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Abstract— This note discusses properties of paramet-
ric discrete-time Mixed-Integer Optimal Control Problems
(MIOCPs) as they often arise in mixed-integer NMPC. We
argue that in want for a handle on similarity properties of
parametric MIOCPs the classical turnpike notion from optimal
control is helpful. We provide sufficient turnpike conditions
based on a dissipativity notion of MIOCPs, and we show
that the turnpike property allows specific and accurate guesses
for the integer-valued controls. Moreover, we show how the
turnpike property can be used to derive efficient node-weighted
branch-and-bound schemes tailored to parametric MIOCPs.
We draw upon numerical examples to illustrate our findings.

I. INTRODUCTION

Recently, optimization-based control of dynamic systems
has seen tremendous progress spanning from industrial ap-
plications of Non-linear Model Predictive Control (NMPC)
[25], [12], [26] to efficient solution methods for Mixed-
Integer Optimal Control Problems (MIOCPs) [2], [16], [27],
[4], [17], [10]. By now, for considerably non-linear and
non-convex cases implementation within the milli- to micro-
second range can be achieved—provided the underlying
continuous OCP can be approximated by a Non-Linear
Programm (NLP), see e.g. [22]. These solution times are pos-
sible since the repeatedly solved optimization is parametric
in the initial condition of the underlying dynamic system. In
turn, this allows leveraging classical sensitivity properties of
NLPs, see [8].

While transferring sensitivity concepts from OCPs and
NLPs to MIOCPs and MINLPs is not straightforward, con-
vincing cases have been made that also MIOCPs can be
solved efficiently, e.g. [5], [27], [23] or [2, Chap. 7]. These
works typically rely on efficient solutions to relaxed auxil-
liary problems, i.e. often they employ outer convexification.
However, they do not explicitly exploit the parametric nature
of the underlying MIOCP. Indeed only limited results on the
analysis of parametric mixed-integer programs seem to be
available. Multi-parametric MILPs, MIQPs and MINLPs are
discussed in [11], [10], [20]. However, these results do not
touch upon parametric MIOCPs.

In the present note we leverage dissipativity concepts
to explicitly characterize helpful properties of parametric
discrete-time MIOCPs. Specifically, we discuss cases of
MIOCPs exhibiting the so-called turnpike property. Turn-
pikes occur in parametric OCPs where—for varying initial
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conditions and increasing horizon length—the time that
optimal solutions spend outside of any ε-neighborhood of
the optimal steady state is bounded independent of the actual
horizon length. The turnpike notion was coined by [9] in the
1950s, and early observations of the phenomenon can be
traced to works of John von Neumann in the 1930s/1940s
[29]. There has been longstanding interest in turnpikes prop-
erties in the context of optimal control in economics [7].
Recently, there has been renewed interested in turnpikes for
continuous OCPs [28], [15].

Herein, we argue that in want for a handle on similar-
ity properties of parametric MIOCPs all is not lost, and
that the turnpike notion enables such a characterization.
Indeed, we advocate that in-depth investigation of turnpikes
in parametric MIOCPs might open new avenues to tailored
solution schemes for sequences of MIOCPs, e.g. arising
in mixed-integer NMPC. Yet, to the best of the authors’
knowledge, there is no analysis of the turnpike phenomenon
in MIOCPs available in the literature. To this end, we present
a sufficient condition for turnpikes to arise which in turn
is based on a dissipativity characterization of MIOCPs and
we present a sufficient condition certifying dissipativity of
linear-quadratic MIOCPS. Based on this, we sketch a tailored
node-weighted branch-and-bound scheme which leverages
the underlying turnpike for the sake of efficient solution.
Numerical examples illustrate the benefits of the proposed
scheme.

