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SYMBOLIC MODELS FOR A CLASS OF IMPULSIVE SYSTEMS

ABDALLA SWIKIR1, ANTOINE GIRARD2, AND MAJID ZAMANI3,4

Abstract. Symbolic models have been used as the basis of a systematic framework to address control design
of several classes of hybrid systems with sophisticated control objectives. However, results available in the
literature are not concerned with impulsive systems which are an important modeling framework of many
applications. In this paper, we provide an approach for constructing symbolic models for a class of impulsive
systems possessing some stability properties. We formally relate impulsive systems and their symbolic models
using a notion of so-called alternating simulation function. We show that behaviors of the constructed symbolic
models are approximately equivalent to those of the impulsive systems. Finally, we illustrate the effectiveness
of our results through a model of storage-delivery process by constructing its symbolic model and designing
controllers enforcing some safety specifications.

1. Introduction

Symbolic models have been the aim of intensive study in the last two decades since they provide a mechanism
for reducing complexity in the analysis and control of cyber-physical systems [1, 2]. They serve as abstract
mathematical models where each symbolic state and input represent a collection of continuous states and
inputs in the original concrete model. As they have finite number of states and inputs, they enable the use of
correct-by-construction methods from the computer science community to design controllers for a wide variety
of systems. For instance, they allow one to use automata-theoretic methods [3] to design controllers for hybrid
systems with respect to logic specifications such as those expressed as linear temporal logic (LTL) formulae
[4]. In such frameworks, controllers designed for symbolic models can be refined to ones for concrete systems
based on some behavioral relation between original systems and their symbolic models such as approximate
alternating simulation relations [5] or feedback refinement relations [6].

The synthesis of symbolic models for different classes of systems has been investigated, among many others, in
the following papers: for incrementally stable and incrementally forward complete nonlinear control systems
in [7] and [8], respectively; for nonlinear switched systems in [9, 10, 11]; for nonlinear control systems with
known constant time delays and time-varying delays in [12, 13]; for networked control systems in [14, 15], and
finally for incrementally stable infinite-dimensional systems with finite-dimensional input spaces in [16, 17]. All
the aforementioned approaches essentially take a monolithic view of the systems while constructing symbolic
models. On the other hand, different compositional methods for constructing symbolic models have been
recently introduced in the literature with or without imposing stability assumptions over the network; see
[18, 19, 20, 21, 22, 23] and references therein. Although the literature on symbolic models is very rich,
unfortunately, there are no results so far on constructing symbolic models for impulsive systems.

Impulsive systems are an important class of hybrid systems that contain discontinuities or jumps (also referred
to as impulses) in the state and input trajectories of the system governed by discrete dynamics [24, 25]. They
serve as an important modeling framework for a very large variety of applications, e.g. power electronics,
sample-data systems, bursting rhythm models in medicine, and some models in economics; see [26, 27] and the
references therein. Hence, constructing symbolic models for impulsive systems enlarges the class of systems for
which designing correct-by-construction controllers enforcing complex logic specifications is possible. In this
work, we consider time-dependent impulsive systems in which the distance between the impulses is assumed to
belong to a finite set. Such a class of systems is well studied in the literature; see [28] and references therein.
For example, this class of systems models the dynamics of the estimation error in networked control systems
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[29, Section 8.2.] while assuming time instants of the reception of measurements are nondetermined but lie in
a finite set.

This paper provides for the first time an approach for synthesizing symbolic models for a class of impulsive
systems. The symbolic models constructed in this work are complete as their behaviors are approximately
equivalent to those of the concrete systems [1]. First, we introduce a class of transition systems which allows
us to model impulsive systems and their symbolic models in a common framework. Then we recall a notion
of so-called alternating simulation function to relate two transition systems. Such a function allows one to
determine quantitatively the mismatch between the observed behavior of two systems, and implies the existence
of an approximate alternating simulation relation between them [5]. Second, we provide a methodology
for constructing symbolic models together with their alternating simulation functions for impulsive systems
possessing some incremental stability properties. In particular, we require that either the continuous or the
discrete dynamic of the impulsive system to be incrementally input-to-state stable [30] while the other one
is forward complete [8]. Given such an incremental property, we show that the constructed symbolic model
is indeed a complete one [1] (cf. Remark 16). Finally, we apply our results to a model of storage-delivery
process by constructing its symbolic model under different stability properties. We also design a controller
maintaining the number of items in the storage in a desired range.

