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Abstract. In this paper, we study formal synthesis of control policies for partially observed jump-diffusion

systems against complex logic specifications. Given a state estimator, we utilize a discretization-free approach

for formal synthesis of control policies by using a notation of control barrier functions without requiring any
knowledge of the estimation accuracy. Our goal is to synthesize an offline control policy providing (potentially

maximizing) a lower bound on the probability that the trajectories of the partially observed jump-diffusion

system satisfy some complex specifications expressed by deterministic finite automata. Finally, we illustrate
the effectiveness of the proposed results by synthesizing a policy for a jet engine example.

1. Introduction

Recent years have witnessed a growing interest in formal synthesis of controllers for complex systems against
complex logic specifications [1]. These specifications are usually expressed using temporal logic formulae or
as (in)finite strings over finite automata. Several approaches based on finite abstraction have been widely
used to solve such synthesis problems. Existing techniques include policy synthesis enforcing linear temporal
logic specifications for non-stochastic systems [2, 3] and for stochastic ones [4, 5, 6]. When dealing with large
systems, these approaches suffer severely from the curse of dimensionality (i.e., computational complexity
grows exponentially with the dimension of the state set). In order to overcome the large computational
burden, a discretization-free approach, based on control barrier functions has shown potential to solve the
formal synthesis problems (See [7, 8, 9, 10] and references therein). The aforementioned works assume the
availability of complete state information. However, in many real applications we do not have access to
complete state information. Motivated by this limitation, the recent result in [11] provides the synthesis
of controllers enforcing invariance properties for stochastic control systems with incomplete information by
assuming a prior knowledge of the control barrier functions. In our recent result [12], we consider the problem
of synthesizing controllers for partially observed stochastic control systems. In particular, we search for a
control barrier function that provides a controller along with a lower bound on the probability that the system
satisfies invariance specifications over a finite-time horizon. Similar to [11], this work also assumes the existence
of an estimator with a given probabilistic accuracy. Then we provide the overall probability threshold using
the probability bound on the estimator accuracy and that of the trajectories of the estimator satisfying the
invariance specifications, obtained via control barrier functions.

The contributions of this paper in comparison with those of [11, 12] are twofold. First, we provide an offline
controller synthesis approach enforcing complex logic specifications expressed by (non)deterministic finite
automata for partially observed jump-diffusion systems. As a special case, those properties include invariance
ones. Second, we provide an approach for computing lower bound on the probability that the system satisfies
given specifications over a finite-time horizon without requiring any knowledge of the estimator’s accuracy.
Finally, we demonstrate the effectiveness of the proposed results on a nonlinear jet engine example.

2. Preliminaries and Problem Definition

Notations: We denote the set of natural, real, and non-negative real numbers by N, R, and R+
0 , respectively.

We use Rn to denote the n-dimensional Euclidean space and Rn×r to denote the space of real matrices with
1
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n rows and r columns. We denote by ei ∈ Rn the vector whose all elements are zero, except the ith element,
which is one. Given a matrix A ∈ Rn×n, Tr(A) represents trace of A which is the sum of all diagonal elements
of A. The zero matrix in Rn×m is denoted by 0n×m. Given sets X and Y , we donate f : X → Y an ordinary
map from X to Y and the notation |X| denotes the cardinality of set X.

2.1. Partially Observed Jump-Diffusion Systems. Let the triplet (Ω,F ,P) denote a probability space
with a sample space Ω, filtration F , and the probability measure P. The filtration F = (Fs)s≥0 satisfies
the usual conditions of right continuity and completeness [13]. Let (Wks)s≥0 be r̄k-dimensional F-Brownian
motions, k = 1, 2. Let (Pks)s≥0 be a q̄k-dimensional F-Poisson processes, with k = 1, 2. We assume that
the Poisson processes and Brownian motions are independent of each other. The Poisson process Pks :=
[P 1
ks; · · · ;P q̄kks ] models q̄k kinds of events, k = 1, 2, whose occurrences are assumed to be independent of each

other. We consider the partially observed jump-diffusion system (po-JDS), denoted by S, which is described
by the following stochastic differential equations (SDE)

S :

{
d ξ = f(ξ, υ) d t+ g1(ξ) dW1t + r1(ξ) dP1t,

d y = h(ξ) d t+ g2(ξ) dW2t + r2(ξ) dP2t,
(2.1)

where ξ(t) ∈ X ⊆ Rn is the value of solution process ξ of S, υ(t) ∈ U ⊆ Rm is the input vector, and y(t) ∈ Rp is
the output vector representing the noisy partial observation at time t ∈ R+

