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Abstract— A linear dynamical system is called positive if its
flow maps the non-negative orthant to itself. More precisely, it
maps the set of vectors with zero sign variations to itself. A
linear dynamical system is called k-positive if its flow maps the
set of vectors with up to k − 1 sign variations to itself.

A nonlinear dynamical system is called k-cooperative if its
variational system, which is a time-varying linear dynamical
system, is k-positive. These systems have special asymptotic
properties. For example, it was recently shown that strong 2-
cooperative systems satisfy a strong Poincaré-Bendixson prop-
erty.

Positivity and k-positivity are easy to verify in terms of the
sign-pattern of the matrix in the dynamics. However, these sign
conditions are not invariant under a coordinate transformation.
A natural question is to determine if a given n-dimensional
system is k-positive up to a coordinate transformation. We
study this problem for two special kinds of transformations:
permutations and scaling by a signature matrix. For any n ≥ 4

and k ∈ {2, . . . , n−2}, we provide a graph-theoretical necessary
and sufficient condition for k-positivity up to such coordinate
transformations.

We describe an application of our results to a specific class
of Lotka-Volterra systems.

I. INTRODUCTION

The state-variables in many mathematical models rep-

resent quantities that can never attain negative values. In

Markov chains [10] the state-variables represent probabil-

ities, in compartmental systems [19] and biological occu-

pancy models [26], [6] they represent the density in each

compartment, and so on.

The continuous-time linear system

ẋ = Ax (1)

is called positive if its flow maps the non-negative orthant to

itself [8]. In other words, for any non-negative initial state

all the state-variables remain non-negative for all time t ≥ 0.

Since the difference between trajectories is also a trajectory,

this can be stated as the following partial ordering property:

if a, b are two initial conditions with a ≤ b (i.e., ai ≤ bi
for all i) then x(t, a) ≤ x(t, b) for all t ≥ 0. It is well-

known that (1) is positive if and only if (iff) A is Metzler,

that is, aij ≥ 0 for any i 6= j.

Positive systems have important and special proper-

ties [17]. For example, a positive LTI that is asymptotically
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stable always admits a diagonal quadratic Lyapunov func-

tion [18]. Diagonal stability implies that certain associated

nonlinear systems have a well-ordered behavior [12], [5].

The linear system (1) is called k-positive if its flow maps

the set of vectors with up to k − 1 sign variations to itself.

Thus, 1-positive systems are positive systems. Ref. [25] de-

rived simple necessary and sufficient conditions guaranteeing

k-positivity for any k. These turn out to be sign-pattern

conditions on A. For example, (1) is 2-positive iff A has

the following sign pattern:

a1n ≤ 0, an1 ≤ 0,

aij ≥ 0 for all i, j with |i− j| = 1,

aij = 0 for all i, j with 1 < |i− j| < n− 1.

Note that such an A is not necessarily Metzler, as a1n, an1
can be negative.

Positivity has far reaching applications also to nonlinear

systems. Consider the nonlinear system

ẋ = f(x), (2)

and assume that its solutions evolve on a convex state-

space Ω ⊂ R
n. Let J(x) := ∂

∂x
f(x) denote the Jacobian of

the vector field. The nonlinear system is called cooperative

if its solutions satisfy the partial ordering property described

above. Recall (see e.g. [3]) that if a, b are two initial

conditions, and z(t) := x(t, a) − x(t, b) then

ż(t) = M(t)z(t). (3)

where

M(t) :=

∫ 1

0

J(rx(t, a) + (1− r)x(t, b)) dr. (4)

Eq. (3) describes how the variation between two solutions

evolves in time. Thus, (2) is cooperative iff the LTV sys-

tem (3) is positive for all a, b ∈ Ω and all t ≥ 0.

The quasi-convergence theorem of Hirsch states that al-

most every bounded solution of a strongly cooperative sys-

tem converges to the set of equilibria [23]. Cooperative

systems have found numerous applications is neuroscience,

systems biology, and chemistry. Indeed, in these fields it is

often the case that the effect of one state-variable on another

is either excitatory or inhibitory, making it relatively easy to

verify that the Jacobian J(x) is Metzler for all x. Angeli

and Sontag [4] introduced an important generalization of

cooperative systems (and more generally monotone systems)

to control systems, and derived a small gain theorem for the

interconnection of such systems.