II. TURNPIKES IN MIOCPS

We consider MIOCPs of the following form

min
x(·),u(·),v(·)

N−1∑
k=0

`(x(k), u(k), v(k)) + Vf (x(N)) (1a)

s.t. ∀k ∈ {0, . . . , N − 1},
x(k + 1) = f(x(k), u(k), v(k)), x(0) = x0 ∈ X0 (1b)

x(k) ∈ X ⊆ Rnx , u(k) ∈ U ⊆ Rnu (1c)
v(k) ∈ V ⊆ Znv , (1d)

where the stage cost ` : Rnx×Rnu×Znv → R, the terminal
cost Vf : Rnx×Rnu×Znv → R, and the dynamics f : Rnx×
Rnu × Znv → Rnx are assumed to be Lipschitz continuous
in x, u, and v. The constraint sets X, U and V are assumed
to be compact. The core challenge in the discrete-time OCP
(1) is that the input v is assumed to take only discrete values,
cf. (1d).

Optimal solutions, provided they exist, are written as

z?(·;x0) =
[
x?(·;x0) u?(·;x0) v?(·;x0)

]>
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Fig. 1: Example plot of the optimal solutions for Problem
(3) with N = 30 and a variety of initial copnditions x0.

denoting the optimal primal triplet. Whenever no confusion
can arise, we suppress the dependence on the initial condition
x0. The stationary counterpart of (1) is the MINLP

min
x̄,ū,v̄

`(x̄, ū, v̄) (2a)

s. t.
x̄ = f(x̄, ū, v̄), (2b)
x̄ ∈ X ⊆ Rnx , ū ∈ U ⊆ Rnu (2c)
v̄ ∈ V ⊆ Znv . (2d)

Simliar to before, the optimal solution is denoted by z̄? =[
x̄? ū? v̄?

]>
. We are interested in studying the similarity

properties of solutions to (1) for varying initial conditions
x0 ⊂ X0 ⊆ X and varying horizon lengths N ∈ N. Put
differently, we are interested in analyzing MIOCP (1) as a
problem parametric in x0 and N ∈ N.

Illustrative Example: We consider a straight-forward mod-
ification of a simple problem presented in [14], [18] which
reads

min
x(·),u(·),v(·)

N−1∑
k=0

u(k)2 + 1
2v(k)2

s. t. ∀k ∈ {0, . . . , N − 1}, (3)
x(k + 1) = 2x(k) + u(k) + v(k)− 1, x(0) = x0[

x(k) u(k) v(k)
]> ∈ [−2, 2]× [−3, 3]× {−1, 0, 1}.

Figure 1 shows the results for the horizon N = 30 and
several initial conditions x0. Note that z?(·;x0) is close to
its optimal steady state value z̄? = [1 0 0]> for a large part
of the time horizon. This similarity of optimal solutions for
different initial conditions is called turnpike phenomenon; a
definition for MIOCPs will be given below.

Sufficient Conditions for Turnpikes in MIOCPs

First, we suggest a rigorous definition of the phenomenon:

Definition 1 (Mixed-integer turnpike property): MIOCP
(1) is said to have an input-state turnpike if for all x0 ∈ X0

and all N ∈ N
#Qε ≥ N −

C

α(ε)

holds, where

Qε := {k ∈ {0, . . . , N − 1} | ||(z∗(k;x0))− z̄|| ≤ ε}, (4)

#Qε is the cardinality of Qε, and α ∈ K∞.1 �
The above definition is a straight-forward extension of con-
tinuous concepts [18], [15].2 Its basic meaning is that the
amount of time an optimal triplet z?(·) spends inside of an
ε-ball centered at z̄ is at least N − C

α(ε) , or alternatively,
for all horizons the amount of time spent outside of the ε-
ball is bounded independently of N by C

α(ε) . For the sake
of brevity, we refer to z̄ = z̄? simply as the turnpike. We
remark that the first part of the optimal solution approaching
the turnpike is often called the entry arc, while the distinctive
departure from the turnpike is called the leaving arc. Note
that a leaving arc does not need to occur.

To the end of certifying turnpikes in mixed-integer prob-
lems, we recall and adapt an established dissipativity notion
for OCPs to the mixed-integer setting.