2. Notation and Preliminaries

2.1. Notation. We denote by R, Z, and N the set of real numbers, integers, and non-negative integers,
respectively. These symbols are annotated with subscripts to restrict them in the obvious way, e.g., R>0 denotes
the positive real numbers. We denote the closed, open, and half-open intervals in R by [a, b], (a, b), [a, b), and
(a, b], respectively. For a, b ∈ N and a ≤ b, we use [a; b], (a; b), [a; b), and (a; b] to denote the corresponding
intervals in N. Given any a ∈ R, |a| denotes the absolute value of a. Given any u = (u1, . . . , un) ∈ R

n, the
infinity norm of u is defined by ‖u‖ = max1≤i≤n |ui|. Given a function ν : R≥0 → R

n, the supremum of ν is
denoted by ‖ν‖∞; we recall that ‖ν‖∞ := supt∈R≥0

‖ν(t)‖. Given x : R≥0 → R
n, ∀t, s ∈ R≥0 with t ≥ s, we

define x(−t) = lims→t x(s). We denote by card(·) the cardinality of a given set and by ∅ the empty set. Given
sets X and Y , we denote by f : X → Y an ordinary map of X into Y , whereas f : X ⇒ Y denotes a set-valued

map [31]. For any set S ⊆ R
n of the form S =

⋃M
j=1 Sj for some M ∈ N, where Sj =

∏n
i=1[c

j
i , d

j
i ] ⊆ R

n with

c
j
i < d

j
i , and nonnegative constant η ≤ η̃, where η̃ = minj=1,...,M ηSj

and ηSj
= min{|dj1 − c

j
1|, . . . , |d

j
n − cjn|},

we define [S]η = {a ∈ S | ai = kiη, ki ∈ Z, i = 1, . . . , n} if η 6= 0, and [S]η = S if η = 0. The set [S]η will be
used as a finite approximation of the set S with precision η 6= 0. Note that [S]η 6= ∅ for any η ≤ η̃. We use
notations K and K∞ to denote different classes of comparison functions, as follows: K = {α : R≥0 → R≥0| α
is continuous, strictly increasing, and α(0) = 0}; K∞ = {α ∈ K| lim

s→∞
α(s) = ∞}. For α, γ ∈ K∞ we write

α ≤ γ if α(r) ≤ γ(r), and, by abuse of notation, α = c if α(r) = cr ∀r ∈ R≥0. Finally, we denote by Id the
identity function over R≥0, i.e. Id(r) = r, ∀r ∈ R≥0.

2.2. Nonlinear Impulsive Systems. Among several classes of impulsive systems studied in the literature,
e.g., [24, 25, 29], in this work, we study a class of time-dependent nonlinear impulsive systems as defined next.

Definition 1. A nonlinear impulsive system Σ is defined by the tuple Σ = (Rn,U,U , f, g), where R
n is the

state space, U ⊆ R
m is the input set, U is the set of all measurable bounded input functions ν : R≥0 → U, and

f, g : Rn × U → R
n are locally Lipschitz functions;

The nonlinear impulsive system Σ is described by differential and difference equations of the form

Σ :

{

ẋ(t) = f(x(t), ν(t)), t ∈ R≥0\Ω,
x(t) = g(x(−t), ν(t)), t ∈ Ω,

(1)

where Ω = {tk}k∈N with tk+1 − tk ∈ {p1τ, . . . , p2τ} for fixed jump parameters τ ∈ R>0 and p1, p2 ∈ N≥1,
p1 ≤ p2; and, x : R≥0 → R

n is the state signal, which is assumed to be right-continuous for all t ∈ R≥0, and
ν ∈ U is the input signal. We will use xx,ν(t) to denote a point reached at time t ∈ R≥0 from initial state
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x = x(0) under input signal ν ∈ U . The Lipschitz condition imposed on f ensures the existence and uniqueness
of a solution of system Σ in (1); see [32, 33] for more details. We denote by Σc and Σd the continuous and
discrete dynamics of system Σ, i.e., Σc : ẋ(t) = f(x(t), ν(t)), and Σd : x(t) = g(x(−t), ν(t)).

3. Transition Systems and Alternating Simulation Functions

We start by introducing the class of transition systems [1] which allows us to model impulsive and symbolic
systems in a common framework.

Definition 2. A transition system is a tuple T = (X,X0, U,F , Y,H) consisting of:

• a set of states X;
• a set of initial states X0 ⊆ X;
• a set of inputs U ;
• transition function F : X × U ⇒ X;
• an output set Y ;
• an output map H : X → Y .

The transition x+ ∈ F(x, u) means that the system can evolve from state x to state x+ under the input u. Thus,
the transition function defines the dynamics of the transition system. Sets X , U , and Y are assumed to be
subsets of normed vector spaces with appropriate finite dimensions. If for all x ∈ X,u ∈ U , card(F(x, u)) ≤ 1
we say that T is deterministic, and non-deterministic otherwise. Additionally, T is called finite if X,U are
finite sets and infinite otherwise. Furthermore, if for all x ∈ X there exists u ∈ U such that card(F(x, u)) 6= 0
we say that T is non-blocking. In this work, we only deal with non-blocking transition systems.