The nonlinear system (2) is called k-cooperative if the
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variational system (3) is k-positive for all a, b ∈ Ω and all t ≥
0. For k = 1 this reduces to a standard cooperative system.

It was recently shown that strongly 2-cooperative systems

satisfy a strong Poincaré-Bendixson property: if x(t, a) is

a bounded solution and its omega limit set ω(a) does not

include an equilibrium then ω(a) is a periodic solution [25].

These results are closely related to the seminal work of

Mallet-Paret and Smith on monotone cyclic feedback sys-

tems [15].

The conditions for k-positivity and k-cooperativity are

not invariant under coordinate transformations. For example,

if ẋ = Ax and y := Tx, with T a nonsingular matrix,

then ẏ = TAT−1y, and TAT−1 may be Metzler even if A
is not Metzler. For an LTI there is a well-known spectral

condition guaranteeing that the flow maps a proper cone to

itself [7], but this condition does nor carry over naturally

to the system (3). Furthermore, the set of vectors with up

to k − 1 sign variations is not a proper cone. Nevertheless,

if J(x) satisfies some sign pattern condition for all x ∈ Ω
then clearly this carries over to M(t) in (4).

This raises the following question.

Problem 1: Given the dynamical system (2) and a set of

nonsingular matrices T ⊆ R
n×n, is there a matrix T ∈ T and

an integer k such that TJ(x)T−1 satisfies the sign condition

for k-positivity for all x ∈ Ω?

For the case of positive systems this question is well-

known. The motivation for addressing it is stated for example

in [14]: “The essential point is the following: if a system can

be shown to possess a partial ordering in some coordinate

system, then all essential dynamical properties of partially

ordered systems (to be described) will hold, regardless of

reference frame”.

Recall that a matrix S ∈ R
n×n is called a signature

matrix if S is diagonal, and its diagonal elements are plus or

minus 1. Smith [24] solved Problem 1 for the particular case

of cooperativity (i.e. 1-coopertivity) and transformations by

a signature matrix.

Here we address Problem 1 for two types of transfor-

mations: permutations and scaling by a signature matrix.

For any k ∈ {2, . . . , n − 2} we give a necessary and

sufficient graph-theoretic condition for k-cooperativity up to

such transformations.

The notion of k-positive systems has also been extended

to discrete-time systems [13], [2], [1], but here we consider

only the continuous-time case.

The remainder of this note is organized as follows. The

next section reviews known definitions and results that will

be used later on. Section III presents the main results, and

Section IV describes an application to nonlinear Lotka-

Volterra systems.

II. PRELIMINARIES

We first briefly review k-positive systems. For two inte-

gers i ≤ j, we use [i, j] to denote the set {i, i + 1, . . . , j}.

The non-negative orthant in R
n is R

n
+ := {x ∈ R

n |xi ≥
0, i ∈ [1, n]}. For a matrix A ∈ R

n×m, A′ denotes the

transpose of A.

A. k-positive systems

For a vector x ∈ R
n \ {0}, let s−(x) denote the number

of sign variations in x after deleting all the zero entries,

with s−(0) defined as zero. For example, for n = 6 and

y =
[

1 0 −2.5 0 0 3
]

′

, (5)

s−(y) is the number of sign variations in the vec-

tor
[

1 −2.5 3
]

′

, so s−(y) = 2. Let s+(x) denote the

maximal possible number of sign variations in x after re-

placing every zero entry by either minus or plus one. For

example, for y in (5) s+(y) is the number of sign variations

in the vector
[

1 1 −2.5 1 −1 3
]

′

, so s+(y) = 4.

Clearly,

0 ≤ s−(x) ≤ s+(x) ≤ n− 1 for all x ∈ R
n.

For any k ∈ [1, n− 1], let

P k
−
:= {x ∈ R

n | s−(x) ≤ k − 1},

P k
+ := {x ∈ R

n | s+(x) ≤ k − 1}.

For example, P 1
−
= R

n
+ ∪ (−R

n
+) and P 1

+ = int(P 1
−
). More

generally, it is not difficult to show that P k
−

is closed, and

that P k
+ = int(P k

−
) for all k [1].