Definition 2 (Strict dissipativity with respect to z̄):
A system x(k + 1) = f(x(k), u(k), v(k))

.
= f(z(k)) is said

to be dissipative with respect to a steady-state tuple z̄ ∈
X × U × V, if there exists a bounded function λ : X → R
such that for all z =

[
x u v

]> ∈ X× U× V

λ(f(z))− λ(x) ≤ `(z)− `(z̄), (5a)

with ` from (1).
If, additionally, there exists α ∈ K∞ such that

λ(f(z))− λ(x) ≤ −α(‖z − z̄‖) + `(z)− `(z̄), (5b)

then the system is said to be strictly dissipative with respect
to z̄ =

[
x̄ ū v̄

]>
.

Moreover, if the above dissipativity notions holds solely
along optimal solutions of (1) with x0 ∈ X0, then MIOCP
(1) is said to be strictly dissipative with respect to z̄. �
The following property follows directly from the above
definition.

Lemma 1 (Optimality of z̄): Let MIOCP(1) be strictly
dissipative with respect to z̄ in the sense of Definition 2,
then z̄ = z̄? is the unique globally optimal solution to (2).�

The next assumption helps to establish existence of turn-
pikes.

Assumption 1 (Exponential reachability of x̄?): For all
x0 ∈ X0, there exist infinite-horizon admissible inputs
u∞, v∞ : N ∩∞ → U × V and constants c ≥ 0, ρ ∈ [0, 1)
such that ‖x(k;x0, u∞(·), v∞(·)) − x̄?‖ ≤ cρk, i.e. the
optimal steady state x̄? is exponentially reachable. �

1K∞ refers to the set of continuous functions R+
0 → R+

0 which are 0
at 0, strictly monotonously increasing, and satisfy lim

s→∞
α(s) =∞.

2Indeed the setting of [18] applies to generic normed spaces, hence it
includes the setting considered here.



Proposition 2 (Turnpikes in MIOCPs): Let Assumption 1
hold and suppose that, for all x0 ∈ X0, the MIOCP (1) is
strictly dissipative with respect to z̄?. Then the MIOCP (1)
has an input-state turnpike at z̄? = z̄. �
The proof follows the pattern of the ones presented in [14],
[18] for continuous discrete-time OCPs and is thus omitted.

It is worth noticing that the turnpike property implies the
following property of optimal solutions:

Proposition 3 (Integer controls exactly at turnpike): For
all x0 ∈ X0, let MIOCP (1) have an input-state turnpike at
z̄? = z̄ in the sense of Definition 1. Then, for all ε ∈ (0, 1)
and sufficiently large N ∈ N, the optimal integer controls
v?(·;x0) satisfy

v?(k;x0) ≡ v̄? for all k ∈ Qε. �
Proof: Recall that ‖z?(k;x0)−z̄?‖ ≥ ‖v?(k;x0)−v̄?‖,

and note the fact that for the integer controls ‖v?(k;x0) −
v̄?‖ < 1 ⇔ ‖v?(k;x0) − v̄?‖ = 0. Combining both and
taking the definition of Qε in (4) into account yields the
assertion.

It is fair to ask how the dissipativity property from
Definition 2 can be numerically verified for MIOCPs. The
next result provides a sufficient condition.

Theorem 4 (Dissipativity of linear-quadratic MIOCPs):
Consider MIOCP (1) and let the dynamics and the stage
cost be given by

x+ = Ax+B1u+B2v,

`(x, u, v) = x>Qx+

[
u
v

]>
R

[
u
v

]
+ q>x+ r>

[
u
v

]
,

with potentially indefinite matrices Q and R. If there exists
a matrix P ∈ Rnx×nx such that

Q+ P −A>PA � 0, (6)

then MIOCP (1) is strictly dissipative, and there exists
p ∈ Rnx such that x>Px+ p>x is a corresponding storage
function. �

Proof: The proof combines the available storage char-
acterization of dissipativity with recent results from [19].

The available storage is given by

SaV(x) = sup
z(·),N

N∑
k=0

−α(‖(zk)− z̄‖) + `(zk) + `(z̄)

subject to

x(k + 1) = Ax(k) +
[
B1 B2

] [u(k)
v(k)

]
, x(0) = x

x(k) ∈ X, u(k) ∈ U, v(k) ∈ V,

whereby the subscript ·V refers to the constraints on the
discrete control input. Indeed the MICOP (1) is dissipative
on X0 if SaV(x) <∞ for all x ∈ X0, cf. [30].

