
ON A RELAXATION OF TIME-VARYING ACTUATOR PLACEMENT

ALEX OLSHEVSKY

Abstract. We consider the time-varying actuator placement in continuous time, where
the goal is to maximize the trace of the controllability Grammian. A natural relaxation
of the problem is to allow the binary {0, 1} variable indicating whether an actuator
is used at a given time to take on values in the closed interval [0, 1]. We show that
all optimal solutions of both the original and the relaxed problems can be given via an
explicit formula, and that, as long as the input matrix has no zero columns, the solutions
sets of the original and relaxed problem coincide.

1. Introduction

1.1. Time-Varying Actuator Placement. We consider the time-varying actuator place-
ment problem: informally, given a differential equation with input, we would like to
optimize some controllability-related objective while using few nonzero inputs per time
step. This is motivated by scenarios where setting an input to something nonzero at a
given time carries a fixed cost that can be much larger than the cost of synthesizing the
input itself. Our variation of the problem is “time-varying,” in the sense that we allow
different inputs to be nonzero at different times; this is in contrast to “fixed” actuator
placement problems, where one has to select the same set of actuators to be nonzero
across all time.

Formally, we are given a differential equation with input

ẋ(t) = Ax(t) + Bu(t), 0 ≤ t ≤ T,

where we assume that A ∈ Rn×n and B ∈ Rn×m is a matrix with no zero columns1.
Our goal is to choose a diagonal matrix V(t) whose entries lie in the binary set {0, 1}
optimizing some controllability-related properties of the resulting differential equation

ẋ(t) = Ax(t) + BV(t)u(t).

The multiplication of the input u(t) by the diagonal matrix V(t) can be thought of as
choosing to use only certain actuators. Indeed, if Vii(t) = 0, then ui(t) has no effect on
x(t), and the i’th entry of the input is ignored at time t.

1If B does have zero columns, then the corresponding entry of u(t) does not affect x(t). Consequently,
we can simply delete the nonzero columns of B and reindex the vector u(t).
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Typical controllability-related objectives are usually formulated in terms of the con-
trollability Grammian, which we define2

WV =

∫ T

0
eAtBV(t)V(t)T BT eAT t dt.

The most natural objective is perhaps to minimize Tr(W−1
V ), which is proportional to the

average energy to move from the origin to a uniformly random point on the unit sphere
(see e.g., discussion in [17]). However, this function is often challenging to reason
about. For example, as a consequence of [16, 23] a number of optimization problems
involving Tr(W−1

V ) are NP-hard.
We follow several recent papers which instead consider maximization of Tr(WV).

This is because Tr(WV) is easier to reason about and can be used to construct bounds
on Tr(W−1

V ) (see discussion in [14, 15, 8]). Furthermore, we will seek to do so in the
presence of an upper bound on the number of actuators used per unit time step. More
formally, denoting V(t) = diag(v(t)), it is typically assumed that the diagonal entries
vi(t) ∈ {0, 1} satisfy the constraint ∫ T

0

m∑
i=1

|vi(t)| ≤ α,

for some α. We will refer to functions vi(t) satisfying these constraints as feasible. Note
that, because we have constrained vi(t) ∈ {0, 1}, this is the same as requiring that

m∑
i=1

µ({t : vi(t) = 1}) ≤ α,

where µ(·) denotes the Lebesgue measure. We will naturally assume that α ∈ (0,mT ),
as otherwise the problem is trivial.

A natural relaxation of the problem is to allow each vi(t) to lie in the closed interval
[0, 1] instead of requiring it to take on the binary values {0, 1}. We will refer to this
as the relaxed time-varying actuator placement problem, and the version where vi(t)
are required be in {0, 1} will be referred to as the original time-varying actuator place-
ment problem. These definitions lead to the main question which is the concern of this
work, namely understanding when the optimal solutions sets of the original and relaxed
problem coincide.

1.2. Previous work. Our paper is most closely related to the recent work [8], where
the same question was considered. We next give a statement of the main results of [8].

Let us adopt the notation b j for the j’th column of the matrix B. Further, for i =

1, . . . ,m, we consider the functions

fi(t) = bT
i eAT teAtbi. (1)

2It would be more standard to replace t by T − t in the definition of the controllability Grammian, but
since that definition is equivalent to the one we give with a “flipped” V(t), we prefer to avoid dealing with
T − t’s throughout this paper.
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It is then possible to give a condition in terms of the functions fi(t) for the relationship
between the original and relaxed time-varying actuator placement problems.

Theorem 1.1 ([8]). The optimal solution set of the relaxed problem is non-empty. Fur-
ther, assuming that assuming that fi(t) is not constant for all i ∈ {1, . . . ,m}, we have
that:

(1) All optimal solutions of the relaxed problem take {0, 1} values almost every-
where.

(2) The optimal solution of the the solution sets of the original and relaxed actuator
scheduling problems coincide.

This theorem is an amalgamation of Theorems 1-3 in [8]. It provides an answer to
the motivating concern of the present paper. Related theorems in more general settings
were also proved in [7] and [9]. However, the condition that fi(t) are not constant is
only shown to be sufficient in this theorem. As can be seen (see Section 2.3 below), this
condition is not necessary for the two solution sets to coincide.

Moreover, in discrete-time the optimal schedule for the original problem can be found
by a greedy method (see Theorem 5 of [5]). This suggests it may be possible to give
a characterization of the optimal schedule for the original & relaxed problems in the
continuous-time model studied in this paper.

Our paper is also related to the works [14, 15] which studied combinatorial impli-
cations of maximization of the trace of the controllability Grammian, relating them to
quantities like centrality and communicability in graphs. Also related is [2] which stud-
ied combinatorial aspects of the smallest eigenvalue of the controllability Grammian,
which is a measure of the maximum control energy to go from the origin to a point on
the unit sphere.