Fix a time interval −∞ ≤ t0 < t1 ≤ ∞. Consider the

linear time-varying (LTV) system:

ẋ(t) = A(t)x(t), x(t0) = x0, (6)

where A(·) : (t0, t1) → R
n×n is a locally (essentially)

bounded measurable matrix function of t. Pick k ∈ [1, n−1].
The LTV (6) is called k-positive it its flow maps P k

−
to itself,

and strongly k-positive if its flow maps P k
−
\ {0} to P k

+.

We say that A(t) admits a sign pattern if there exists a

symbolic matrix Ā ∈ {∗,+,−, 0}n×n such that: if āij = 0
then aij(t) = 0 for almost all t ∈ (t0, t1), and if āij = +
[āij = −] then aij(t) ≥ 0 [aij(t) ≤ 0] for almost all t ∈
(t0, t1). Note that if āij = ∗ then there is no constraint

on aij(t), i.e. ∗ denotes a “don’t care”.

Definition 1: [25] Pick n ≥ 4 and k ∈ [2, n − 2].
Let Ān

k ∈ {∗,−, 0,+}n×n denote the sign matrix with:

(I) āii = ∗ for all i;

(II) if k is even [odd] then ā1n, ān1 = − [ā1n, ān1 = +];

(III) āij = + for all i, j with |i− j| = 1;

(IV) āij = 0 for all i, j with 1 < |i− j| < n− 1.

For example, Ā4
2 =









∗ + 0 −
+ ∗ + 0
0 + ∗ +
− 0 + ∗









. Note that for k

odd Ān
k is in particular Metzler, but for k even Ān

k is not

necessarily Metzler. Also, Ān
2 = Ān

4 = · · · = Ān
2k for all k

such that 2k ≤ n − 2, and Ān
3 = Ān

5 = · · · = Ān
2k+1

for

all k such that 2k+ 1 ≤ n− 2. Note also that A(t) satisfies

the sign pattern of both Ān
k and An

k+1 iff A(t) is tridiagonal

with non-negative entries on the super- and sub-diagonals for

almost all t. An LTV system that satisfies such a sign pattern

is called a totally positive differential system [20]. Nonlinear

systems whose Jacobians satisfy such a sign pattern have



been analyzed by Smillie [21], Smith [22], and others (see

the tutorial paper [16] for more details).

Theorem 1: [25] Pick n ≥ 4 and k ∈ [2, n − 2]. The

system (6) is k-positive on (t0, t1) iff A(t) admits the sign

structure Ān
k for almost all (t0, t1).

This implies that we can classify k-positivity, with k ∈
[2, n − 2] to just two cases: odd-positivity i.e. the flow

of (6) maps P k to itself for all odd k ∈ [2, n − 2], and

even-positivity i.e. the flow of (6) maps P k to itself for all

even k ∈ [2, n− 2]. By definition, P 1
−
⊂ P 2

−
⊂ · · · ⊂ Pn−1,

so this induces a Morse decomposition of the flow [9].

The next example demonstrates that the criteria for k-

positivity described in Thm. 1 are not invariant to coordinate

transformations.

Example 1: Consider the symbolic matrix

Ā =









∗ 0 0 +
+ ∗ + 0
0 0 ∗ −
+ 0 − ∗









. (7)

Since Ā /∈ M4
2 , the corresponding system is in general not

even-positive. However, for the permutation matrix P :=








0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1









, we have

B̄ := PĀP ′ =









∗ 0 0 −
+ ∗ + 0
0 0 ∗ +
− 0 + ∗









,

so B̄ ∈ M4
2 . Thus, the system obtained by defining y(t) :=

Px(t) is even-positive.

The effect of certain coordinate transformations on the

sign pattern of a matrix can be analyzed using a graph-

theoretic approach.

B. Influence graphs

We associate with a sign matrix Ā ∈ {∗, 0,+,−}n×n a

signed and directed graph called the influence graph G =
(V,E). The vertices are V = {x1, . . . , xn} (i.e., every vertex

corresponds to a state-variable in the system ẋ = Āx). There

is a directed edge from vertex xj to xi if āij 6= 0 and

i 6= j, and the sign of this edge is āij . Note that there are

no self-loops and that there it at most one edge from xj

to xi. There is a one-to-one correspondence between the

influence graph of a system and its sign pattern, except for

the entries on the diagonal of Ā (that are irrelevant for our

considerations). Thus, with a slight abuse of notation we

say that Ā satisfies some graph-theoretical property iff its

influence graph satisfies this property.