Step 1: Let convV be the convex hull of V, which is
compact if and only if V ⊂ Z is compact. The inclusion
V ⊂ convV implies that

SaV(x) ≤ Saconv V(x),

i.e. dissipativity of the continuously relaxed OCP certifies
dissipativity of the MIOCP.

Step 2: For the continuously relaxed problem it has been
shown in [19, Lem. 4.1] that (6) is a necessary and suffi-
cient condition for strict dissipativity with quadratic storage
function on bounded subsets of Rnx . Combining both facts
yields the assertion.

Remark 1 (Turnpikes and parametric MIOCPs):
The above results highlight that turnpikes are to be under-
stood as similarity properties of parametric MIOCPs. We
remark that the Propositions 2 and 3 apply to non-convex
and convex MIOCPs alike.3 They also allow for linear and
nonlinear dynamics. Moreover, Theorem 4 addresses linear-
quadratic problems, which however also do not need to
be convex, i.e. indefinite matrices Q,R are included. We
remark that the solution P to the Lyapunov equation (6)
does not need to be positive definite. Moreover, notice that
dissipativity of the MICOP does not depend on the specific
choices of the linear weightings q, r in the cost function. �

We proceed to sketch how these findings can be leveraged
to design efficient solution strategies for MIOCPs.

III. BRANCH AND BOUND WITH NODE WEIGHTING

Here we focus on an intuitive strategy for branch-and-
bound algorithms that allows for exploiting a-priori knowl-
edge of a turnpike. Specifically we suggest prioritizing
exploration of nodes of the decision tree which are associated
with the steady state optimal integer decisions at the turnpike
(which is usually in the middle of the time horizon).4

To this end, let V ∈ Rnv×N be a full or partial guess
of the sequence of optimal integer decisions v?(·;x0) for
Problem (1), and let V(k) denote its k-th column, which
corresponds to the integer decisions for the kth time step.

Consider the following NLP relaxation of MIOCP (1)

NLP(V) =

{
(1) with

{
v(k) = V(k) if V(k) ∈ V
v(k) ∈ convV else

}
,

(7)
i.e. (1d) is continuously relaxed. This relaxed problem takes
V as a (partial or full) guess of the integer variables
v(0), . . . , v(N − 1). The condition V(k) 6∈ V implicitly
encodes the relaxation V(k) ∈ convV. We write J?(V)
and z?(V) to denote the optimal performance bound, respec-
tively, the (partially) relaxed solution triplet obtained from
solving NLP(V). Let dV(V) denote the number of feasible
integer components of V, i..e. dV(V) = N · nv means for
all k ∈ {0, . . . , N} V(k) ∈ V, and dV(V) = 0 implies that
all integer decisions are relaxed in (7).

Algorithm 1 lays out a straight-forward method for making
use of V in the branch-and-bound decision tree that goes
beyond warm-starting. For a decision tree consisting of

3Similar to [6], [24], we say an MINLP/MICOP is convex if its continuous
relaxation is convex.

4Indeed leveraging the concept of exact turnpikes [13], one can extend
Proposition 3 and show that the integer-valued controls will be exactly at
the turnpike in the middle part of the horizon. Note that, without additional
assumptions, in the continuous setting the solutions merely stay close to the
turnpike but do not need to reach it exactly.



Algorithm 1: Branch and Bound with Node Weighting

Input: Guesses V0 = {V0,1, . . . ,V0,M} and corresponding
weights W0 = {w0,1, . . . , w0,M}. Termination tolerance
ε > 0. Default search strategy (depth-first, breadth-first, . . . )
and corresponding weights W .
Preparation: Set U =∞, L = −∞, T = ∅. Re-index nodes
N according to weights W0. Candidate node set S = {0}.
While S 6= ∅:

1) ∀n ∈ S

w̃(n) = w(n) +

M∑
i=1

w0,i (dV(V0,i)− ‖V0,i −Vn‖0)

2) ñ = arg max
n∈S

w̃(n) and S ← S \ {ñ}

3) Solve NLP(Vñ) for J?(Vñ) and z?(Vñ) and T ←
T ∪ ñ

4) If z?(Vñ) is feasible in MIOCP (1) and J?(Vñ) < U ,
then U ← J?(Vñ), proceed to Step 5.
If J?(Vñ) > U proceed to Step 1.
Else add the child nodes of ñ to S, proceed to Step 5.

