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Abstract— We consider policy gradient algorithms for the
indefinite least squares stationary optimal control, e.g., linear-
quadratic-regulator (LQR) with indefinite state and input
penalization matrices. Such a setup has important applications
in control design with conflicting objectives, such as linear
quadratic dynamic games. We show the global convergence of
gradient, natural gradient and quasi-Newton policies for this
class of indefinite least squares problems.

I. INTRODUCTION

Least squares stationary optimal control provides an ef-
fective synthesis procedure for linear control systems since
Kalman’s original work in the 1960s [1]. This setting was
later extended beyond positive semidefinite cost structure by
Willems [2]. It is known that similar to standard LQR, this
setup can be examined using the Algebraic Riccati Equation
(ARE); DARE refers to the discrete analogue of this matrix
equation. Historically, a large number of works have studied
the solution of ARE and DARE, including approaches based
on iterative algorithms [3],1 algebraic solution methods [4],
and semidefinite programming [5].

Although the cost function plays a fundamental role in
the least squares optimal control, it is generally not “recom-
mended” to directly compute the optimal gain (policy) using
this cost without solving the associated Riccati equation.2

This approach, in the meantime, is in sharp contrast to how
one would typically go about minimizing a cost function
over the variable of interest in introductory optimization, say,
through gradient descent.3 Recently, there has been a surge
of interest in constructing optimal control strategies directly,
viewing control synthesis through the lens of first order
methods.4 Adopting such a point of view has been partially
inspired by the application of learning algorithms in control,
such as Reinforcement Learning (RL), where using princi-
ples of (approximate) dynamic programming, one can devise
real-time model-free methods for both continuous-time and
discrete-time optimal control problems [6]–[13]. The RL
perspective not only provides more insights into the synthesis
problem, but also can be extended to model-free settings
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1In Hewer’s original work, Q and R are positive definite. However, the
algorithm still converges even for the indefinite cost structure [4].

2In this note, feedback gain, feedback control and feedback policy are
used interchangeably.

3This is essentially due to the dynamic nature of the constraint set.
4One might as well extrapolate that these methods provide a streamline

recipe for learning optimal feedback gains in real-time.

by means of stochastic (zeroth-order) optimization [14],
[15]. However, policy iteration is inherently prohibitive for
an infinite horizon cost structure that is undiscounted and
unbounded per stage [13].

The main contribution of this note is to extend pol-
icy based algorithms beyond positive (semi)definite cost
structures considered in [16], [17]. More specifically, we
show that under mild assumptions, even when the state
and cost penalization matrices are indefinite in the least
squares optimal control, gradient policy (respectively, natural
gradient and quasi-Newton policies) converges to the global
minimizer at a linear (respectively, linearly and Q-quadratic)
rate. Along the way, we devise a distinct approach for arguing
the stability of the iterative process as compared with those
adopted in previous works.5

The note is organized as follows. In §II, we introduce
the notation and preliminaries. §III is devoted to the LQR
setup, analytical properties of the cost function, a “mild”
assumption, and its implications. In §IV, we derive the
corresponding stepsizes for gradient descent (GD), natural
gradient descent (NGD), and quasi-Newton (QN) iterations;
we then show the global linear (respectively, linear and
Q-quadratic) convergence of gradient policy (respectively,
natural gradient policy and quasi-Newton policy) under the
proposed stepsizes. A numerical example is provided in §V.
The note is concluded in §VI.

II. NOTATION AND PRELIMINARIES

We denote by Mn×m(R) the set of n ×m real matrices.
Rn denotes the n-dimensional real Euclidean space; when
n = 1, this set is identified with the set of real numbers. Other
notation include A⊺, ρ(A), Tr(A), representing the trans-
pose, spectral radius, and trace of the matrix A, respectively.
The real inner product between a pair of vectors x and y is
denoted by ⟨x, y⟩. ∥A∥2 denotes the spectral (operator) norm
of a square matrix A and ∥A∥F denotes its Frobenius norm.6

Lastly, the notation A ⪰ B for two symmetric matrices refers
to the positive semi-definiteness of their difference A − B;
analogously for positive definiteness of this difference we
use A ≻ B. We let λi(A) denote the eigenvalues of a square
matrix A. These eigenvalues are indexed in an increasing
order with respect to their real parts, i.e.,

Re(λ1(A)) ≤ ⋅ ⋅ ⋅ ≤ Re(λn(A)).