Next we introduce a notion of so-called alternating simulation functions, inspired by [34, Definition 1], which
quantitatively relates two transition systems.

Definition 3. Let T = (X,X0, U,F , Y,H) and T̂ = (X̂, X̂0, Û , F̂ , Ŷ , Ĥ) be transition systems with Ŷ ⊆ Y . A

function S̃ : X × X̂ → R≥0 is called an alternating simulation function from T̂ to T if there exist α̃ ∈ K∞,
0 < σ̃ < 1, ρ̃u ∈ K∞ ∪ {0}, and some ε̃ ∈ R≥0 so that the following hold:

• For every x ∈ X, x̂ ∈ X̂, one has

α̃(‖H(x)− Ĥ(x̂)‖) ≤ S̃(x, x̂). (2)

• For every x ∈ X, x̂ ∈ X̂, û ∈ Û , there exists u ∈ U such that for every x+ ∈ F(x, u) there exists

x̂+ ∈ F̂(x̂, û) so that

S̃(x+, x̂+) ≤ σ̃S̃(x, x̂) + ρ̃u(‖û‖∞) + ε̃. (3)

The next lemma is adapted from [35, Theorem 1] and stated without a proof. This lemma is needed in the
proof of Proposition 6.

Lemma 4. Let S̃ be an alternating simulation function from T̂ to T as in Definition 3. Then for every
x ∈ X, x̂ ∈ X̂, û ∈ Û , there exists u ∈ U such that for every x+ ∈ F(x, u) there exists x̂+ ∈ F̂(x̂, û) so that

S̃(x+, x̂+) ≤ max{σS̃(x, x̂), ρ(‖û‖∞), ε}, (4)

where σ = 1− (1−ψ)(1− σ̃), ρ = 1
(1−σ̃)ψ ρ̃u, and ε =

ε̃
(1−σ̃)ψ for an arbitrarily chosen positive constant ψ < 1,

and σ̃, ρ̃u, ε̃ appearing in Definition 3.

Before showing the next result, let us recall the definition of an alternating simulation relation introduced in
[5].

Definition 5. Let T = (X,X0, U,F , Y,H) and T̂ = (X̂, X̂0, Û , F̂ , Ŷ , Ĥ) be transition systems with Ŷ ⊆ Y . A

relation R ⊆ X×X̂ is called an ε̂-approximate alternating simulation relation from T̂ to T if for any (x, x̂) ∈ R
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• (i) ‖H(x)− Ĥ(x̂)‖ ≤ ε̂;

• (ii) For ny û ∈ Û , there exists u ∈ U such that for all x+ ∈ F(x, u) there exists x̂+ ∈ F̂(x̂, û) satisfying
(x+, x̂+) ∈ R

In addition, if (ii) still holds when reversing the role of T and T̂ , The relation R is in fact an ε̂-approximate

alternating bisimulation relation between T and T̂ [5] (see Remark 4).

The next result shows that the existence of an alternating simulation function for transition systems implies
the existence of an approximate alternating simulation relation between them as as defined above

Proposition 6. Let T = (X,X0, U,F , Y,H) and T̂ = (X̂, X̂0, Û , F̂ , Ŷ , Ĥ) be transition systems with Ŷ ⊆ Y .

Assume S̃ is an alternating simulation function from T̂ to T as in Definition 3 and that there exists r ∈ R>0

such that ‖û‖∞ ≤ r for all û ∈ Û . Then, relation R ⊆ X × X̂ defined by

R =
{

(x, x̂) ∈ X × X̂|S̃(x, x̂) ≤ max {ρ(r), ε}
}

,

where ρ, ε as in Lemma 4, is an ε̂-approximate alternating simulation relation from T̂ to T with

ε̂ = α̃−1(max{ρ(r), ε}).

Proof. Item (i) in Definition 5 is a simple consequence of the definition of R and condition (2) (i.e. α̃(‖H(x)−

Ĥ(x̂)‖) ≤ S̃(x, x̂) ≤ max{ρ(r), ε}), which results in ‖H(x) − Ĥ(x̂)‖ ≤ α̃−1(max{ρ(r), ε}) = ε̂. Item (ii)
in Definition 5 follows immediately from the definition of R, condition (4) in Lemma 4, and the fact that

0 < σ < 1. In particular, we have S̃(x+, x̂+) ≤ max{ρ(r), ε} which implies (x+, x̂+) ∈ R. �

The approximate alternating simulation relation guarantees that for each output behavior of T there exists
one of T̂ such that the distance between these output behaviors is uniformly bounded by ε̂.