5) L← min
n∈P(S)

{J?(Vn)}
If U − L ≤ ε terminate.
Else proceed to Step 1.

nodes N , let Vn denote the integer decision related to the
node n of the branch-and-bound tree, and let P(S) denote
the parent nodes for a node set S ⊆ N . In Step 1 of
Algorithm 1, the task is to determine which node should
be explored first. To this end, the given guesses V0 and their
corresponding chosen weights W0 are used. The number of
different elements between the guess V0,i and the integer
vector at node n of the branch-and-bound tree ,Vn, is used
to compute the weight update.5 Step 2 passes the node
ñ with the highest weighting and keeps track of explored
nodes in the branch and bound tree, which is needed for
computing the lower bound in Step 5. Step 3 fixes some
integer variables according to the chosen node ñ, and the
others take values from the convex relaxation of V, cf.
(7). Step 4 determines whether the upper bound should be
updated, and if not whether child nodes of n should be added
to the list of candidate nodes. Finally, Step 5 checks whether
the algorithm should terminate due to the upper and lower
bounds being within the given tolerance ε.

It is easy to see that Algorithm 1 inherits properties of
standard branch-and-bound schemes, i.e. if the relaxed NLPs
in Step 3 are solved to global optimality then a globally
optimal solution to (1) will be found, as the worst case is full
enumeration [21]. Observe that as such Algorithm 1 does not
require any knowledge about a turnpike property. However,
the turnpike of the underlying MIOCP can and should be
encoded in (V0, W0). For example, this can be done by

5We remark that slight abuse of notation is caused by suppressing, for
the sake of readability, the vectorization in ‖V0,i −Vn‖0 in Step 1.

formulating guesses leveraging the insight of Proposition 3.
In other words, the initial guesses (V0, W0) shall comprise
high priority cases where v(k) ≡ v̄? holds.

Remark 2 (Alternative branching / weighting strategies):
We remark that one can imagine a generic branching strategy
as following a specific node-weighting pattern. For example,
a depth-first search weights lower nodes in the decision
tree more highly, while a breadth-first search would weight
the top nodes more than the bottom ones. However, in
our prototpyical implementation, we observe that it is not
advisable to explictly weight large swathes of the branch
and bound tree nodes since computing the weighting and
storing the resulting data can be computationally expensive.
Rather, as illustrated in the example of the next section, just
a few nodes should be weighted. The question of how many
nodes to weight and how to construct weighting strategies
for classes of problems that are not in the form of (1) are
still open problems. �

IV. NUMERICAL EXAMPLES

To test the performance of Algorithm 1 we consider
parametric convex linear-quadratic MIOCPs, which result
in MIQPs and for which dissipativity can be checked via
Theorem 4. The solutions are obtained using a prototypcial
implementation of Algorithm 1 within MATLAB R2019a
relying on CasADi v3.5.0 [1] and IPOPT to solve the QP
subproblems. The implemented branch-and-bound algorithm
starts with a depth-first branching strategy to obtain an upper
bound and then seeks to improve the lower bound as quickly
as possible. All numerical experiments were run on a 2.9GHz
Intel Core i5-4460S CPU with 8GB of RAM.

Example 1: We consider the dynamics proposed in [3]:

x1(k + 1) =

{
0.8x1(k) + u(k), if x1(k) ≥ 0,

−0.8x1(k) + u(k), if x1(k) < 0,

with x ≤ x1(k) ≤ x. This can be reformulated into a mixed-
integer system of equations through the introduction of the
continuous state variable x2 and the discrete input v:

x1(k + 1) = 0.8x2(k) + u(k), (8a)
2v(k)x ≤ x2(k) + x1(k) ≤ 2v(k)x, (8b)