5The proposed technique also provides an alternative way to argue
stability properties of the iterative process under standard LQR assumptions.

62-norm is assumed when we use ∥.∥.
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If A is symmetric, the ordering becomes λ1(A) ≤ ⋅ ⋅ ⋅ ≤

λn(A). When A ⪰ 0, ∥A∥ = λn(A) and we shall use these
interchangeably. We use Cω(U) to denote the set of real
analytic functions over an open set U ⊆ Rn. A square matrix
A ∈ Mn×n(R) is Schur if ρ(A) < 1. A pair (A,B) is
stabilizable if there exists some K for which A − BK is
Schur. Given a pair of system matrices (A,B), S denotes
the set of Schur stabilizing feedback gains,

S = {K ∈Mm×n(R) ∶ ρ(A −BK) < 1}.

For the pair (A,B), we say that K is stabilizing if A−BK
is Schur; it is marginally stabilizing or almost stabilizing if
ρ(A−BK) = 1. An eigenvalue λ of A ∈Mn×n(R) is called
(C,A)-observable if

rank
⎛

⎝
(
A − λI
C

)
⎞

⎠
= n,

for a given C ∈ Mp×n(R); p is the dimension of the output
of a linear system.

III. PROBLEM SETUP

In the standard least squares (stationary) optimal control,
we consider a (discrete-time) linear time invariant model of
the form,

xk+1 = Axk +Buk,(1)

where A ∈ Mn×n(R), B ∈ Mn×m(R) and (A,B) is stabi-
lizable. The corresponding LQR problem is the optimization
problem of devising a linear feedback gain K ∈ Mm×n(R)

for which uk = −Kxk, minimizing,7

J(x0) =
∞
∑
k=0

[⟨xk,Qxk⟩ + ⟨uk,Ruk⟩] ,

where x0 is the initial condition, and the quadratic cost is
parameterized by Q = Q⊺ and R = R⊺; note that we do
not require positive (semi-)definiteness of Q and R. Such
a generalization is not only of theoretical interest but also
has important applications in network synthesis and stability
theory [2]. In order to update the feedback gain (policy)
directly, it will conceptually be appealing to consider the
cost as a matrix function over the set of feedback gains.
With this aim in mind, we may define Jx0 ∶Mm×n(R) → R
as,
(2)
Jx0(K) = ∑

∞
j=0 [⟨(A −BK)jx0, (Q +K⊺RK)(A −BK)jx0⟩] ,

for some fixed initial condition x0 ∈ Rn. Note that the cost
function J is a function of the policy K and initial condition
x0. Since we are interested in optimal policy independent of
initial conditions, naturally, we should reformulate the cost
function to reflect this independence. Indeed, this point has
been discussed in [17] where it is argued that such a formula-
tion is necessary for the cost function to be well defined (see
details in §III [17]). The independence with respect to the

7The condition that uk has the form −Kxk is not set a priori in the
LQR formulation; this feedback form is typically shown via the adoption
of a dynamic programming step.

initial condition can be achieved by either sampling x0 from
a distribution with full-rank covariance [16], or choosing a
spanning set {z1, . . . , zn} ⊆ Rn [17], and defining the value
function over S as,

f(K) =
n

∑
i=1
Jzi(K),(3)

where Jzi(K) is the cost by choosing initial state x0 as zi
and letting uk = Kxk. Note that over the set S, f admits a
compact form f(K) = Tr(XΣ), where Σ = ∑

n
i=1 ziz

⊺
i and

X is the solution to the Lyapunov equation,

(A −BK)
⊺X(A −BK) +Q +K⊺RK =X.(4)