Beyond that, the the time-varying actuator placement problem is quite old; for exam-
ple, a version of it dates back to a paper of Athans in 1972 [1]. There is quite a bit of
recent work on understanding efficient algorithms as well as fundamental limitations for
this problem. For example, fundamental limitations in terms of unavoidably large con-
trol energy have been studied in [18, 17, 26, 11] among others. Algorithms for actuator
placement, in either the fixed or time-varying regime, based on randomized sampling
[3, 10, 19, 6], convex relaxation [24, 22], or greedy methods [25, 4, 13, 20, 27, 21] were
studied in recent works. Given the relatively large amount of work done on different
versions of the problem which are not directly related to our motivating concern, we
refer the reader to the above papers for a broader overview of the field.

1.3. Our contribution and the remainder of this paper. We show that, under our
assumption that B has no zero columns, the optimal solution sets of the original and
relaxed problems always coincide. This comes out as a byproduct of an explicit formula
for the solution of the relaxed problem. In turn, this is done by drawing a connection to
(a modification) of the classical notion of a rearrangement of a function.

In Section 2, we give a statement of our main result and illustrate it with an example.
The main result itself is proved in the Section 3. Along the way, we will need to use
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many properties of the rearrangement of a function; since these proofs are very similar
to existing proofs in the literature for a slightly different notion of rearrangement, they
are not included in the main text but relegated to the appendix for completeness.

2. Statement of the main result

2.1. The (asymmetric) rearrangement. We need to introduce several concepts and
notations to state our main result.

We adopt the standard notation that the indicator function 1X(x) equals one if the
point x belongs to the set X and zero otherwise. Given a Lebesgue measurable subset
X ⊂ R of the real line of finite measure, we define its rearrangementX∗ to be the interval
[0, l] whose length l is the same as the Lebesgue measure of X. As already mentioned,
we adopt the convention of using µ(X) to denote the Lebesgue measure of the set X.

Given a measurable nonnegative function f : [0, a] → R with bounded range, its
rearrangement f ∗ : [0, a]→ R ∪ {+∞} is defined as

f ∗(x) =

∫ ∞

0
1{y∈[0,a]: f (y)>t}∗(x) dt (2)

Intuitively, the rearrangement is that it corresponds to “sorting” the function f (x). In
particular:

Proposition 2.1. The rearrangement f ∗(x) is measurable, non-increasing and its level
sets have the same measure as the level sets of f (x), i.e., for all α ∈ R,

µ({ f (x) ≥ α}) = µ({ f ∗(x) ≥ α})
µ({ f (x) = α}) = µ({ f ∗(x) = α}).

We illustrate this with an example.

Example 2.2. Consider f (x) = x2 defined on the domain [0, 1]. In that case, {y ∈ [0, 1] :
f (y) > t} is the set {y ∈ [0, 1] : y2 > t} which, for t ∈ [0, 1], equals (

√
t, 1]; when t > 1,

the set {y ∈ [0, 1] : f (y) > t} is empty. The rearrangement of (
√

t, 1] is [0, 1−
√

t]. Thus,
for any x ∈ [0, 1] we have that,

f ∗(x) =

∫ 1

0
1[0,1−

√
t](x) dt =

∫ (1−x)2

0
1 dt = (1 − x)2.

It is, of course, immediate that f (x) = x2 and f ∗(x) = (1 − x)2, when defined over the
domain [0, 1], have level sets of the same measure.

2.2. Statement of the main result. Our first step is to take the functions fi : [0,T ] →
R, i = 1, . . . ,m, defined in Eq. (1) and define their “concatenation” F(t) : [0,mT ] → R
which consists on putting these functions “side by side” on the interval [0,mT ]. For-
mally,

F(t) = fi(t) when t ∈ [(i − 1)T, iT ).
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Since the functions fi(t) are clearly continuous, they have bounded range over [0,T ].
Further, these functions are clearly nonnegative. As a result, F(t) is also nonnegative
and also has bounded range, and therefore the rearrangement F∗(t) is well-defined.

Our main result will be stated in terms of the function F∗(t). To be rigorous, we also
give a definition next of what it means for a function to be strictly decreasing from the
left or the right; this definition is standard.

Definition 2.3. We will say that a function g : [0, a] → R ∪ {+∞} is strictly decreasing
to the right at x0 ∈ (0, a) if g(x0) > g(x0 + ε) for all ε small enough. Similarly, we will
say that g is strictly decreasing from the left at x0 ∈ (0, a) if g(x0 − ε) > g(x0) for all ε
small enough.

The main result of this paper is the following theorem.

Theorem 2.4. (1) Suppose F∗(x) is strictly decreasing on the right at x = α. Then
the unique3 optimal solution to the relaxed time-varying actuator placement
problem is

vopt,r
i (t) = 1{ fi(t)≥F∗(α)}.

(2) Suppose F∗(x) is strictly decreasing from the left at x = α. Then the unique
optimal solution to the relaxed time-varying actuator placement problem is

vopt,l
i (t) = 1{ fi(t)>F∗(α)}.

(3) Suppose F∗(x) is not strictly decreasing at x = α either from the left or from
the right. Then the set of optimal solutions to the relaxed time-varying actuator
placement problem has more than one element. However, all optimal solutions
of the relaxed problem can be parametrized as

vopt,nlr
i (t) = 1{τ: fi(τ)>F∗(α)}(t) + 1S i(t),

for some sets
S i ⊂ {τ : fi(τ) = F∗(α)},

with
m∑

i=1

µ(S i) = α − µ({τ : F(τ) > F∗(α)}).

Since all the solutions exhibited in this theorem are binary, the immediate implication
is that the solutions of the original and relaxed problem are always the same (though
recall we assumed that B has no zero columns).

In particular, the condition that the functions fi(t) not be constant in Theorem 1.1 is
not necessary, once the pathological cases where B has a zero column are ruled out.

3Of course, we can modify any solution on a set of measure zero without any effect. Thus, here and
throughout the remainder of the paper, whenever we refer to equality of functions, we mean to up sets of
zero measure.
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However, as we explain below in Remark 3.9, the non-constancy of fi(t) is nevertheless
natural condition in this context, as it ensures that the solution of the relaxed problem is
unique.

The novelty of this theorem is two-fold. First, it shows that we can write down
the optimal solution(s) of the relaxed problem via an explicit formula. Second, any
desired properties of the optimal solution(s) can now be simply “read off” the formula.
Moreover, once the notion of the rearrangement has been introduced, the theorem is
quite intuitive: informally, it says that we have to take the “top slice” of the functions
f1(t), . . . , fm(t).