Remark 7. Since the input set in all practical applications is bounded, requiring the control inputs to be
bounded is not restrictive at all. Moreover, under certain properties of impulsive systems (see Section 4), one
can choose function ρ̃u the definition of R to be identically zero which cancels the dependency to the size of
control inputs in Proposition 6. ⋄

4. Construction of Symbolic Models

This section contains the main contribution of this work and its results rely on additional assumption on U
that we now describe. Consider impulsive system Σ = (Rn,U,U , f, g) with jump parameters τ , p1 and p2. We
restrict attention to sampled-data impulsive systems, where input curves belong to Uτ containing only curves,
constant in duration τ , i.e.

Uτ = {ν : R≥0 → U|ν(t) = ν((k − 1)τ), t ∈ [(k − 1)τ, kτ), k ∈ N≥1}. (5)

Next we define sampled-data impulsive systems as a transition system. Such a transition system would be the
bridge that relates impulsive systems to their symbolic models.

Definition 8. Given an impulsive system Σ = (Rn,U,Uτ , f, g), with jump parameters (τ , p1, p2), we define
the associated transition system Tτ (Σ) = (X,X0, U,F , Y,H) where:

• X = R
n × {0, . . . , p2};

• X0 = R
n × {0};

• U = Uτ ;
• (x+, l+) ∈ F((x, l), ν) if and only if one of the following scenarios hold:
– Flow scenario: 0 ≤ l ≤ p2 − 1, x+ = xx,ν(

−τ), and l+ = l + 1;
– Jump scenario: p1 ≤ l ≤ p2, x

+ = g(x, ν(0)), and l+ = 0;
• Y = R

n;
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• H : X → Y , defined as H(x, l) = x.

In order to construct a symbolic model for Tτ (Σ), we introduce the following assumptions and lemma.

Assumption 9. Consider impulsive system Σ = (Rn,U,Uτ , f, g) with jump parameters τ , p1 and p2. Assume
that there exist a locally Lipschitz function V : Rn × R

n → R≥0, K∞ functions α, α, ρuc
, ρud

, and constants
κc ∈ R, κd ∈ R>0, such that the following hold

• ∀x, x̂ ∈ R
n

α(‖x− x̂‖) ≤ V (x, x̂) ≤ α(‖x− x̂‖). (6)

• ∀x, x̂ ∈ R
n a.e, and ∀u, û ∈ U

∂V (x, x̂)

∂x
f(x, u) +

∂V (x, x̂)

∂x̂
f(x̂, û) ≤ −κcV (x, x̂) + ρuc

(‖u− û‖). (7)

• ∀x, x̂ ∈ R
n and ∀u, û ∈ U

V (g(x, u), g(x̂, û)) ≤ κdV (x, x̂) + ρud
(‖u− û‖). (8)

Assumption 10. There exists a K∞ function γ̂ such that

∀x, y, z ∈ R
n, V (x, y) ≤ V (x, z) + γ̂(‖y − z‖). (9)

Remark 11. Assumption 9 has different implications based on the values of κc and κd as the following. Given
(6) holds: (i) the existence of function V satisfying (7) and (8) with kc ≤ 0 and kd ≥ 1 results in incremental
forward completeness of the continuous and discrete dynamics of Σ, respectively, and we say Σc and Σd are
δ-FC [8]; (ii) the existence of function V satisfying (7) and (8) with kc > 0 and kd < 1 results in incremental
input-to-state stability of the continuous and discrete dynamics of Σ, respectively, and we say Σc and Σd are
δ-ISS [30, 36]. In addition, Assumptions 10 is non-restrictive conditions provided that one is interested to
work on a compact subset of Rn [37]. ⋄

Remark 12. In condition (7), “ ∀x, x̂ ∈ R
n a.e.” should be interpreted as “for every x, x̂ ∈ R

n except on
a set of zero Lebesgue-measure in R

n”. From Rademachers theorem [38], the local Lipschitz assumption on

function V ensures that
∂V (x, x̂)

∂x
f(x, u) +

∂V (x, x̂)

∂x̂
f(x̂, û) is well defined, except on a set of measure zero. ⋄

The following lemma provides a bound to the evolution of function V in Assumption 9 which is needed in the
proof of Theorem 15.

Lemma 13. Consider impulsive system Σ = (Rn,U,Uτ , f, g) with jump parameters τ , p1 and p2, where Uτ
is given by (5). Let (7) in Assumption 9 holds. Then for all x, x̂ ∈ R

n, for all ν, ν̂ ∈ Uτ , and for any two
consecutive impulses (tk, tk+1), one has

V (xx,ν(
−tk+1),xx̂,ν̂(

−tk+1)) ≤ e−κc(tk+1−tk)V (xx,ν(tk),xx̂,ν̂(tk)) +
1− e−κc(tk+1−tk)

κc
ρuc

(‖ν − ν̂‖∞). (10)

Proof. By using Lemma 1 in [29], condition (7) implies that between any two consecutive impulses (tk, tk+1),
function V is absolutely continuous and satisfies