How the cost function f behaves near the boundary
∂S is of paramount importance in the design of iterative
algorithms for least squares optimal control problems. In the
standard setting, the cost function diverges to +∞ when the
feedback gain approaches the boundary of this set (see [17]
for details). In fact, this property guarantees stability of the
obtained solution via first order iterative algorithms for the
suitable choice of stepsize. However, the behavior of f on
the boundary ∂S could be more intricate. For example, if
K ∈ ∂S, i.e., ρ(A − BK) = 1, then it is possible that
the cost is still finite. This happens when an eigenvalue
of A − BK on the unit disk in the complex plane is not
(Q+K⊺RK,A−BK)-observable. To see this, we note that
for every ωi, the series

Jωi(K) = ω⊺i (∑
∞
j=0((A −BK)⊺)j(Q +K⊺RK)(A −BK)j)ωi.

is convergent to a finite (real) number if the marginally
stable modes are not detectable. Even on S̄c (complement
of closure of S), f could be finite if all non-stable modes
of A −BK are not (Q +K⊺RK,A −BK)-observable. The
complication suggests that the function value is no longer a
valid indictor of stability. We remark that such a situation
does not occur in the LQ setting examined in [16], [17], as
it has been assumed that Q is positive definite.

A. Analytical properties of the indefinite cost function

In this section, we collect some useful analytic characteri-
zations of f(K). To simplify the notation, in the rest of this
paper, we set,

AK := A −BK, and NK := RK −B⊺X(A −BK);

when the context is clear, we will write N instead of NK ;
in describing the iterative process on the gain matrix (when
K is updated), we shall denote NKj as Nj .

Proposition III.1. The indefinite least squares optimal con-
trol problem (3) on the set of stabilizing feedback gains has
the following properties:

a) The set S is regular open, contractible, and unbounded
when m ≥ 2 and the boundary ∂S is precisely the set
B = {K ∈Mm×n(R) ∶ ρ(A −BK) = 1}.

b) For the cost (3), one has f ∈ Cω(S).
c) The gradient of f (3) is given by

∇f(K) = 2(RK −B⊺XAK)YK ,



where YK solves the Lyapunov matrix equation,

AKY A
⊺
K +Σ = Y.(5)

d) Let K,K̃ ∈ S̄;8; suppose that the corresponding Lya-
punov matrix equations (4) have symmetric solutions
X and X̃ , respectively.9 Namely,

A⊺
KXAK +Q +K⊺RK =X,

A⊺
K̃
X̃AK̃ +Q + K̃⊺RK̃ = X̃.

Then we have

A⊺
K̃
(X − X̃)AK̃ + (K − K̃)

⊺NK +N⊺
K(K − K̃)

− (K − K̃)
⊺
(R +B⊺XB)(K − K̃) =X − X̃.

e) Suppose that K∗ ∈ arg minK∈S f(K). Then

τ1∥K −K∗∥2F ≤ f(K) − f(K∗) ≤ τ2⟨NK ,NK⟩,

where

τ1 = λ1(Y )λ1(R +B⊺XB), τ2 =
λn(Y∗)

λ1(R +B⊺XB)
,

and Y∗ solves the Lyapunov equation (5) with K∗.

The proofs of these results can be found in [17]. We
emphasize that (e) holds only if arg minK∈S f(K) ≠ ∅,
namely, there exists K∗ ∈ S such that f(K) ≥ f(K∗) for
every K ∈ S. In the next subsection, we shall elaborate on a
“mild” assumption to ensure that this condition holds.

B. A key assumption and its consequences

Throughout the manuscript, we have the following stand-
ing assumption.

Assumption 1. There exists a strict local minimizer of f(K)

over S . In other words, there exists some K∗ ∈ S and an open
neighborhood Bδ(K∗) = {K ∶ ∥K −K∗∥F < δ}, such that
f(K∗) < f(K) for every K ∈ Bδ(K∗) ∩ S.

Remark III.2. The seminal work of Willems [2] explores
many facets of the least squares optimal control with indefi-
nite Q and R;10 in particular, this work examines conditions
for which the above assumption holds. We will not discuss
these conditions and instead refer the reader to [2] and
references therein.

We observe several implications of this assumption.