Finally, we mention that F∗(t) can be strictly decreasing from both the left and the
right at t = α, in which case both parts (1) and (2) of the theorem apply. There is no
contradiction there, since, in this scenario, the two formulas for the solution differ only
on a set of measure zero.

Remark 2.5. A natural concern is whether the solutions above exhibit Zeno phenomena,
i.e., whether they involve infinitely many switches in a finite interval. In the first two
cases, when the function F∗(t) is strictly decreasing from the left or right, this does not
occur. This is because the functions fi(t) are analytic everywhere, and consequently the
sets {t : fi(t) = F∗(α)} either equal [0,T ] or have finite cardinality. Thus one will either
take vi(t) = 1 on all [0,T ], or vi(t) = 0 on all [0,T ], or vi(t) will switch finitely many
times between 0 and 1 over the interval [0,T ].

In the third case, the situation is slightly more complicated. In the event that some
fi(t) is constant, the set {t : fi(t) = F∗(α)}may equal all of [0,T ], and an optimal solution
might then correspond to choosing a subset of [0,T ]. In that case, it is certainly possible
to find an optimal solution that makes infinitely many switches in finite time. However,
its also possible to pick the subset S in the theorem statement to be an interval, avoiding
this phenomenon.

To summarize, in the first two cases, Zeno phenomena do not occur; and in the third
cases, optimal solutions avoiding Zeno phenomena always exist.

2.3. An example. Consider the dynamical system

ẋ =

 0 0 0
0 0 0
0 0 1

 x +

 γ 0 1
0 γ 1
0 0 1

 u

In this case, it is easy to compute the controllability Grammian explicitly. Indeed,

WV =

∫ T

0
eAtBV(t)V(t)BT eAT t dt

=

∫ T

0
v2

1(t)

 γ
2 0 0

0 0 0
0 0 0

 + v2
2(t)

 0 0 0
0 γ2 0
0 0 0

 + v2
3(t)

 1 1 et

1 1 et

et et e2t

 dt
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0 1 2 3 4 5 6
t

0

10

20

30

40

50

F(
t)

0 1 2 3 4 5 6
t

0

10

20

30

40

50

F
* (

t)
F(t) and Its Rearrangement F * (t), = 1

Figure 1. The top graph shows the function F(t) and the bottom graph
shows the function F∗(t), both when γ = 1. The optimal actuator strategy
is to take vi(t) = 1{ fi(t)≥F∗(2)} which selects only the third actuator.

so that

Tr(WV) =

∫ T

0
v2

1(t)γ2 + v2
2(t)γ2 + v2

3(t)(2 + e2t) dt. (3)

Suppose we consider this problem over the interval t ∈ [0, 2] with the constraint
3∑

i=1

∫ T

0
|vi(t)| dt ≤ 2.

In other words, we stipulate that on average a single actuator per unit time is used.
Let us consider several cases. We will make a number of assertions about the optimal

solution; all of these follow immediately by inspection of Eq. (3), from which the
optimal V(t) can simply be read off.

Let us consider first γ = 0. In that case, we should set v1(t) = v2(t) = 0, and set
v3(t) = 1, for all t ∈ [0, 2]. This optimal solution is, of course, unique.

By contrast, suppose γ2 = 2 + e2. In that case, the optimal solution will set v3(t) = 1
for t ∈ [1, 2], and we will have v1(t) = v2(t) = 0 over the same interval. However, over
t ∈ [0, 1], the optimal solution has v3(t) = 0. As for v1(t) and v2(t) over t ∈ [0, 1], they
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F(t) and Its Rearrangement F * (t), 2 = 8

Figure 2. The top graph shows the function F(t) and the bottom graph
shows the function F∗(t) when γ2 = 8. The optimal actuator strategy of
taking vi(t) = 1{ fi(t)≥F∗(2)} forces us to select the third actuator for a period
of time, and the remaining time can be split between the first and second
actuator.

can be set to any functions with values in {0, 1} satisfying∫ 1

0
v1(t) + v2(t) = 1.

In particular, we can decompose [0, 1] = S 1 ∪ S 2 for some disjoint S 1, S 2 and set
v1(t) = 1S 1(t), v2(t) = 1S 2(t). We see that the solution is not unique.

Inspection of Eq. (3) reveals that the transition from having a unique solution to
multiple solutions occurs when γ2 = 2. This is exactly the point at which F∗(t) goes
from being strictly decreasing from the left at the point t = 2 to being constant over an
interval containing that point. For an illustration, we refer the reader to Figures 1 and
2; the first figure shows a value of γ for which F∗(t) is strictly decreasing to the left at
t = 2, while the second figure shows how increasing γ results in F∗(t) which is flat over
an interval containing t = 2.
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3. Proof of the main result

In this section, we will prove our main result, Theorem 2.4. We begin by stating
several properties of the rearrangement which we will find useful as propositions.

The propositions below hold for all functions f (x) and g(x) such that their rearrange-
ments can be defined, i.e., these functions must be nonnegative and have bounded range.
Their proofs are fairly standard. Indeed, it is common in the literature to deal with the
“symmetric non-increasing rearrangement” in which f ∗(x) is further constructed to be
symmetric. For such a notion of rearrangement, the proofs of these facts appear in many
places; a standard reference is Chapter 3 of the textbook [12], which provides hints for
many of these. Since our notion of rearrangement is a little different, we provide the
proofs of these propositions for completeness in the appendix.

Proposition 3.1 (Conservation of the L1 norm).∫ a

0
f (x) dx =

∫ a

0
f ∗(x) dx

Proposition 3.2 (Hardy-Littlewood Inequality).∫ a

0
f (x)g(x) dx ≤

∫ a

0
f ∗(x)g∗(x) dx

Moreover, we have equality if and only if for almost all s, t, we have that

µ({x : f (x) > t} ∩ {x : g(x) > s}) = min (µ({x : f (x) > t}, µ({x : g(x) > s})) .