V̇ (xx,ν(t),xx̂,ν̂(t)) ≤ −κcV (xx,ν(t),xx̂,ν̂(t)) + ρuc
(‖ν(t)− ν̂(t)‖)

∀t ∈ [tk, tk+1) a.e. Hence, it follwos from [39, Theorem 3.1] that

V (xx,ν(
−tk+1),xx̂,ν̂(

−tk+1)) ≤e
−κc(tk+1−tk)V (xx,ν(tk),xx̂,ν̂(tk)) +

∫ tk+1

tk

e−κc(tk+1−s)ρuc
(‖ν(s)− ν̂(s)‖)ds

≤e−κc(tk+1−tk1)V (xx,ν(tk),xx̂,ν̂(tk)) +
1− e−κc(tk+1−tk)

κc
ρuc

(‖ν − ν̂‖∞).

�
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x(τ; x̂; û)
x̂
+

x̂
+

x̂
+

x̂
+

ηx̂

(a)

x(τ; x̂; û)
x̂
+

x̂
+

x̂
+

x̂
+

g(x̂; û)

η

x̂
+

x̂
+

x̂
+

x̂
+

x̂

(b)

g(x̂; û)

η

x̂
+

x̂
+

x̂
+

x̂
+

x̂

(c)

Figure 1. An illustration of the computation of the transitions of T̂τ (Σ) for particular x̂ and
û with (a) l < p1, (b) p1 ≤ l ≤ p2 − 1, and (c) l = p2.

We now have all the ingredients to construct a symbolic model T̂τ (Σ) of transition system Tτ (Σ) associated
to the impulsive system Σ admitting a function V that satisfies Assumption 9 as follows.

Definition 14. Consider a transition system Tτ (Σ) = (X,X0, U,F , Y,H), associated to the impulsive system
Σ = (Rn,U,Uτ , f, g). Assume Σ admits a function V that satisfies Assumption 9. Then one can construct

symbolic model T̂τ (Σ) = (X̂, X̂0, Û , F̂ , Ŷ , Ĥ) where:

• X̂ = R̂
n × {0, · · · , p2}, where R̂

n = [Rn]η and η is the state space quantization parameter;

• X̂0 = R̂
n × {0};

• Û = [U]µ, where µ is the input set quantization parameter;

• (x̂+, l+) ∈ F̂((x̂, l), û) if and only if one of the following scenarios hold:
– Flow scenario: 0 ≤ l ≤ p2 − 1, ‖x̂+ − xx̂,û(

−τ)‖ ≤ η, l+ = l + 1;
– Jump scenario: p1 ≤ l ≤ p2, ‖x̂+ − g(x̂, û)‖ ≤ η, l+ = 0;

• Ŷ = Y ;
• Ĥ : X̂ → Ŷ , defined as Ĥ(x̂, l) = x̂.

An illustration of the computation of the transitions of T̂τ (Σ) is shown in Figure 1. In the definition of
the transition function, and in the remainder of the paper, we abuse notation by identifying û with the
constant input curve with domain [0, τ) and value û. Now, we establish the relation between Tτ (Σ) and

T̂τ (Σ), introduced above, via the notion of alternating simulation function as in Definition 3.

Theorem 15. Consider an impulsive system Σ = (Rn,U,Uτ , f, g) with its associated transition system

Tτ (Σ) = (X,X0, U,F , Y,H). Let Assumptions 9, and 10 hold. Consider symbolic model T̂τ (Σ) = (X̂, X̂0, Û , F̂ , Ŷ , Ĥ)
constructed as in Definition 14. If inequality

ln(κd)− κcτl < 0 (11)

holds for l ∈ {p1, p2}, then function V defined as

V((x, l), (x̂, l)) :=







V (x, x̂) if κd < 1 & κc > 0,
V (x, x̂)eκcτǫl if κd ≥ 1 & κc > 0,

V (x, x̂)κ
l
δ

d if κd < 1 & κc ≤ 0,

(12)

for some 0 < ǫ < 1 and δ > p2, is an alternating simulation function from T̂τ (Σ) to Tτ (Σ).

After proving Theorem 15, we will provide additional insight into condition (11). Note that for the case in
which κd ≥ 1 and κc ≤ 0, this condition cannot hold at all. Hence this case is excluded from the definition of
V in (12).
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Proof. By using (6), ∀(x, l) ∈ X and ∀(x̂, l) ∈ X̂, we have

‖H(x, l)− Ĥ(x̂, l)‖ = ‖x− x̂‖ ≤ α−1(V (x, x̂)) ≤ α̂ (V((x, l), (x̂, l))) ,

where

α̂(s) =







α−1(s) if κd < 1 & κc > 0,
α−1(e−κcτǫp1s) if κd ≥ 1 & κc > 0,

α−1(κ
−

p2
δ

d s) if κd < 1 & κc ≤ 0,

for all s ∈ R≥0. Hence, (2) holds with α̃ = α̂−1.