Proposition III.3. Suppose that K∗ is the strict local min-
imizer of f(K) over S and X∗ is the corresponding value
matrix. Then,

a) X∗ =X⊺
∗ ,

b) R +B⊺X∗B ≻ 0,
c) X∗ solves the DARE (6),

(6) X = A⊺XA +Q −A⊺XB(R +B⊺XB)
−1B⊺XA,

8
S̄ is the closure of S.

9Note that the assumption clearly holds if K, K̃ ∈ S. It will also holds
if K ∈ ∂S and the eigenvalues of A −BK on the unit disk are not (Q +

K⊺RK,A −BK)-observable.
10An our adopted terminology is in his honor.

d) The minimizer K∗ is the unique global minimizer,
e) X∗ is the maximal solution to DARE (6) and is unique

among all almost stabilizing solutions of (6).

Proof. Part (a) follows from having X∗ solve the Lyapunov
matrix equation (4) with K =K∗ and the fact that Q+K⊺RK
is symmetric. For parts (b) and (c), we first note that if K∗
is a strict local minimizer in S , since f ∈ Cω(S), first-order
and second-order optimality conditions imply ∇f(K∗) =

0 and ∇2f(K∗) ≻ 0. By the Hessian formula in [17],
we have R + B⊺X∗B ≻ 0, i.e., (b) holds. Further, since
∇f(K∗) = NK∗YK∗ and YK∗ ≻ 0, it follows that NK∗ = 0.
Namely, RK∗ − B⊺X∗AK∗ = 0. Substituting K∗ = (R +

B⊺X∗B)−1B⊺X∗A into the Lyapunov equation (4), we have
that X∗ solves the DARE (6). For part (d), it suffices to
observe that K∗ is the unique stationary point. To this end,
suppose that there exist K∗,1 and K∗,2 such that the gradient
vanishes at both points, namely NK∗,1 = NK∗,2 = 011. By
part (d) in Proposition III.1, we have

X∗,1 −X∗,2 = A⊺
K∗,2

(X∗,1 −X∗,2)AK∗,2
− (K∗,1 −K∗,2)⊺(R +B⊺X∗,1B)(K∗,1 −K∗,2).

As AK∗,2 is Schur, it follows that X∗,1 ⪰X∗,2 and similarly
X∗,2 ⪰X∗,1. Hence, the stationary point is unique. Part (e)
follows from standard DARE theory (see Chapters 12 and
13 in [4] for details.)

IV. GLOBAL CONVERGENCE OF POLICY GRADIENT
ALGORITHMS

In this section, we show the global convergence of gradient
descent (GD), natural gradient descent (NGD), and quasi-
Newton (QN) iterations for indefinite least squares optimal
control. In particular, under Assumption 1, it is shown that
gradient descent (respectively, natural gradient descent and
quasi-Newton) converges to the maximal solution of the
DARE at a linear (respectively, linear and quadratic) rate. In
this direction, first recall that the gradient, natural gradient
and quasi-Newton directions [17] are given by,

g(K) := 2(RK −B⊺XAK)Y,

n(K) := 2(RK −B⊺XAK),

qn(K) := 2(R +B⊺XB)
−1

(RK −B⊺XAK);

GD, NGD and QN now refer to following update rules:

GD ∶ Kj+1 =Kj − ηjg(Kj),(7)
NGD ∶ Kj+1 =Kj − ηjn(Kj),(8)

QN ∶ Kj+1 =Kj − ηjqn(Kj),(9)

where ηj’s are stepsizes to be determined. We provide the
convergence analysis for the case of natural gradient descent.

Theorem IV.1 (Natural Gradient Analysis). Consider the
iterates {Kj} generated by NGD (8), with stepsize ηj =

1/(2λn(R+B
⊺XjB)), where {Xj} solve the corresponding

Lyapunov equations (4). Then both the function values and

11This follows from YK ≻ 0 for every K ∈ S.



gain iterates converge to their corresponding global minima
at a linear rate. That is,

f(Kj) − f(K∗) ≤ q
j
1(f(K0) − f(K∗)),

∥Kj −K∗∥2F ≤ c1q
j
1∥K0 −K∗∥2F ,

for some q1 ∈ (0,1) and c1 > 0.

Proof. The analysis provided in [17] for the one-step pro-
gression of NGD holds here; thus the convergence rate would
remain the same if we can prove that the iterates remain
stabilizing.

