves in the intended direction
with probability 0.9 and it moves in the opposite direction to
that it intended to go with probability 0.1. If the robot tries to
go to outside the environment, it stays in the same state. The
labeling function is as follows.

L((s, act, s′)) =


{c} if s′ = si, i ∈ {2, 3, 5, 6},
{a} if (s, act, s′) = (s4, to s0, s0),

{b} if (s, act, s′) = (s4, to s8, s8),

∅ otherwise.

In the example, the robot tries to take two transitions that
we want to occur infinitely often, represented by arcs labeled
by {a} and {b}, while avoiding unsafe transitions represented
by the arcs labeled by {c}. This is formally specified by the
LTL formula given by Eq. (2). The LTL formula requires the
robot to keep on entering the two rooms s0 and s8 from the
corridor s4 regardless of the order of entries, while avoiding
entering the four rooms s2, s3, s5, and s6. The tLDGBA Bϕ
and its augmented automaton B̄ϕ are shown in Figs. 1 and 2,
respectively.

Through the above scenario, we compare our approach with
1) a case where we first convert the tLDGBA into a tLDBA, for
which the augmentation makes no change, and thus a reward
function in Definition 10 is based on a single accepting set; and
2) the method using a reward function based on the accepting
frontier function [9], [10]. For the three methods, we use Q-
learning1 with an epsilon-greedy policy. The epsilon-greedy
parameter is given by 0.95

nt(s⊗) , where nt(s
⊗) is the number

of visits to state s⊗ within t time steps [16], so that it will
gradually reduce to 0 to learn an optimal policy asymptotically.
We set the positive reward rp = 2 and the discount factor
γ = 0.95. The learning rate α varies in accordance with
the Robbins-Monro condition. We train the agent in 10000
iterations and 1000 episodes for 100 learning sessions.

1We employ Q-learning here but any algorithm that maximizes the dis-
counted expected reward can be applied to our proposed method.

Fig. 4. The mean of average reward in each episode for 100 learning sessions
obtained from our proposed method (left) and the method using tLDBA
(right). They are plotted per 50 episodes and the green areas represent the
range of standard deviations.

Fig. 5. The optimal policy obtained from our proposed method (left) and the
method in [9], [10] (right).

Results

1) Fig. 4 shows the average rewards obtained by our
proposed method and the case using a tLDBA B′ϕ converted
from ϕ, respectively. Both methods eventually acquire an
optimal policy satisfying ϕ. As shown in Fig. 4, however, our
proposed method converges faster. This is because the order
of entrances to the rooms s0 and s8 is determined according
to the tLDBA. Moreover, the number of transitions with a
positive reward in B̄ϕ is larger than that in B′ϕ.

2) We use the accepting frontier function [9], [10] for the
tLDGBA Acc : δ × 2δ → 2δ . Initializing a set of transitions
F with the set of the all accepting transitions in Bϕ, the
function receives the transition (x, σ, x′) that occurs and the
set F. If (x, σ, x′) is in F, then Acc removes the accepting
sets containing (x, σ, x′) from F. For the product MDP of the
MDP M and the tLDGBA Bϕ, the reward function is based
on the removed sets of Bϕ. Then, we synthesize a positional
policy on the product MDP derived from the tLDGBA Bϕ.

Fig. 5 shows the optimal policies obtained by our proposed
method and the method in [9], [10], respectively. The policy
obtained by the method with the accepting frontier function
fails to satisfy the LTL specification2 because it is impossible
that the transitions labeled with {a} and {b} occur from s4

infinitely often by any positional policy on the product MDP
with Bϕ shown in Fig. 1. More specifically, as shown in
Fig. 6, the agent cannot take each accepting transition colored
with red by any deterministic stationary action selection at the
product state (s4, x0). In our proposed method, the augmented
tLDGBA includes the information of the (path-dependent)
domain of the accepting frontier function explicitly as memory
vectors, which enables us to synthesize a positional policy
satisfying ϕ on the product MDP.

2We obtain the same result even with a state-based LDGBA.

s4, x0s0, x0 s8, x0

to s0
0.9

0.1

Down

0.1

0.9

to s8
0.9

0.1

Up

0.1

0.9

Fig. 6. A part of the product MDP of the MDP shown in Fig. 3 and the
tLDGBA shown in Fig. 1, where each transitions is labeled with either an
action or the transition probability.

V. CONCLUSION

The letter proposed a novel RL-based method for the
synthesis of a control policy for an LTL specification us-
ing an augmented tLDGBA. The proposed method improved
the learning performance compared to existing methods. It
is future work to investigate a method that maximizes the
satisfaction probability.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. MIT press, 2018.

[2] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. John Wiley & Sons, 1994.

[3] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT Press,
2008.

[4] C. Belta, B. Yordanov, and E. Aydin Gol, Formal Methods for Discrete-
Time Dynamical Systems. Springer International Publishing, 2017.

[5] D. Sadigh, E. S. Kim, S. Coogan, S. S. Sastry, and S. A. Seshia, “A
learning based approach to control synthesis of Markov decision pro-
cesses for linear temporal logic specifications,” in 53rd IEEE Conference
on Decision and Control, 2014, pp. 1091–1096.

[6] Q. Gao, D. Hajinezhad, Y. Zhang, Y. Kantaros, and M. M. Zavlanos,
“Reduced variance deep reinforcement learning with temporal logic
specifications,” in Proceedings of the 10th ACM/IEEE International
Conference on Cyber-Physical Systems, 2019, pp. 237–248.

[7] X. Li, Z. Serlin, G. Yang, and C. Belta, “A formal methods approach
to interpretable reinforcement learning for robotic planning,” Science
Robotics, vol. 4, no. 37, pp. 1–16, 2019.

[8] S. Sickert, J. Esparza, S. Jaax, and J. Křetı́nskỳ, “Limit-deterministic
Büchi automata for linear temporal logic,” in International Conference
on Computer Aided Verification. Springer, 2016, pp. 312–332.

[9] M. Hasanbeig, A. Abate, and D. Kroening, “Logically-constrained
reinforcement learning,” arXiv preprint arXiv:1801.08099, 2018.

[10] M. Hasanbeig, Y. Kantaros, A. Abate, D. Kroening, G. J. Pappas, and
I. Lee, “Reinforcement learning for temporal logic control synthesis with
probabilistic satisfaction guarantees,” arXiv preprint arXiv:1909.05304,
2019.

[11] E. M. Hahn, M. Perez, S. Schewe, F. Somenzi, A. Trivedi, and
D. Wojtczak, “Omega-regular objectives in model-free reinforcement
learning,” in International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 2019, pp. 395–412.

[12] A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic, “Control
synthesis from linear temporal logic specifications using model-free
reinforcement learning,” arXiv preprint arXiv:1909.07299, 2019.

[13] R. Durrett, Essentials of Stochastic Processes, 2nd ed. Springer, 2012.
[14] L. Breuer, “Introduction to stochastic processes,” [Online]. Available:

https://www.kent.ac.uk/smsas/personal/lb209/files/sp07.pdf.
[15] S. M. Ross, Stochastic Processes, 2nd ed. Wiley New York, 1996.
[16] S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvári, “Convergence

results for single-step on-policy reinforcement-learning algorithms,”
Machine learning, vol. 38, no. 3, pp. 287–308, 2000.

https://www.kent.ac.uk/smsas/personal/lb209/files/sp07.pdf

	I Introduction
	II Preliminaries
	II-A Markov Decision Process
	II-B Linear Temporal Logic and Automata

	III Reinforcement-Learning-Based Synthesis of Control Policy
	IV Example
	V Conclusion
	References