2(v(k)− 1)x ≤ x2(k)− x1(k) ≤ 2(v(k)− 1)x, (8c)
(1− v(k))x ≤ x1(k) ≤ v(k)x, (8d)

u ≤ u(k) ≤ u, (8e)
v(k) ∈ {0, 1}. (8f)

It is easy to verify that if v(k) = 0 then x2(k) = −x1(k)
and x1(k) < 0, and if v(k) = 1 then x2(k) = x1(k) and
x1(k) ≥ 0. The considered MIOCP reads:

min
z(·)

N−2∑
k=0

l>

 x1(k)

x2
1(k)

u(k)

u2(k)

+ l>f

 x1(N−1)

x2
1(N−1)

u(N−1)

u2(N−1)

 (9)

subject to (8) and x1(0) = x0,

with l> =
[
−10 100 10 100

]
and l>f =[

−1000 100 10 100
]
.
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Fig. 2: Opt. solutions for Example 1 with N = 20 and x0 =
1. Left: state trajectories x1 (dashed blue) x2 (solid red).
Right: constrols u (dashed blue) v (solid red).

TABLE I: Guesses V0 and weights W0 for Example (9).

V0,i w0,i V0,i w0,i

[1,1,0,. . . ,0] 1 [1,1,1,0,. . . ,0] 2
[1,1,1,0,. . . ,0,1] 3 [1,1,1,0,. . . ,0,1,1] 4

[1,1,1,0,. . . ,0,1,1,1] 3 [1,1,1,0,. . . ,0,1,1,1,1] 2

All results presented use x = −1, x = 1, u = 0.5, and
u = 0.5. Algorithm 1 is provided a collection of complete
discrete solution guesses and weights, as shown in Table I.
Figure 2 depicts the optimal solution with N = 20 and
x0 = 1. Note that one can clearly spot the turnpike at z̄? =[
− 1

9
1
9 −0.2 0

]
, which corresponds to solving (2) for

this example. Shown in Table II are the aggregated results for
each combination of x1(0) = {x, x+0.1, . . . , x−0.1, x} for
N ∈ {10, 20}. These results compare Algorithm 1 without
initial guesses (“std. B&B”) to Algorithm 1 leveraging the
collection of solution vectors and weights from above (“node
wthg”). The guesses and weights used are shown in Table I.

A termination limit of 3000 seconds is set for each test,
however, the simple standard branch-and-bound algorithm
often failed to terminate within this time for many of the
larger problems, which is the cause of some suboptimality.
As evidenced by the results in Table II, the proposed node
weighting, which exploits the turnpike property of MIOCP
(9), yields solutions much more quickly.

Example 2: As a second example we consider

min
z

N−1∑
k=0

`(z(k))

s. t. ∀k ∈ {0, . . . , N − 1}, (10)
x(k + 1) = Ex(k) +B1u(k) +B2v(k), x(0) = x0

z(k) ∈ Rnx × {0, 1}

with E =

[
0 I
0 0

]
m I ∈ Rnx−1×nx−1 is the identity

matrix, `(z) = 10u + v(k) + 100u2 + 100x>x, and B1 =

TABLE II: Results for Example 1 for 21 samples of x0.

T = 20 std. B&B node wght

avg. # nodes 1125.15 925.24
median # nodes 1126 890
avg. runtime (s) 3000 466.01
median runtime 3000 274.83

best # nodes 1111 508
best runtime (s) 3000.12 90.63

avg. subopt. 423 0

T = 10 std. B&B node wght

avg. # nodes 503.43 147.71
median # nodes 515 102
avg. runtime (s) 739.87 149.95
median runtime 357.19 7.01

best # nodes 135 34
best runtime (s) 15.85 2.08

avg. subopt. 0 0

[
0 0 . . . 0 1

]>
, B2 =

[
1 1 . . . 1 1

]>
. The

turnpike is at z̄? = 0.
Shown in Figure 3 is an example of the optimal solutions

for N = 20 and three state variables nx = 3. Observe that
while Problem (9) exhibits a so-called leaving arc—i.e. the
optimal solutions depart from the turnpike towards the end
of the horizon—this is not the case in Problem (10).