The set of in-neighbors [out-neighbors] of a vertex xi is

denoted by Nin(xi) [Nout(xi)], and the set of neighbors

of xi is N (xi) := Nin(xi)
⋃

Nout(xi). The in-degree [out-

degree] of xi is |Nin(xi)| [|Nout(xi)|], and the degree

is |N (xi)|.

x2x1

x4 x3

−

+

+
−

+

+

x2x1

x4 x3

+

−
−

+

+

+

Fig. 1. Influence graphs corresponding to Ā (left) and B̄ (right) in
Example 1.

For example, Fig. 1 depicts the influence graphs associated

with the symbolic matrix Ā and B̄ in Example 1.

From here on we always assume that the influence graph

is connected. Otherwise, we can simply treat each connected

component separately.

III. MAIN RESULTS

Consider a symbolic matrix Ā that is either odd-positive,

even-positive, or both. Then the definition of the matri-

ces Mn
k implies that its associated influence graph satisfies

the following properties:

(a) Degree constraint: |N (xi)| ≤ 2 for any vertex xi in the

graph.

(b) Sign-symmetric influence: for any two vertices xi, xj in

the graph, if the edge from xi to xj is + [−] then there

cannot be a − [+] edge from xj to xi.

Furthermore, if Ā is odd-positive then

(c) all edges are +,

whereas if Ā is not odd-positive and is even-positive then

(d) there exist r ∈ [1, 2] edges that are − and all other

edges are +.

A. k-positivity up to permutations

Our first two main results provide a necessary and suf-

ficient graph-theoretic condition for k-positivity up to a

permutation. Let P ⊂ R
n×n denote the set of permutation

matrices.

Proposition 1: Let Ā be a symbolic matrix. The following

two conditions are equivalent.

1) There exist an odd k ∈ [2, n − 2] and P ∈ P such

that PĀP ′ is k-positive.

2) Ā satisfies properties (a), (b), and (c).

Proposition 2: Let Ā be a symbolic matrix. The following

two conditions are equivalent.

(I) There exist an even k ∈ [2, n − 2] and P ∈ P such

that PĀP ′ is k-positive, but there does not exist P ∈ P

such that PĀP ′ is odd-positive.

(II) Ā satisfies properties (a), (b), and (d).

Example 2: The influence graph associated with the sym-

bolic matrix Ā in (7) satisfies properties (a), (b), and (d), so

by Prop. 2 there exists P ∈ P such that PĀP ′ is k-positive.

Furthermore, there does not exist a P ∈ P such that PĀP ′

is odd-positive.

Proof of Prop. 1. If 1) holds then the influence graph

associated with PĀP ′ satisfies properties (a), (b), and (c).

Since a permutation amounts to relabeling the vertices, it

is easy to see that this implies that the influence graph



associated with Ā also satisfies properties (a), (b), and (c).

We conclude that 1) implies 2).

To prove the converse implication, assume that 2) holds.

If Ā is odd-positive then 1) holds for P = I . Thus, we may

assume that Ā is not odd-positive. We consider several cases.

Case 1. Suppose that every vertex has exactly two neighbors.

Pick an arbitrary vertex, and associate with it a state-

variable y1. Pick one of its neighbors and associate with

it the state-variable y2. Now y2 has a unique neighbor that

is not y1 and we denote it by y3. We proceed in this way

choosing at each step the only neighbor of the current vertex

that has not been chosen yet. Since the influence graph is

connected, this procedure ends after all vertices have been

indexed in increasing order. The resulting influence graph is

odd-positive. The yis are clearly a permutation of the xis

i.e., y = Px, for some P ∈ P.

Case 2. Suppose that every vertex has exactly two neighbors,

except for two vertices, say xi and xj , that have a single

neighbor. Let y1 := xi and yn := xj . Since the graph is

connected, these vertices cannot be neighbors. Denote the

single neighbor of y1 by y2. Denote the single neighbor

of y2 that is not y1 by y3. We proceed in this way choosing at

each step the only neighbor of the current vertex that has not

been chosen yet. Since the influence graph is connected and

all the vertices except for y1 and yn have two neighbors,

this procedure ends after all vertices have been indexed

in increasing order. The resulting influence graph is odd-

positive (and also even-positive).

Since we assume that 2) holds and the graph is connected,

the two cases above are the only possible cases, and in each

such case we showed that 1) holds. Thus, 2) implies 1).