Proposition 3.3 (Monotonicity). If f (x) ≤ g(x) for all x, then f ∗(x) ≤ g∗(x) for all x.
In particular, since a constant function is the rearrangement of itself, if f (x) ≤ 1 for all
x ∈ [0, a], then f ∗(x) ≤ 1 for all x ∈ [0, a].

Proposition 3.4 (Integral identity). Suppose b < a. Then, if f ∗(x) is strictly decreasing
on the right at x = b, we have that∫ a

0
f (x)1{ f (x)≥ f ∗(b)} dx =

∫ b

0
f ∗(x) dx

On the other hand, if f ∗(x) is strictly decreasing from the left at x = b, then∫ a

0
f (x)1{ f (x)> f ∗(b)} dx =

∫ b

0
f ∗(x) dx

Proposition 3.5 (Integral identity). Let (bl, bu) be the largest open interval containing b
on which the function f ∗(x) is constant. Then if S is a subset of the set {x : f (x) = f ∗(b)},
we have that for any δ ∈ R,∫ a

0
f (x)

(
1{x: f (x)> f ∗(b)} + δ1S

)
dx = δ f ∗(b)µ(S ) +

∫ bl

0
f ∗(x) dx.
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With these propositions in place, we turn to our first lemma, which introduces some
notation pertaining to functions f ∗(x) which are not strictly decreasing from either di-
rection at a point.

Lemma 3.6. Suppose f : [0, a] → R and f ∗(x) is not decreasing from either the left or
the right at the point x = b with b ∈ (0, a). Then there exists an open interval (bl, br)
containing b such that

(1) f ∗(x) is constant on this interval.
(2) (bl, br) is the largest open interval containing b with this property.
(3)

µ({x : f (x) > f ∗(b)}) = bl

µ({x : f (x) = f ∗(b)}) = br − bl

µ({x : f (x) ≥ f ∗(b)}) = br

Proof. Since f ∗(x) is nonincreasing, it is immedate that if it is not strictly decreasing to
the left or to the right at x = b, then it must be constant on some interval (l, r) containing
b. We can then define al to be infimum of all l such that (l, r) is an interval containing
b on which f ∗(x) is constant; defining br similarly, we obtain that (bl, br) is the largest
open interval containing b where f ∗(x) is constant. This proves parts (1) and (2).

For part (3), we have that by Propdsition 2.1,

µ({x : f (x) > f ∗(b)}) = µ({x : f ∗(x) > f ∗(b)})
= µ([0, bl)) or µ([0, bl])
= bl

and the proof of the second and third identities of item (3) proceed similarly.
�

Our next lemma is a straightforward generalization, to the continuous space, of the
fact that the largest convex combination of a set of numbers (subject to constraint on
how big the weights can be) puts as much weight as possible on the largest numbers.
We present it without proof.

Lemma 3.7. Let g(t) : [0, a] → R be a nonincreasing function and suppose b ∈ (0, a).
Then,

max
γ(t)∈[0,1],

∫ a
0 γ(t) dt=b

∫ a

0
γ(t)g(t) dt ≤

∫ b

0
g(t) dt.

Moreover,
(1) If g(x) is either decreasing to the right or from the left at x = b, then the maxi-

mum is uniquely achieved by the function γ(t) = 1[0,b](t).
(2) If g(x) is not decreasing from the right or the left at t = b, let (bl, br) be the

open interval guaranteed by Lemma 3.6. Then the functions which achieve the
maximum are

γopt(t) = 1[0,bl)}(t) + λ(t)1Q(t),
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where
Q ⊂ [bl, br],

and ∫
Q
λ(t) dt = b − bl.

We next exploit Lemma 3.7 by applying it to the rearrangement of a function f ∗(x),
which of course is nonincreasing. The result is stated as the following lemma.

Lemma 3.8. Let a, b be scalars satisfying b ≤ a and and let us define B as the set of
nonnegative functions β(t) : [0, a]→ [0, 1] with∫ a

0
β(t) dt ≤ b.

Then

max
β∈B

∫ a

0
β(t) f (t) dt ≤

∫ b

0
f ∗(t) dt. (4)

Moreover:

(1) If f ∗(t) is strictly decreasing on the right at t = b, then the unique β(t) which
achieves this maximum is β(t) = 1{t: f (t)≥ f ∗(b)}.

(2) If f ∗(t) is strictly decreasing from the left at t = b, then the unique β(t) which
achieves this maximum is β(t) = 1{t: f (t)> f ∗(b)}.

(3) If f ∗(t) is neither strictly decreasing from the left nor from the right at t = b,
then the β(t) which take values in {0, 1} almost everywhere which achieve this
maximum are

β(t) = 1{t: f (t)> f ∗(b)} + 1Q,

where
Q ⊂ {t : f (t) = f ∗(b)}

with
µ(Q) = b − µ({t : f (t) > f ∗(b)}).

Proof. Observe we only need to prove Eq. (4) with an inequality rather than equality,
since by Proposition 3.4 and Proposition 3.5, the functions β(t) given in items (1)-(3)
make the left-hand side of Eq. (4) equal to the right-hand side.

Indeed, using Proposition 3.2 we have that for any β(t) ∈ B,∫ a

0
β(t) f (t) dt ≤

∫ a

0
β∗(t) f ∗(t) dt.

By Proposition 3.1 we have that β∗ integrates to b over [0, a] just like β. By Proposi-
tion 3.3, we have that β∗(t) ≤ 1. Moreover, since the rearrangement of a function is
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always nonnegative as an immediate consequence of Eq. (2), we also have that β∗(t) is
nonnegative. Thus:∫ a

0
β(t) f (t) dt ≤ max

γ(t)∈[0,1],
∫ a

0 γ(t)≤b

∫ a

0
γ(t) f ∗(t) dt.

However, since f ∗(t) is nonincreasing by Proposition 3.3, by Lemma 3.7 we must have
that γopt(t) = 1[0,b](t). Thus∫ a

0
β(t) f (t) dt ≤

∫ a

0
1[0,b](t) f ∗(t) dt.