Now we show that inequality (3) holds as well. Consider any û ∈ Û and choose ν(·) = û. Then, using (9), for

all x, x̂ ∈ R
n, for all û ∈ Û , we have in the flow scenario the following inequality:

V (xx,û(
−τ), x̂+) ≤ V (xx,û(

−τ),xx̂,û(
−τ)) + γ̂(‖x̂+ − xx̂,û(

−τ)‖).

Now, from Definition 14, the above inequality reduces to

V (xx,û(
−τ), x̂+) ≤ V (xx,û(

−τ),xx̂,û(
−τ)) + γ̂(η),

for any x̂+ such that (x̂+, l+) ∈ F̂((x̂, l), û). From (10) with tk+1 = τ, tk = 0, one gets

V (xx,û(
−τ),xx̂,û(

−τ)) ≤ e−κcτV (xx,û(0),x(0, x̂, û)) = e−κcτV (x, x̂)

Hence, for all x, x̂ ∈ R
n, for all û ∈ Û , one obtains

V (xx,û(
−τ), x̂+) ≤ e−κcτV (x, x̂) + γ̂(η), (13)

for any x̂+ such that (x̂+, l+) ∈ F̂((x̂, l), û). By following similar argument to the previous one and using (8),

one also obtains the following inequality in the jump scenario for all x, x̂ ∈ R
n, and for all û ∈ Û

V (g(x, û), x̂+) ≤ κdV (x, x̂) + γ̂(η), (14)

for any x̂+ such that (x̂+, l+) ∈ F̂((x̂, l), û).

Now, in order to show function V defined in (12) satisfies (3), we consider the different scenarios in Definition
14 and different cases for values of κd and κc as follows:

• κd < 1 & κc > 0 (case 1):
– Flow scenario (l+ = l+ 1):

V((x+, l+), (x̂+, l+)) = V (x+, x̂+) ≤ e−κcτV (x, x̂) + γ̂(η) = e−κcτV((x, l), (x̂, l)) + γ̂(η).

– Jump scenario (l+ = 0):

V((x+, l+), (x̂+, l+)) = V (x+, x̂+) ≤ κdV (x, x̂) + γ̂(η) = κdV((x, l), (x̂, l)) + γ̂(η).

Let λf = max{e−κcτ , κd}, and γf = γ̂, then

V((x+, l+), (x̂+, l+)) ≤ λfV((x, l), (x̂, l)) + γf (η).

• κd ≥ 1 & κc > 0 (case 2):
– Flow scenario (l+ = l+ 1):

V((x+, l+), (x̂+, l+)) = V (x+, x̂+)eκcτǫl
+

= V (x+, x̂+)eκcτǫ(l+1) ≤ (e−κcτV (x, x̂) + γ̂(η))eκcτǫ(l+1)

= e−κcτeκcτǫeκcτǫlV (x, x̂) +
γ̂(η)

e−κcτǫ(l+1)
= e−κcτ(1−ǫ)V((x, l), (x̂, l)) +

γ̂(η)

e−κcτǫ(l+1)
.

– Jump scenario (l+ = 0):

V((x+, l+), (x̂+, l+)) = V (x+, x̂+)eκcτǫl
+

= V (x+, x̂+) ≤ κdV (x, x̂) + γ̂(η)

=
eκcτǫl

eκcτǫl
κdV (x, x̂) + γ̂(η) = e−κcτǫlκdV((x, l), (x̂, l)) + γ̂(η).
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Let λf = max{e−κcτ(1−ǫ), e−κcτǫp1κd}, and γf = eκcτǫ(p2+1)γ̂, then

V((x+, l+), (x̂+, l+)) ≤ λfV((x, l), (x̂, l)) + γf (η).

• κd < 1 & κc ≤ 0 (case 3):
– Flow scenario (l+ = l+ 1):

V((x+, l+), (x̂+, l+)) = V (x+, x̂+)κ
l+

δ

d = V (x+, x̂+)κ
(l+1)

δ

d ≤ (e−κcτV (x, x̂) + γ̂(η))κ
(l+1)

δ

d

= e−κcτκ
l
δ

d κ
1
δ

d V (x, x̂) + γ̂(η)κ
(l+1)

δ

d = e−κcτκ
1
δ

d V((x, l), (x̂, l)) + γ̂(η)κ
(l+1)

δ

d .

– Jump scenario (l+ = 0):

V((x+, l+), (x̂+, l+)) = V (x+, x̂+)κ
l+

δ

d = V (x+, x̂+) ≤ κdV (x, x̂) + γ̂(η)

=
κ

l
δ

d

κ
l
δ

d

κdV (x, x̂) + γ̂(η) = κ
δ−l
δ

d V((x, l), (x̂, l)) + γ̂(η).