Proof of Prop. 2. Suppose that (I) holds. Then there

exists P ∈ P such that PĀP ′ is even-positive, but not odd-

positive. This implies that PĀP ′ satisfies properties (a), (b),

and (d). Indeed, there must be at least one − edge in PĀP ′,

as otherwise it is also odd-positive. Since a permutation

amounts to relabeling the vertices, Ā also satisfies proper-

ties (a), (b), and (d). We conclude that (I) implies (II).

To prove the converse implication, assume that (II) holds.

If Ā is even-positive and not odd-positive then (I) holds

for P = I . Thus, we may assume this is not so. We consider

several cases.

Case 1. Suppose that all the edges are + except for two edges

that are −, and that every vertex has exactly two neighbors.

The sign-symmetric influence property implies that the −
edges are incident to two vertices, say, xi and xj . Let y1 :=
xi, and yn := xj . Choose the only neighbor of y1, that is

not yn, and associate with it the state-variable y2. The rest

of the construction is similar to that described in the proof

of Prop. 1, with the exception that the resulting graph is

even-positive and not odd-positive.

Case 2. Suppose that all the edges are +, except for a

single edge that is − and that every vertex has exactly two

neighbors. The sign-symmetric influence property implies

that there exist vertices xi and xj such that the edge from xi

to xj is − and there is no edge from xj to xi. The argument

for this case is very similar to the one in the previous case.

Case 3. Suppose that all the edges are + except for two edges

that are − and that every vertex has exactly two neighbors

except for two vertices, say, xi and xj , that have a single

neighbor. Since the graph is connected, xi and xj cannot

be neighbors. Thus, the negative edges are incident to two

vertices xp, xq , that are different than xi, xj . Let y1 := xp

and yn := xq . Next, let y2 be the neighbour of y1 that is

not yn. We iterate over the vertices labeling them as y3, y4
and so on as done in the previous cases. This must end at

either xi or xj as these are the only vertices with a single

neighbor. W.l.o.g. assume that this is xi. Now, let yn−1 be the

neighbour of yn that is not y1. We iterate over the remaining

vertices, labeling them as yn−2, yn−3 and so on until we

end up with xj , after which all the state variables have been

relabeled. The resulting graph is even-positive, and not odd-

positive.

Case 4. Suppose that all the edges are +, except for one edge

that is −, and that every vertex has exactly two neighbors,

except for two vertices that have a single neighbor. The proof

for this case is very similar to the one in the previous case,

except that now there is an edge from xp to xq , but not

from xq to xp.

The four cases above are all the possible cases, and in

each such case we showed that (I) holds.

Since the proofs of Props. 1 and 2 are constructive, they

provide a way to actually determine a permutation that

transforms Ā into a k-positive system. The next example

demonstrates this.

Example 3: Consider again the matrix Ā in Example 1.

This corresponds to Case 1 in the proof of Prop. 2. Following

the construction in this case yields the relabeling

y1 = x3, y4 = x4, y2 = x2, y3 = x1,

or

y1 = x4, y4 = x3, y2 = x2, y3 = x1.

The first of these is just the permutation used in Example 1

and applying this permutation indeed yields an even-positive

system. It is easy to verify that this is true also for the

permutation corresponding to the second relabeling.

The proofs of Props. 1 and 2 also provide the number of

different permutations that yield a k-positive system.

Fact 1: Suppose that Ā is not k-positive for any k ∈
[2, n − 2]. If Ā satisfies properties (a), (b), and (d) then

there exist 2 matrices in P such that PĀP ′ is even-positive.

If Ā satisfies properties (a), (b), and (c) then there exist 2n
matrices in P such that PĀP ′ is odd-positive.

Proof: Suppose that Ā satisfies properties (a), (b),

and (d). After the relabeling the state-variables that corre-

spond to vertices that are incident to negative edges must

be the first and the last state-variables. Thus, there are two

possible options to index them. After this choice is made,

the indexing of all the other state-variables is predetermined

as in the proof of Prop. 2. Indeed, any other choice yields a

symbolic matrix B̄ that has a non-zero entry b̄ij with 1 <
|i− j| < n− 1. Hence there are 2 possible permutations.

Now suppose that Ā satisfies properties (a), (b), and (c).