Since this is true for any β(t) ∈ B, this proves Eq. (4).
It remains to analyze the case of equality. Suppose f ∗(t) is strictly decreasing from

either the left or the right at t = b. Then by Lemma 3.7 the optimal γ(t) is unique,
and therefore we must have β∗(t) = 1[0,b](t). In particular, this implies that β(t) is the
indicator function of an a set of Lebesgue measure b. Let S denote that set.

From the equality conditions of Proposition 3.2, we need that for almost all s, t,

µ({x : f (x) > t} ∩ {x : 1S (x) ≥ s}) = min(µ({x : f (x) > t}, µ({x : 1S (x) ≥ s}).

This holds for allmost all s, t if and only if it holds for allmost all t and s = 1, i.e., if

µ({x : f (x) > t) ∩ S ) = min(µ({x : f (x) > t}), µ(S ))

for almost all t. For this to hold, we must have that for almost any level set of {x : f (x) >
t}, up to a set of zero measure, S is either contained in, or contains, that level set. Next,
we analyze each case in the lemma statement separately.

Fist suppose suppose f ∗(x) is strictly decreasing to the right at x = b. We will next
argue that, up to a set of zero measure, we must have S = {x : f (x) ≥ f ∗(b)}. Indeed,
consider the level sets {x : f (x) ≥ f ∗(b)−ε}. The measure of each of these sets is at least
b. Since the measure of S is exactly b, it follows that S must be contained in almost
all of these sets. Since these sets are nested, S is in fact contained in all of them. So
S is contained in their intersection, which is {x : f (x) ≥ f ∗(b)}. However, the latter set
has measure b by our assumption that f ∗(x) is decreasing to the right at x = b (since
µ({x : f (x) ≥ f ∗(b)}) = µ({x : f ∗(x) ≥ f ∗(b)}) by Proposition 2.1, and the latter quantity
equals b since f ∗ is decreasing to the right at b). Since S also has measure b, it follows
that S actually equals {x : f (x) ≥ f ∗(b)} up to a set of zero measure. We have thus
concluded the proof in the case when f ∗(x) is strictly decreasing to the right at x = b.

Next, suppose f ∗(x) is strictly decreasing from the left at x = b. We employ a nearly
identical argument as the previous paragraph: we will argue that, up to a set of zero
measure, we must have S = {x : f (x) > f ∗(b)}. Indeed, consider the level sets {x :
f (x) ≥ f ∗(b) + ε}. The measure of each of these sets is at most b. Consequently, S
contains almost all of them. Since these sets are nested, S in fact contains all of them.
So S contains their union, which is {x : f (x) > f ∗(b)}. However, the latter set has
measure b by our assumption that f ∗(x) is decreasing from the left at x = b. Since S
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also has measure b, it follows that S actually equals {x : f (x) > f ∗(b)} up to a set of
zero measure.

Finally, suppose f ∗(x) is neither strictly increasing from the left nor from the right.
Lemma 3.6 ensures the existence of the largest open (bl, br) containing b on which f ∗(x)
is constant. By Lemma 3.7, the set of optimal γ(t) equals

γopt(t) = 1[0,bl)(t) + λ(t)1Q′(t),

for some subset Q′ ⊂ [bl, br] with∫
Q′
λ(t) dt = b − bl

= b − µ({x : f (x) > f ∗(b)}),

with the second equality following by Lemma 3.6.
Since, in this part of the lemma, we only discuss β(t) taking on values in {0, 1}, we

must have that β(t) is a binary function. We thus have that

β∗(t) = 1[0,bl)(t) + 1Q′′(t)

for some subset Q′′ ⊂ [bl, br] with

µ(Q′′) = b − bl = µ({x : f (x) > f ∗(b)}).

In particular, this means that β(t) must be the indicator function of a set S of measure
b = bl + (b − bl).

The rest of the proof proceeds similarly. We obtain, just as above, that for almost all
level sets {x : f (x) > c}, the set S must contain, or be contained, in that level set. We
then argue that since for ε > 0,

µ({x : f (x) > f ∗(b) − ε}) ≥ µ({x : f (x) ≥ f ∗(b)})
= br

> b

we have that that S must be contained in the sets {x : f (x) > f ∗(b) − ε} for almost all
ε. Since these sets are nested, S is in fact contained in all of them, and, finally, it is
contained in their intersection. Consequently, we have

S ⊂ {x : f (x) ≥ f ∗(b)}.

A similar argument gives that {x : f (x) > f ∗(b)} ⊂ S . Indeed, Lemma 3.6 tells us that
for any ε > 0,

µ({x : f (x) > f ∗(b) + ε}) ≤ µ({x : f (x) > f ∗(b)})
= bl

< b

so that {x : f (x) > f ∗(b) + ε} ⊂ S for almost all ε. Because these sets are nested, in fact
all of them are contained in S ; and consequently their union, which is {x : f (x) > f ∗(b)}
is contained in S .
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In summary, we have shown that

S = {x : f (x) > f ∗(b)} ∪ some subset of {x : f (x) = f ∗(b)}

Let Q be the “some subset” in the above equation. We have that

b = µ(S ) = bl + µ(Q),

which finally gives that

µ(Q) = b − bl = b − µ({x : f (x) > f ∗(b)}),

and the proof is finished.
�

With this last lemma in place, we can now turn to the proof of our main result.

Proof of Theorem 2.4. We first argue that the solutions we have proposed are feasible.
First, uppose that F∗(x) is strictly decreasing from the right at x = α. Then, we have

m∑
i=1

∫ T

0
|vopt,r

i (t)| =

m∑
i=1

µ({ fi(t) ≥ F∗(α)})

= µ({F(t) ≥ F∗(α)})
= µ({F∗(t) ≥ F∗(α)})
= α,

where the last step follows from the assumption that F∗ is decreasing to the right at α.
Similarly, suppose F∗(x) is strictly decreasing from the left at x = α. Then

m∑
i=1

∫ T

0
|vopt,l

i (t)| =

m∑
i=1

µ({ fi(t) > F∗(α)})

= µ({F∗(t) > F∗(α)})
= α,

where the last step follows from the assumption that F∗ is strictly decreasing from the
left at α.