By induction, it suffices to argue that with the chosen
stepsize, Kj is stabilizing provided that Kj−1 is. Consider the
ray {Kt = Kj−1 − tn(Kj−1) ∶ t ≥ 0}. Note that by openness
of S and continuity of eigenvalues, there is a maximal
interval [0, ζ)12 such that Kj−1 + tn(Kj−1) is stabilizing for
t ∈ [0, ζ) and Kj−1 + ζn(Kj−1) is marginally stabilizing.
Now suppose that ζ ≤ 1/(2λn(R1 +B

⊺
1Xi−1B1)); take a

sequence tl ∈ [0, ζ) such that tl → ζ. Consider the sequence
of value matrices {Xtl} and denote by L as the set of all
limit points of {Xtj}. Observe that X∗ ⪯ Xtl ⪯ Xj−1. By
Bolzno-Weierstrass [18], L is nonempty.13 By continuity, any
Z ∈ L solves,

Z = (A −BKζ)
⊺Z(A −BKζ) +Q +K⊺

ζRKζ .

Now by part (d) in Proposition III.1, we have

Z −X∗ = (A −BKζ)
⊺
(Z −X∗)(A −BKζ)

+ (Kζ −K∗)⊺(R +B⊺X∗B)(Kζ −K∗).

Suppose that (λ, v) is the eigenvalue-eigenvector pair of A−
BKζ such that (A−BKζ)v = λv and ∣λ∣ = 1. Then it follows
that,

v⊺(Z −X∗)v = v⊺(A −BKζ)
⊺
(Z −X∗)(A −BKζ)v

+ v⊺(Kζ −K∗)⊺(R +B⊺X∗B)(Kζ −K∗)v.

Thereby (Kζ − K∗)v = 0 and Kζv = K∗v. Consequently,
(A − BK∗)v = (A − BKζ)v. But this is a contradiction to
the assumption that K∗ is a stabilizing solution.

Hence {Xj} is a monotonically non-increasing sequence
bounded below by X∗. As such, the sequence of iterates
{Kj} and the sequence of function values {f(Kj)} converge
linearly to K∗ and f(K∗) following the arguments in [17].

We mention that the above stability argument can be
applied for the sequence generated by the quasi-Newton
iteration as well. The quadratic convergence rate for such
a sequence would then follow from the proof in [17].

Theorem IV.2 (Quasi-Newton Analysis). Suppose Assump-
tion 1 holds. Consider the iterates {Kj} generated by QN (9)
with stepsize ηj = 1/2. Then both the function values and

12We suppose ζ is finite; if ζ is infinite, there is nothing needed to be
shown.

13Note that it is not guaranteed that Xtj is convergent. The limit points
are also not necessarily well-ordered in the ordering induced by the p.s.d.
cone.

iterates converge to their respective global minima at a Q-
quadratic rate. That is,

f(Kj) − f(K∗) ≤ q2(f(Kj−1) − f(K∗))2,

∥Kj −K∗∥2F ≤ c2q2∥Kj−1 −K∗∥4F ,

for some q2 > 0 and c2 > 0.

The gradient policy analysis requires more work since
the stepsize developed in [17] involves the smallest eigen-
value λ1(Q). However by carefully replacing “λ1(Q)-related
quantities” in [17], one can still prove the global linear
convergence rate as follows.

Theorem IV.3 (Gradient Analysis). Suppose Assumption
1 holds. Consider the iterate {Kj} generated by GD (7)
with stepsize ηj specified in Theorem A.3. Then both the
function values and iterates converge to their respective
global minima at a linear rate. That is,

f(Kj) − f(K∗) ≤ q
j
3(f(K0) − f(K∗)),

∥Kj −K∗∥2F ≤ c3q
j
3∥K0 −K∗∥2F ,

for some q3 ∈ (0,1) and c3 > 0.

In [17], the compactness of sublevel sets have been used
to devise the stepsize rule to guarantee a sufficient decrease
in the cost and stability of the iterates. The proof of com-
pactness in [17] however, relies on the positive definiteness
of Q and R.14 But, we can show that a perturbation bound
can be employed to derive a suitable constant stepsize for
the indefinite cost structure as well. The details of this
observation are deferred to the Appendix A.