Let λf = max{e−κcτκ
1
δ

d , κ
δ−p2

δ

d }, and γf = γ̂, then

V((x+, l+), (x̂+, l+)) ≤ λfV((x, l), (x̂, l)) + γf (η).

To continue with the proof, we need to show that λf < 1 for case 2 and case 3 (case 1 is trivial). In case 2,

note that e−κcτ(1−ǫ) < 1 since 0 < ǫ < 1 and κc > 0. Additionally, e−κcτǫp1κd < 1 ⇔ ln(κd)− κcτǫp1 < 0. By
continuity of the real number , we can always find some 0 < ǫ < 1 such that ln(κd) − κcτl < 0, l ∈ {p1, p2},

implies ln(κd)− κcτǫp1 < 0. Hence, λf < 1. Similarly, in case 3, we have κ
δ−p2

δ

d < 1 since δ > p2 and κd < 1.

Moreover, e−κcτκ
1
δ

d < 1 ⇔ ln(κd) − κcτδ < 0. By continuity of the real number, we can always find some
δ > p2 such that ln(κd) − κcτl < 0, l ∈ {p1, p2}, implies ln(κd) − κcτδ < 0. Therefore, λf < 1. Hence, for

all ((x, l), (x̂, l)) ∈ X × X̂, for all û ∈ Û , for any x̂+ such that (x̂+, l+) ∈ F̂((x̂, l), û), V satisfies inequality

(3) with ν = û, σ̃ = λf , ε̃ = γf (η), and ρ̃u = 0. Thus, V is an alternating simulation function from T̂τ (Σ) to
Tτ (Σ).

�

Remark 16. One can also verify that function V given by (12) is also an alternating simulation function

from Tτ (Σ) to T̂τ (Σ). In particular, V satisfies (2) and (3) with choosing û satisfying1 ‖û − ν‖ ≤ µ, same

σ̃, ρ̃u defined in Theorem 15, ε̃ = γf (η) + max
{

1−e−κc(tk+1−tk)

κc
ρuc

, ρud

}

(µ) for case 1 and 3, and ε̃ =

γf (η) + max
{

eκcτǫ(p2+1) 1−e
−κc(tk+1−tk)

κc
ρuc

, ρud

}

(µ) for case 2. Observe that the existence of a function V

serving as an alternating simulation function in both directions, i.e. from Tτ (Σ) to T̂τ (Σ) and from T̂τ (Σ)

to Tτ (Σ), implies the existence of an approximate alternating bisimulation relation between Tτ (Σ) and T̂τ (Σ)

as introduced in [5]. Consequently, T̂τ (Σ) is a complete symbolic model for Tτ (Σ). The completeness of the
symbolic model implies that there exists a controller enforcing the desired specifications on the symbolic model
T̂τ (Σ) if and only if there exists a controller enforcing the same specifications on Tτ (Σ). ⋄

Remark 17. The symbolic model T̂τ (Σ) has a countably infinite set of states. However, in practical applica-
tions, the physical variables are restricted to a compact set. Hence, we are usually interested in the dynamics
of the impulsive system only on a compact subset X ⊆ R

n. Then, we can restrict the set of states of T̂τ (Σ) to
the sets ([Rn]η ∩ X)×{0, · · · , p2} which is finite. We refer the interested readers to the explanation provided
after Remark 4.1 in [8] for more details. ⋄

1By the structure of Û , there always exists û satisfying ‖û− ν‖ ≤ µ.
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(a) (b) (c)

Figure 2. Controllers with their corresponding domains: (a) case 1, (b) case 2, (c) case 3.

Finally, we would like to provide a discussion on condition (11) in Theorem 15. In the case when κd < 1 and
κc > 0, the continuous and discrete dynamics of Σ are δ-ISS, and, clearly, (11) always holds. For the case
when κc > 0 and κd ≥ 1, the continuous dynamic Σc is δ-ISS while the discrete dynamic Σd is δ-FC. In order
for condition (11) to hold in this case, κc should be large enough to accommodate the undesirable effect of κd
and that the impulses do not happen too frequently. Finally, κc ≤ 0 and κd < 1 corresponds to the case that
the continuous dynamic Σc is δ-FC while the discrete one Σd is δ-ISS. Here, we require the impulses to happen
very often and κd to be small enough to accommodate the undesirable effect of κc. Note that condition (11)
ensures that an increase in the value of function V in Assumption 9 during flows is compensated by a decrease
at jumps and vice versa. A similar argument was used in [29, Sections 4,5,6] to reason about input-to-state
stability of impulsive systems, and we expect that by utilizing Assumption 9 with condition (11), one can get
δ-ISS for system Σ in (1).