Due to symmetry, every state-variable can be chosen to be the

first state-variable (i.e. y1) yielding n possibilities. After this

choice is made, the indexing of all the other state-variables

can be done in either increasing or decreasing order. Thus,

there are overall 2n possible permutations.

Next we study Problem 1 when we allow also scaling by

a signature matrix (also called sign transformations). Note

that if S is a signature matrix then S−1 = S.

B. k-positivity up to permutations and sign-transformations

Using sign-transformations allows to detect more k-

positive systems “in disguise”. We begin with a simple

example demonstrating this.

Example 4: Consider the symbolic matrix

Ā =









∗ 0 0 +
− ∗ − 0
0 0 ∗ −
+ 0 − ∗









. (8)

The associated influence graph has four − edges, so Props. 1

and 2 imply that for any k ∈ [2, n − 2] there does not

exist a P ∈ P so that PĀP ′ is k-positive. For the signature

matrix S = diag{1,−1, 1, 1}, the matrix

SĀS =









∗ 0 0 +
+ ∗ + 0
0 0 ∗ −
+ 0 − ∗









,

satisfies properties (a), (b), and (d), so Prop. 2 implies that

there exists a permutation matrix P such that PSĀSP ′ is

even-positive.

Let S ⊂ R
n×n denote the set of signature matrices. We

introduce the following definition.

Definition 2: We call the symbolic matrix Ā structurally

odd-even-positive if there exist P1 ∈ P and S1 ∈ S such

that P1S1ĀS1P
′

1 is odd-positive and there exist P2 ∈ P

and S2 ∈ S so that P2S2ĀS2P
′

2 is even-positive. We call Ā
structurally even-positive [structurally odd-positive] if it is

not odd-even-positive, and there exist P ∈ P, S ∈ S so

that PSĀSP ′ is even-positive [odd-positive].

If S ∈ S then letting y := Sx implies that either yi = xi

or yi = −xi for all i. In the latter case, the effect on

the influence graph is flipping the signs of all the edges

incident to vertex xi. This implies that properties (a) and (b)

are invariant to sign-transformations. To study the effect of

setting yi = −xi on properties (c) and (d), we introduce

more notation. For a symbolic matrix Ā, let ζ(Ā) denote the

number of pairs of neighbors (xi, xj) such that there is an −
edge from xi to xj and/or from xj to xi. For example, for

the matrix Ā in (8), we have that three such pairs: (x1, x2),
(x2, x3), and (x3, x4), so ζ(Ā) = 3.

Proposition 3: Let Ā be a symbolic matrix. The following

two conditions are equivalent.

1) Ā is either structurally odd-even-positive or structurally

odd-positive.

2) Ā satisfies properties (a) and (b) and ζ(Ā) is even.

Proposition 4: Let Ā be a symbolic matrix. The following

two conditions are equivalent.

(I) Ā is structurally even-positive.

(II) Ā satisfies properties (a) and (b) and ζ(Ā) is odd.

Example 5: Consider the symbolic matrix Ā in Exam-

ple 4. It satisfies properties (a), (b), and ζ(Ā) = 3. Thus,

Prop. 4 implies that Ā is structurally even-positive.

Proof of Prop. 3. Suppose that 1 holds, i.e. there exist P ∈
P and S ∈ S such that B̄ := PSĀSP ′ is odd-positive.

Then B̄ satisfies properties (a) and (b), and thus so does Ā.

The matrix B̄, and thus also the matrix P ′B̄P = SĀS,

satisfies property (c). This implies that ζ(SĀS) = 0. Since

negation of a state-variable xi flips the signs of all the

edges incident to the vertex xi, ζ(Ā) must be even. Thus, 1)

implies 2).

To prove the converse implication, assume that 2) holds.

We consider two cases.

Case 1. If ζ(Ā) = 0 then all the edges are +, so Ā satisfies

properties (a), (b), and (d), and combining this with Prop. 1

implies that there exists P ∈ P such that PĀP ′ is odd-

positive.

Case 2. If ζ(Ā) > 0 then pick a vertex xi that is incident

to a − edge and apply a negation on this vertex. If xi

was connected to all its neighbors (where the number of

neighbors is either one or two) by − edges then after

the negation it is connected to all of them by + edges.