V. A NUMERICAL EXAMPLE

In this section, we show the proposed convergence results
by a numerical example. The system parameters are A =

0.5I , B = I , R = I and

Q =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1.62370842 0.36712592 −1.31209102 1.97803823 −0.49297266
0.36712592 2.21878741 0.47525552 −1.07142839 1.04343275
−1.31209102 0.47525552 1.90887732 −0.83057818 0.3818043
1.97803823 −1.07142839 −0.83057818 0.93847322 −0.90779531
−0.49297266 1.04343275 0.3818043 −0.90779531 −1.06295748

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Note that Q is indefinite and its (rounded) eigenvalues are
4.75,2.55,0.96,−1.1,−1.53. Figures 1-2 show the global
linear convergence of the gradient policy update. The global
linear convergence of natural gradient policy are demon-
strated in Figures 3-4. Figures 5-6 show the Q-quadratic
convergence for the quasi-Newton policy update.

VI. CONCLUDING REMARKS

This note considers policy gradient algorithms for the
indefinite least squares stationary optimal control, e.g., indef-
inite LQR. We show the global linear (respectively, linear and
Q-quadratic) convergence of gradient policy (respectively,
natural gradient and quasi-Newton policies.) Although these
results are presented assuming the knowledge of the system
matrices, gradient and natural gradient policies can be ex-
tended to model-free case by means of stochastic (zeroth

14Or the observability of (Q,A).
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order) optimization (see [16] for details). As such, this note
extends the results reported in [16], [17] for indefinite LQR.
These extensions have important implications for optimal
control, stability analysis and LQ games. Indeed, some
of these observations have been utilized to show global
convergence of sequential policy updates in LQ dynamic
games [19].
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APPENDIX

A. Gradient Policy Analysis for Nonstandard LQR

This section is devoted to the proof of Theorem IV.3. As it
was pointed out previously, the strategy adopted in [16], [17]
are no longer viable for an indefinite cost structure. However,
as we will show, a perturbation bound would circumvent this
issue and allows deriving the required stepsize, guaranteeing
a decrease in function values while ensuring stabilization.

In the following, we shall drop all the subscripts as the
stepsize will be valid for every iterate. Suppose now that
we have a stabilizing policy K and the gradient direction
is given by g(K) = 2NY .15 The main object that we work
with in this section is the ray starting at K along the gradient
direction,

{Kη ∶K − ηg(K), η ≥ 0}.

We shall further denote Aη = A−BKη = A−B(K−η2NY ).
Here is an outline of our proof strategy:

a) By the openness of S and continuity of eigenvalues,
there exists a maximal interval [0, c) such that Kη

is stabilizing for every η < c and Kc is marginally
stabilizing; such a c could be either finite or infinite.

15Note the subscripts are dropped; N and Y are both dependent on K



b) Now suppose that c above is known. Then for every
η < c, f(Kη) is well-defined and we can compute the
difference,

f(K) − f(Kη) = 4ηTr (N⊺N(Y Yη − ηaY YηY )) ,

where a = λn(R+B⊺XB), and Yη solves the Lyapunov
matrix equation,

(A −BKη)Yη(A −BKη)
⊺
+Σ = Yη.

c) Next we define a univariate function φ ∶ [0, c) → R by,

φ(η) = Tr (N⊺N(Y Yη − ηaY YηY )) .

Note that φ(0) > 0 if the gradient does not vanish at K.
Now our goal is to characterize a step size 0 < η′ < c
such that φ(η′) > 0.

It is clear that the knowledge of c and characterizing η′

above are crucial for stepsize analysis. We shall demonstrate
that characterizing η′ will suffice to provide a stepsize; the
quadratic cost structure will implicitly enforce stabilization.

To begin, we observe a perturbation bound on Yη , assum-
ing that Kη is stabilizing.

Proposition A.1. Put µ1 = ∥Y ∥2∥B1NY ∥22/λ1(Σ) and µ2 =

∥Y ∥2∥B1NY ∥2∥AK∥2/λ1(Σ), and let

η0 =

√
µ1 + µ2

2

4µ1
−
µ2

4µ1
;

suppose that Aη is Schur stable for every η ≤ η0. Then for
all η ≤ η0,

∥Yη∥2 ≤ β0∥Y ∥2,

where β0 = 1/(1 − 4µ1η
2
0 − 4µ2η0) > 0.