Finally, suppose F∗(x) is not strictly decreasing from either the left or the right at
x = α. Then

m∑
i=1

∫ T

0
|vopt,nlr

i (t)| =

m∑
i=1

µ({ fi(t) > F∗(α)}) + µ(S )

= µ({F∗(t) > F∗(α)}) + (α − µ({F∗(t) > F∗(α)}))
= α,

Since it is immediate that all vopt,r
i (t), vopt,l

i (t), vopt,nlr
i ∈ [0, 1], we conclude that in all

cases the proposed solutions are feasible.
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Let us adopt the notation Jvopt,r for the cost corresponding to the functions vopt,r
i . Let us

compute this cost under the assumption that F∗(t) is decreasing from the right at t = α.
We have that

Jvopt,r = Tr
∫ T

0

m∑
i=1

eAtbi1{ fi(t)≥F∗(α)}bT
i eAT t dt

=

∫ T

0

m∑
i=1

1{ fi(t)≥F∗(α)}bT
i eAT teAtbi dt

=

∫ T

0

m∑
i=1

1{ fi(t)≥F∗(α)} fi(t) dt

=

∫ mT

0
F(t)1{F(t)≥F∗(α)} dt

=

∫ α

0
F∗(t) dt, (5)

and the last step used Proposition 3.4 and the assumption that F∗(t) is strictly decreasing
from the right at t = α. Thus we have shown that the choice of functions vopt,r

i (t) achieves
a cost of

∫ α

0
F∗(t) dt.

We next argue that, under the assumption that F∗(t) is strictly decreasing from the left
at t = α, the functions vopt,l

i (t) achieve the same cost via a nearly identical argument:

Jvopt,l = Tr
∫ T

0

m∑
i=1

eAtei1{ fi(t)>F∗(α)}eT
i eAT t dt

=

∫ T

0

m∑
i=1

1{ fi(t)>F∗(α)} fi(t) dt

=

∫ mT

0
F(t)1{F(t)>F∗(α)} dt

=

∫ α

0
F∗(t) dt (6)

and the last step used Proposition 3.4 and the assumption that F∗(t) is strictly decreasing
from the left at t = α.

We finally argue that, under the assumption that F∗(t) is decreasing neither from the
left nor the right, the functions vopt,nlr

i achieve the same cost. Indeed, let (αl, αr) be the
largest open interval containing α on which F∗(t) is non-decreasing whose existence
was guaranteed by Lemma 3.6. That lemma tells us that µ{t : F∗(t) > F∗(α)} = αl.

Define S ′i = S i+(i−1)T , where S i comes from the theorem statament and we translate
it by (i − 1)T to make it so that S ′i ⊂ [(i − 1)T, iT ]. Further defining S = ∪m

i=1S ′i and
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proceeding similarly as before,

Jvopt,nlr =

∫ mT

0
F(t)

(
1{F(t)>F∗(α} + 1S

)
=

∫ αl

0
F∗(t) dt + µ(S )F∗(α)

=

∫ αl

0
F∗(t) dt + (α − µ({F(t) > F∗(α)}))F∗(α)

=

∫ αl

0
F∗(t) dt + (α − αl)F∗(α)

=

∫ α

0
F∗(t) dt,

where we relied on Proposition 3.5 in the second step.
To summarize, we have shown that under the appropriate assumptions, all three of

vopt,r
i (t) and vopt,l

i (t) and vopt,nlr
i (t) achieve the cost of∫ α

0
F∗(t) dt.

We next show that, for any choice of functions vi(t), i = 1, . . . ,m, t ∈ [0,T ], we will
attain a cost that is upper bounded by

∫ α

0
F∗(t) dt.. This part of the argument does not

use assume anything about the behavior of F∗(t) at t = α. Let us adopt the notation Jv

for the cost corresponding to the functions vi(t), i = 1, . . . ,m; our goal is to show that,
as long as vi(t) are feasible, we have Jv ≤

∫ α

0
F∗(t).

Indeed, for any feasible functions vi(t) we have that vi(t) ∈ [0, 1] which means that

Jv = Tr
∫ T

0

m∑
i=1

v2
i (t)eAtbibT

i eAT t dt (7)

≤ Tr
∫ T

0

m∑
i=1

vi(t)eAtbibT
i eAT t dt (8)

=

m∑
i=1

∫ T

0
vi(t) Tr

(
eAtbibT

i eAT t
)

dt

=

m∑
i=1

∫ T

0
vi(t) fi(t) dt (9)

=

∫ mT

0
q(t)F(t) dt (10)

where we define

q(t) =

m∑
i=1

vi(t − (i − 1)T )1t∈[(i−1)T,iT ]
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Observing that ∫ mT

0
|q(t)| =

m∑
i=1

∫ T

0
|vi(t)| ≤ α,

by feasibility of vi(t), we can now apply Lemma 3.8 to Eq. (10) and obtain

Jv ≤

∫ α

0
F∗(t) dt (11)

where the final line followed by Eq. (5).
Putting it all together, we have thus shown that, under the appropriate assumptions,

each of vopt,l
i (t), vopt,r

i (t), vopt,nlr
i (t) are optimal. It remains to prove that these are the only

optimal choices. For this, we must analyze the cases of equality in the above bounds.
Observe that to achieve equality we need to have equality starting from the Equation

of Eq. (7) through to Eq. (11). In particular, we must have equality in the in the appli-
cation of Lemma 3.8. But that lemma spells out conditions for equality. In particular,
Lemma 3.8 forces q(t) = 1{t:F(t)≥F∗(α)} when F∗(t) is decreasing from the right at α and
q(t) = 1{t:F(t)>F∗(α)} when it is decreasing from the left. By definition of q(t), this is the
same as having vi(t) = 1{t: fi(t)≥F∗(α)} and vi(t) = 1{t: fi(t)≥F∗(α)}. This concludes the proof for
the case where F∗(t) is either strictly decreasing to the right or from the left at t = α.