Thus, ζ(SiĀSi) = ζ(Ā) − 2, where Si ∈ S corresponds

to the negation of xi. If ζ(SiĀSi) = 0 then we conclude as

in Case 1 that there exists P ∈ P such that PSiĀSiP
′ is

odd-positive. Else, we pick another vertex that is incident to

a negative edge and continue the process.

If xi was connected to one neighbor xj by an − edge

and to another neighbor xq by an + edge then after the

negation it is connected to xq by an − edge. We proceed by

negating xq . We continue this procedure until ζ decreases

by 2. This is bound to eventually take place, since every time

we apply a negation neighbor after neighbor, we “push” the

negative edges in the same “direction”, until we finally apply

a negation on a vertex that is connected to all its neighbors

by negative edges (recall that ζ(Ā) is positive and even).

Then either there are no more negative edges in the graph,

or we repeat the process again. Since it is clear that we do

not apply a negation on any state variable more than once,

this process is finite and terminates after decreasing ζ to zero.

We conclude as in Case 1 that that there exists P ∈ P such

that PSĀSP ′ is odd-positive, where S ∈ S represents all

the negations used in the process.

Thus, we showed that 2) implies 1).

Proof of Prop. 4. Suppose that (I) holds, i.e. there exist P ∈
P and S ∈ S such that B̄ := PSĀSP ′ is even-positive,

yet Ā is not structurally odd-even positive. Then B̄ satisfies

properties (a) and (b), and thus so does Ā. The matrix B̄, and

thus also the matrix P ′B̄P = SĀS, satisfies property (d).

Combining this with the fact that Ā is not structurally odd-

even positive implies that ζ(SĀS) = 1. Since negation of a

state-variable xi flips the signs of all the edges incident to

the vertex xi, ζ(Ā) must be odd. Thus, (I) implies (II).



To prove the converse implication, assume that (II) holds.

Arguing as in the proof of Prop. 3, we can find an S ∈ S

such that ζ(SĀS) = 1. This implies that r, the number

of − edges, satisfies r ∈ {1, 2}. Thus, SĀS satisfies

properties (a), (b) and (d). Applying Prop. 2 completes the

proof of Prop. 4.

Remark 1: Since the proof of Props. 3 and 4 are construc-

tive, they provide an algorithm for finding the transforma-

tions that yield a k-positive system.

IV. AN APPLICATION

Consider the nonlinear Lotka-Volterra system:

ẋi = xi(ri +

n
∑

j=1

aijxj), i ∈ [1, n], (9)

with ri, aij ∈ R. Such systems play an important role in

mathematical ecology [11]. The relevant state-space in these

applications is R
n
+.

Proposition 5: Consider (9) with n ≥ 4 and such that:

1) for any i ∈ [1, n] there are at most two values j 6= i
such that aij is non-zero;

2) aijaji ≥ 0 for any i, j.

Then there exist P ∈ P, S ∈ S such that the system obtained

by setting y(t) := PSx(t) is k-cooperative for some k ∈
[2, n− 2].

Proof: Let A := {aij}ni,j=1. For any i 6= j, the (i, j)
entry in the Jacobian of (9) is Jij(x) = aijxi. This implies

that, ignoring diagonal entries (that are not relevant for our

purposes), J(x) has the same sign pattern as A for all x ∈
R

n
+. The influence graph of A satisfies properties (a) and (b).

Combining this with Props. 3 and 4 completes the proof.

Note that the fact that the nonlinear y-system is k-

cooperative has important implications. If k is odd then

the system is 1-cooperative, i.e. cooperative. If k is even

then the system is 2-cooperative and, under an additional

irreducibility assumption, it satisfies the strong Poincaré-

Bendixson property described in [25]: any omega limit set

of a bounded trajectory that does not include an equilibrium

is a periodic orbit.

V. CONCLUSION

k-positive systems generalize the well-known positive

systems. An important advantage of such systems is the

existence of simple sign-pattern conditions guaranteeing that

a system is k-positive. It was recently shown that k-positive

systems provide a useful tool for analyzing the asymptotic

behavior of nonlinear systems. However, k-positivity is not

invariant under coordinate transformations.

Here, we derived graph-theoretic necessary and sufficient

conditions for a system to be k-positive up to two types

of transformations: permutations of the state-variables and

scaling by a signature matrix. We also provided algorithms

that explicitly find such transformations, when they exist.

It would be interesting to extend these results to more

general coordinate transformations.
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