Proof. Taking the difference of the corresponding Lyapunov
equations, we have

Yη − Y −AK(Yη − Y )A⊺
K

= 2η (AKYη(B1NY )
⊺
+BNY YηA

⊺
K)

+ 4η2BNY Yη(BNY )
⊺

⪯ ∥Yη∥2 (4η∥BNY ∥2∥AK∥2 + 4η2∥BNY ∥
2
2) I

⪯ ∥Yη∥2 (4η∥BNY ∥2∥AK∥2 + 4η2∥BNY ∥
2
2)

Σ

λ1(Σ)
.

It thus follows that,

Yη − Y ⪯
∥Yη∥2 (4η∥BNY ∥2∥AK∥2 + 4η2∥BNY ∥22)

λ1(Σ)
Y.

Hence,

∥Yη∥2 (1 −
∥Y ∥2(4η∥BNY ∥2∥AK∥2+4η2∥BNY ∥22)

λ1(Σ) ) ≤ ∥Y ∥2.

The proof is completed by a direct computation showing that
1/β0 = 1 − µ1η

2
0 − 4µ2η0 > 0 with the choice of η0 and for

every η ≤ η0,

1 − 4µ1η
2
− 4µ2η ≥ 1 − 4µ1η

2
0 − 4µ2η0.

The next lemma shows that if c is known, a positive
stepsize can be chosen.

Lemma A.2. Let c be the largest real positive number
such that At is Schur stable for every t ∈ [0, c) and Ac
is marginally Schur stable.16 Let

a1 = aβ0∥Y ∥2 + 4∥N∥2β0∥Y ∥
2
2, a2 = a4∥N∥2β0∥Y ∥

2
2;

then with η1 ≤ min(c−ε, η0, c0), where ε > 0 is an arbitrary
positive real number and

c0 <

¿
Á
ÁÀ 1

a2
+
a21
4a22

−
a1
2a2

,

one has φ(η1) ≥ 0.

Proof. The computation follows a similar method used
in [17] by replacing the estimate of Y (θ) by the bound in the
above proposition (see details in Lemma 5.5 in [17]).

Finally, we show that c > min(η0, c0). This would then
imply that one can choose the stepsize as η = min(η0, c0).

Theorem A.3. With the stepsize η = min(η0, c0), Mη

remains stabilizing and φ(η) ≥ 0.

Proof. Let η = min(η0, c0). It suffices to prove that for every
t ∈ [0, η], At is Schur stabilizing and φ(t) ≥ 0. We prove
this by contradiction. Suppose that this is not the case. Then
by continuity of eigenvalues, there exists a number η′ ≤ η
such that As is stabilizing for every s ∈ [0, η′) and Kη′ is
marginally stabilizing. If this is the case, the choice of η0, c0
guarantees that for every s ∈ [0, η′), φ(s) is well-defined
and φ(s) ≥ 0. Now take a sequence ti → η′ and consider the
corresponding sequence of value matrices {Xti}. Note that
the sequence of function values Tr(XtiΣ) satisfies,

Tr(X∗Σ) ≤ Tr(XtiΣ) ≤ Tr(XΣ),

since φ(t) ≥ 0. But this implies that {Xti} is a bounded
sequence (note that the above inequality on function values
does not guarantee the boundedness of the sequence; it is
crucial that Xti ⪰X∗). Hence by a similar argument adopted
in the proof of Theorem IV.1, these observations establish
a contradiction; as such, the proposed stepsize guarantees
stabilization.

It is now straightforward to conclude the convergence rate
of Theorem IV.3 by similar arguments as in [17].17

16Here we have assumed that c is not +∞. Of course, if c = +∞, then
any stepsize would lead to a stabilizing update.

17Strictly speaking, we need to show our proposed stepsizes are bounded
away from 0. Namely, that there is some constant d > 0 such that ηj > d for
every j. The computations are omitted here due to space limitation. In the
meantime, one can be convinced of this fact by checking the asymptotics
of η0 and c0.
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