It only remains to analyze the cases of equality in the case where F∗(t) is not strictly
decreasing from either the left or the right at t = α. First, observe that because B has no
zero columns and eAt is always nonsingular, we have that

Tr(eAtbibT
i eAT t) > 0,

for all i ∈ {1, . . . ,m} and t ∈ [0,T ]. In particular, because vi(t) ∈ [0, 1], the implication
of this is that to achieve equality going from Eq. (7) to Eq. (8), we must have that each
vi(t) ∈ {0, 1} almost everywhere. This implies the function q(t) must be binary as well.

Having established that, we apply the conditions for equality in the last item of
Lemma 3.8. That lemma tells us that we must have

q(t) = 1{t:F(t)>F∗(α)} + 1S ,

for some subset S of the set {t : F(t) = F∗(α)} with

µ(S ) = α − µ({t : F∗(t) > F∗(α)}).

This concludes the proof.
�

Remark 3.9. Observe that if all the fi(t) are not constant, then the solution of the relaxed
actuator scheduling problem is unique. Indeed, because each fi(t) is analytic everywhere
and non-constant, the set {t ∈ [0,T ] : fi(t) = c} is finite for all c, and consequently has
Lebesgue measure zero. In particular, µ({t : F∗(t) = c}) = 0. This implies that F∗(t)
cannot be constant on any interval. By Lemma 3.6, we conclude that F∗(t) must either
be strictly decreasing from the left or to the right at any point in (0,mT ). Theorem 2.4
now implies that the solution of the relaxed actuator scheduling problem is unique.
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4. Appendix

We give the proofs of the propositions claimed in the body of the paper in this ap-
pendix. We stress again that these propositions are standard, and for the standard notion
of symmetric nonincreasing rearrangement they are widely used (e.g., see Chapter 3 of
[12] which provides proof hints for many of them). For purposes of completeness, we
spell out these proofs explicitly here.

Proof of Proposition 2.1. We first argue that f ∗(x) is non-increasing. From the defini-
tion of rearrangement, this follows if we can show that the functions 1{y∈[0,a]: f (y)>t}∗(x)
are non-increasing in x for any fixed t. In other words, we need to show that if 0 ≤ x1 ≤

x2 ≤ a and
x2 ∈ {y ∈ [0, a] : f (y) > t}∗

then we have that
x1 ∈ {y ∈ [0, a] : f (y) > t}∗.

But this immediately follows because the set {y ∈ [0, a] : f (y) > t}∗ is an interval of the
form [0, l], so that if some x2 belongs to it, then a smaller (but nonnegative) x1 belongs
to it as well.

The remainder of Proposition 2.1 will be proved by arguing that the level sets of f (x)
and f ∗(x) are almost rearrangements of each other, i.e., we will prove that the two sets
{x : f (x) > u}∗ and {x : f ∗(x) > u} differ in at most one element.

Indeed, suppose x′ < {x : f (x) > u}∗. Then the supremum over all t such that x′

belongs {x : f (x) > t}∗ is upper bounded by u. Then,

f ∗(x′) =

∫ +∞

0
1
∗
{y∈[0,a]: f (y)>t}(x′) dt ≤

∫ u

0
1 dt ≤ u.
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In particular, we conclude that x′ < {x : f ∗(x) > u}.
On the other hand, suppose x′ ∈ {x : f (x) > u}∗. Since

{x : f (x) > u} = ∪ε>0{x : f (x) > u + ε},

and the sets on the right hand side are nested, it follows that

µ({x : f (x) > u}) = lim
ε→0

µ({x : f (x) > u + ε}).

Now the set {x : f (x) > u}∗ is, by definition, an interval. A consequence of the above
observation is that if x′ is not the right-endpoint of that interval, then there exists a
positive ε > 0 such that x′ ∈ {x : f (x) > u + ε}∗. It follows that x′ also belongs to all sets
of the form {x : f (x) > u0}

∗ with u0 ≤ u + ε. Therefore:

f ∗(x′) =

∫ +∞

0
1
∗
{y∈[0,a]: f (y)>t}(x′) dt ≥

∫ u+ε

0
1 dt = u + ε,

so that x′ ∈ {x : f ∗(x) > u}. To summarize, we have shown that {x : f (x) > u}∗ and
{x : f ∗(x) > u} differ in at most one element (i.e., the right endpoint of the interval
{x : f (x) > u}∗). This proves that these two sets have the same measure.

Finally, we observe that

µ({x : f (x) = c}) = lim
ε→0

µ{x : f (x) > c + ε} − µ{x : f (x) > c − ε}

= lim
ε→0

µ{x : f ∗(x) > c + ε} − µ{x : f ∗(x) > c − ε}

= µ({x : f ∗(x) = c)}.

This completes the proof that level sets have the same measure.
We conclude the proof by observing that f ∗(x) is measurable as a consequence of the

fact that, as a consequence of the proof above, {x : f ∗(x) > t} is either a closed or a
half-open interval.

�

The proof of the following propositions will require the so-called “layer cake repre-
sentation,” which states that if g(x) is a nonnegative function, then

g(x) =

∫ +∞

0
1{y:g(x)>y}(t) dt.

=

∫ +∞

0
1{y:g(x)≥y}(t) dt.
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Proof of Proposition 3.1. Indeed,∫ a

0
f (x) dx =

∫ a

0

∫ +∞

0
1{y: f (x)>y}(t) dt dx

=

∫ a

0

∫ +∞

0
µ({t : f (x) > t}) dt dx

=

∫ a

0

∫ +∞

0
µ({t : f ∗(x) > t}) dt dx

=

∫ a

0

∫ +∞

0
1{y: f ∗(x)>y}(t) dt dx

=

∫ a

0
f ∗(x) dx

where the third equality used Proposition 2.1. Finally, since both f (x) and f ∗(x) are
nonnegative by assumption, we can put the absolute values on the first and last integrand.

�

Proof of Proposition 3.2. Using the layer-cake representation,∫ a

0
f (x)g(x) dx =

∫ a

0

∫ +∞

0

∫ +∞

0
1{y: f (x)>y}(t)1{y:g(x)>y}(s) ds dt dx

=

∫ +∞

0

∫ +∞

0

∫ a

0
1{y: f (x)>y}(t)1{y:g(x)>y}(s) dx dt ds

=

∫ +∞

0

∫ +∞

0
µ({x : f (x) > t} ∩ {x : g(x) > s}) dt ds

≤

∫ +∞

0

∫ +∞

0
min (µ({x : f (x) > t}, µ({x : g(x) > s})) dt ds,

since, in general,

µ(X ∩Y) ≤ min(µ(X), µ(Y)).