The intial guesses V0 are constructed as partial guesses
of the integer controls corresponding to v? for k ≥ k̂
with k̂ = {2, . . . , 6}. Each time Algorithm 1 is called
only one of the guesses is passed (#V0 = 1), its weight
is set to w0,1 = 4 · maxw∈W w. Shown in Table III
are the aggregated results for each combination of x0 =[
−0.9 −0.8 . . . 0.8 0.9

]>
+ r for N = 10, 20 and

40, where r is a uniformly distributed random vector whose
entries range between −0.1 and 0.1. Overall we consider
19 different samples of x0. Moreover, we consider the
dimension of the state to be nx = 30. As in Example (9),
“node wght” denotes the results from Algorithm 1 using this
weighting, while “std. B&B” does not use any initial guesses.
The results seen in Table III illustrate the dramatic benefit
even a simply node weighting strategy can give. It can be
seen that the standard branch-and-bound method is an order
of magnitude slower in the smallest case, and this gap only
increases as the length of the turnpike increases. Note that
all algorithms converge to the optimal solution. Part of the
reason for the quick convergence is that rearranging nodes in
the setup of Algorithm 1 results in a decision tree with some
infeasible or integer-feasible solutions at the first nodes that
are explored. This prunes many of the subsequent nodes and
greatly reduces the search space.

V. CONCLUSIONS AND OUTLOOK
This note has taken first steps towards a turnpike theory

for mixed-integer OCPs, thus paving the road for a better
understanding of properties of parametric MIOCPs. Specifi-
cally, we have provided sufficient turnpike conditions based
on a dissipativity notion of MIOCPs. We have also shown
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Fig. 3: Optimal solution for Example 2 with N = 20 and
dim(x) = nx = 3. Left: state trajectories. Right: controls u
(dashed blue) v (solid red).

TABLE III: Results for Example 2 for 19 samples of x0 ∈
R30 and five different guesses V0 = {V0,1}.

T = 10 std. node
nx = 30 B&B wght

avg. # nodes 51.79 6.11
median # nodes 52 6
avg. runtime (s) 2.96 0.32
median time (s) 2.46 0.31

best # nodes 36 2
best runtime (s) 1.61 0.11

T = 40 std. node
nx = 30 B&B wght

avg. # nodes 228.5 6.42
median # nodes 232 6
avg. runtime (s) 35.7 0.77
median time (s) 36.7 0.73

best # nodes 158 2
best runtime (s) 16.31 0.23

that the discrete controls will enter the turnpike exactly,
while for the continuous controls this is not necessarily the
case. For the special case of linear-quadratic MIOCPs we
have presented an easy to check sufficient condition for
dissipativity of MIOCPs on compact sets. Moreover, we
have discussed how these insights can be easily leveraged to
design node-weighted branch-and-bound schemes. While the
present work appears to be the very first to discuss turnpikes
in MIOCPs, at this stage our numerical results are an initial
step relying on prototypical implementations. Future work
will focus on several aspects including further exploitation
of the turnpike phenomenon in branch-and-bound schemes
for convex and non-convex MIOCPs.
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Real-time optimization for large scale processes: Nonlinear model
predictive control of a high purity distillation column. In Online
Optimization of Large Scale Systems, pages 363–383. Springer, 2001.

[9] R. Dorfman, P.A. Samuelson, and R.M. Solow. Linear Programming
and Economic Analysis. McGraw-Hill, New York, 1958.

[10] V. Dua, N.A. Bozinis, and E.N. Pistikopoulos. A multiparametric pro-
gramming approach for mixed-integer quadratic engineering problems.
Computers & Chemical Engineering, 26(4-5):715–733, 2002.

[11] V. Dua and E.N. Pistikopoulos. An algorithm for the solution of
multiparametric mixed integer linear programming problems. Annals
of operations research, 99(1-4):123–139, 2000.

[12] S. Engell and I. Harjunkoski. Optimal operation: Scheduling, advanced
control and their integration. Computers & Chemical Engineering,
2012.

[13] T. Faulwasser and D. Bonvin. Exact turnpike properties and economic
NMPC. European Journal of Control, 35:34–41, February 2017.
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