5. Case study: A storage-delivery process model

In this case study, we apply our approach to a variant of the storage-delivery process model from [40]. Let
the number x ∈ R≥0 of goods in a storage be continuously evolving proportionally to the number of items
with rate coefficient a. At every time instant t ∈ Ω = {tk}k∈N, with tk+1 − tk ∈ {p1τ, . . . , p2τ} for a fixed
jump parameters τ ∈ R>0 and p1, p2 ∈ N≥1, p1 ≤ p2, a truck comes to the storage and delivers (b − 1)%,
or picks up (1 − b)% of the current items. Let c denote the number of items per time unit that can be
added, through lineside delivery from the factory to the storage, or taken out, from the storage to other
locations during t ∈ (tk+1, tk). Similarly, let d be the number of items that can be added, or taken out,
from the storage at time instants t ∈ Ω. The delivery and picking-up process is controlled by the input
ν(t) = ν(0) ∈ {−1, 0, 1}, t ∈ [0, τ). The evolution of this process can be modeled as

Σ :

{

ẋ(t) = ax+ cν(t), t ∈ R≥0\Ω,
x(t) = bx(−t) + dν(t), t ∈ Ω.

(15)

In order to construct a symbolic model for impulsive system Σ, we start by checking Assumptions 9 and 10.
It can be shown that conditions (6), (7), and (8) hold with V (x, x′) = ‖x − x′‖ with α = α = Id, ρuc

= |c|,
ρud

= |d|, κc = −a, and κd = |b|. Moreover, condition (9) holds with γ̂ = Id. Given that (11) holds for
l ∈ {1, p}, and, with a proper choice2 of ǫ and δ, function V(x, x̂) given by (12) is an alternating simulation

function from T̂τ (Σ), constructed as in Definition 14, to Tτ (Σ). In particular, V satisfies conditions (2) and
(3) with functions α̃, ρ̃u and constants σ̃, ε given below based on the value of a and b, with ψ = 0.99.

• |b| < 1 & a < 0: α̃ = Id, ρ̃u = 0, σ̃ = max{eaτ , |b|}, ε̃ = η.
• |b| ≥ 1 & a < 0: α̃ = e−aτǫp1 , ρ̃u = 0, σ̃ = max{eaτ(1−ǫ), eaτǫp1|b|}, and ε̃ = e−aτǫ(p2+1)η.

2ǫ = 1− ς, and δ = p2 + ς with ς sufficiently small.
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• |b| < 1 & a ≥ 0: α̃ = |b|
p2
δ , ρ̃u = 0, σ̃ = max{eaτ |b|

1
δ , |b|

δ−p2
δ }, and ε̃ = η.

10 20 30 40 50
0

20

40

60

80

100

Figure 3. Trajectories of system Σ for different values of p1, p2, a, b,c, d, Ψ: blue (bottom)
(p1 = 1, p2 = 5, a = −0.2, b = 0.9, c = d = 5, Ψ = {25, 50}), red (middle) (p1 = 5, p2 = 7,
a = −0.3, b = 1.01, c = d = 15, Ψ = {50, 75}), green (top) (p1 = 1, p2 = 2, a = 0.2, b = 0.85,
c = d = 15, Ψ = {75, 100}). The jumps are indicated by •.

The control objective here is to maintain the number of items in a desired range Ψ given by Ψ = [ψl, ψu] (a
safety specification). For the sake of numerical illustration, we choose different combinations of p1, p2, a, b, c,

d, Ψ, and leverage software tool SCOTS [41] for constructing symbolic models T̂τ (Σ) and controller u for Tτ (Σ)
with τ = 0.2, and η = 0.01. The controllers for all cases with their domains are represented on Figure 2: (a)
case 1, (b) case 2, (c) case 3. In addition, Figure 3 shows trajectories of system Σ for different values of
p1, p2, a, b, c, d, Ψ as follows: case 1 (blue) (bottom) : p1 = 1, p2 = 5, a = −0.2, b = 0.9, c = d = 10,
Ψ = {25, 50}; case 2 (red) (middle): p1 = 5, p2 = 7, a = −0.3, b = 1.01, c = d = 15, Ψ = {50, 75}; case 3

(green)(top): p1 = 1, p2 = 2, a = 0.2, b = 0.85, c = d = 15, Ψ = {75, 100}. Finally, one can compute the

mismatch between the output behavior of Tτ (Σ) and its symbolic model T̂τ (Σ) by utilizing Proposition 6. In
particular, we have ε̂ = 0.25 for case 1, ε̂ = 0.75 for case 2, and ε̂ = 0.65 for case 3.

6. Conclusion

In this work, we provided an approach for constructing symbolic models of impulsive systems. To do so, we
used a notion of alternating simulation functions to relate impulsive systems and their symbolic models. Under
some stability properties, we introduced an approach to construct symbolic models for a class of impulsive
systems. Finally, we illustrated the effectiveness of our results via a model of storage-delivery-process.
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