Now using Proposition 2.1, we have that∫ a

0
f (x)g(x) dx ≤

∫ +∞

0

∫ +∞

0
min(µ({x : f (x) > t}∗, µ({x : g(x) > s}∗)) dt ds

=

∫ +∞

0

∫ +∞

0
µ({x : f (x) > t}∗ ∩ {x : g(x) > s}∗) dt ds,

where the last step uses that the sets {x : f (x) > t}∗ and {x : g(x) > s}∗ are, by definition,
both intervals of the form [0, l].
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Using that the two {x : f (x) > u}∗ and {x : f ∗(x) > u} differ in at most one element
(as proven above), we move to the representation in terms of indicator functions,∫ a

0
f (x)g(x) dx ≤

∫ +∞

0

∫ +∞

0

∫ a

0
1{y: f ∗(x)>y}(t)1{y:g∗(x)>y}(s) dx dt ds

=

∫ a

0

∫ +∞

0

∫ +∞

0
1{y: f ∗(x)>y}(t)1{y:g∗(x)>y}(s) dt ds dx

=

∫ a

0
f ∗(x)g∗(x) dx

The inequality is proved, and it remains only to analyze conditions for equality. In-
specting the above proof, there is only one place where an inequality appears (namely
in the fourth line of the proof). The condition for equality simply gives a necessary and
sufficient condition for that line to be an equality.

Equivalently, we can use the version of the layer-cake representation with a non-strict
inequality to obtain the same condition for equality but with nonscrict inequalities.

�

Proof of Proposition 3.3. We first show that the rearrangement of a constant is itself.
Suppose f (x) = c for all x ∈ [0, a]. Then, for all x ∈ [0, a],

f ∗(x) =

∫ +∞

0
1{y∈[0,a]: f (y)>t}∗(x) dt

=

∫ +∞

0
1{y∈[0,a]:c>t}∗(x) dt

=

∫ c

0
1[0,a]∗(x) dt

=

∫ c

0
1[0,a](x) dt

= c

Next, if f (x) ≤ g(x) for all x ∈ [0, a], then we have that for all t,

{y : f (y) > t} ⊂ {y : g(y) > t},

so that for all x, t,

1{y: f (y)>t}(x) ≤ 1{y:g(y)>t}(x),

which, by definition of rearrangement, implies f ∗(x) ≤ g∗(x).
�
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Proof of Proposition 3.4. Suppose f ∗(x) is strictly decreasing to the right at x = b. Start-
ing with the layer cake decomposition,

∫ a

0
f (x)1{ f (x)≥ f ∗(b)} dx =

∫ a

0

∫ +∞

0
1{y: f (x)1{ f (x)≥ f ∗(b)}≥y}(t) dt dx

=

∫ a

0

∫ +∞

0
1{y: f (x)≥max(y, f ∗(b))}(t) dt dx

=

∫ +∞

0

∫ a

0
1{y: f (x)≥max(y, f ∗(b))}(t) dx dt

=

∫ a

0

∫ +∞

0
µ({x : f (x) ≥ max(t, f ∗(b))}) dx dt

=

∫ a

0

∫ +∞

0
µ({x : f ∗(x) ≥ max(t, f ∗(b))}) dx dt

where we used Proposition 2.1 in the last step.
Continuing where we left off,

∫ a

0
f (x)1{ f (x)≥ f ∗(b)} dx =

∫ +∞

0

∫ a

0
µ({x : f ∗(x) ≥ max(t, f ∗(b))}) dx dt

=

∫ +∞

0

∫ a

0
1{y: f ∗(x)≥max(y, f ∗(b))}(t) dx dt

=

∫ a

0

∫ +∞

0
1{y: f ∗(x)≥max(y, f ∗(b))}(t) dt dx

=

∫ b

0

∫ +∞

0
1{y: f ∗(x)≥y}(t) dt dx

=

∫ b

0
f ∗(x) dx,

where the third equality used that f ∗(x) is strictly decreasing on the right at b to replace
the inequality f ∗(x) ≥ f ∗(b) with x ≤ b. This concludes the proof for the case when
f ∗(x) is strictly decreasing to the right.
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Now suppose f ∗(x) is strictly decreasing from the left at x = b. The corresponding
identity is established with a nearly identical argument:∫ a

0
f (x)1{ f (x)> f ∗(b)} dx =

∫ a

0

∫ +∞

0
1{y: f (x)1{ f (x)> f ∗(b)}>y}(t) dt dx

=

∫ a

0

∫ +∞

0
1{y: f (x)>max(y, f ∗(b))}(t) dt dx

=

∫ +∞

0

∫ a

0
1{y: f (x)>max(y, f ∗(b))}(t) dx dt

=

∫ a

0

∫ +∞

0
µ({x : f (x) > max(t, f ∗(b))}) dx dt

=

∫ a

0

∫ +∞

0
µ({x : f ∗(x) > max(t, f ∗(b))}) dx dt

=

∫ +∞

0

∫ a

0
1{y: f ∗(x)>max(y, f ∗(b))}(t) dx dt

=

∫ a

0

∫ +∞

0
1{y: f ∗(x)>max(y, f ∗(b))}(t) dt dx

=

∫ b

0

∫ +∞

0
1{y: f ∗(x)>y}(t) dt dx

=

∫ b

0
f ∗(x) dx,

where we used that f ∗(x) is strictly decreasing from the left at x = b to replace the
inequality f ∗(x) > f ∗(b) with x < b. �

Proof of Proposition 3.5. That the second term under the integral integrates to δ f ∗(b)µ(S )
is clear. We only sketch the rest of the proof, as it is almost identical to the second part of
Proposition 3.4. Indeed, we proceed exactly as in Proposition 3.4 until the penultimate
line, where the inequality f ∗(t) > f ∗(b) is now replaced with t ≤ bl or t < bl. �
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