0 P-almost surely (P-a.s.). Functions
f : X × U → Rn, g1 : X → Rn×r̄1 , g2 : X → Rp×r̄2 , r1 : X → Rn×q̄1 , r2 : X → Rp×q̄2 , and h : X → Rp are
assumed to be Lipschitz continuous to ensure existence and uniqueness of the solution of S [13]. Throughout
the paper, we use the notation ξaυ(t) to denote the value of the solution process of S at time t ∈ R+

0 under
the input signal υ starting from the initial state ξaυ(0) = a P-a.s., in which a is a random variable that is
measurable in F0. Here, we assume that the Poisson processes P iks for any i ∈ {1, . . . , q̄k}, k = 1, 2, have the
rates of λki. In order to provide the results in this paper, we raise the following assumption on the existence
of the estimator that estimates the state of the po-JDS (2.1).

Assumption 1. The states of the po-JDS S in (2.1) can be estimated by a proper estimator Ŝ represented in
the form of an SDE as:

Ŝ : d ξ̂ = f(ξ̂, υ) d t+K
(

d y − h(ξ̂) d t
)
, (2.2)

where K ∈ Rn×p is the estimator gain.

There are plenty of results in the literature on the computation of estimator gain K for various classes of

stochastic systems; see the results in [14, 11, 15], and [16]. We define the augmented process [ξ, ξ̂]T , where ξ

and ξ̂ are the solution processes of S and Ŝ, respectively. The corresponding augmented jump-diffusion system
S̃ can be defined as: [

d ξ

d ξ̂

]
=
([f(ξ, υ)

f(ξ̂, υ)

]
+

[
0n×p 0n×p
K −K

] [
h(ξ)

h(ξ̂)

])
d t

+

[
g1(ξ) 0n×r̄2
0n×r̄1 Kg2(ξ)

][
dW1t

dW2t

]
+

[
r1(ξ)
0n×q̄1

]
dP1t+

[
0n×q̄2
Kr2(ξ)

]
dP2t.

For later use, we provide the definition of the infinitesimal generator (denoted by operator D) for S̃ using Ito’s
differentiation [13]. Let B : X ×X → R be a twice differentiable function. The infinitesimal generator of B



SYNTHESIS OF PARTIALLY OBSERVED JUMP-DIFFUSION SYSTEMS VIA CONTROL BARRIER FUNCTIONS 3

associated with the system S̃ for all (x, x̂) ∈ X ×X and for all u ∈ U is given by

DB(x,x̂,u)=
[
∂xB ∂x̂B

]
(

[
f(x, u)
f(x̂, u)

]
+

[
0n×p 0n×p
K −K

][
h(x)
h(x̂)

]
)

+
1

2
Tr(

[
g1(x) 0n×r̄2
0n×r̄1 Kg2(x)

][
g1(x) 0n×r̄2
0n×r̄1 Kg2(x)

]T[
∂xxB ∂xx̂B
∂x̂xB ∂x̂x̂B

]
)

+

q̄1∑
i=1

λ1i(B(x+ r1(x)ei, x̂)−B(x, x̂))

+

q̄2∑
i=1

λ2i(B(x+Kr2(x)ei, x̂)−B(x, x̂)).

The symbols ∂x and ∂x,x̂ in (2.3) represent first and second-order partial derivatives with respect to x (1st
argument) and x̂ (2nd argument), respectively. Note that we dropped the arguments of ∂xB, ∂x̂B, ∂x,xB,
∂x,x̂B, ∂x̂,xB, and ∂x̂,x̂B in (2.3) for the sake of simplicity.

Given a po-JDS S in (2.1), we aim at synthesizing a control policy that guarantees a potentially tight lower
bound on the probability that system S satisfies a complex specification over a finite time horizon. The class
of specifications considered in this paper are provided in the next subsection.

Remark 2.1. The use of the augmented system S̃ will allow us to provide the main result of the paper without
any correctness requirement on the observer. In particualr, our augmented system formulation provides the
user the flexibility to design any observer by means of any technique. The probabilistic distance between the
values of state and their estimator is natively considered in our formulation and one does not need to quantify
this distance a-priori which is needed in the results proposed in [12, 11].

2.2. Specifications. In this subsection, we consider the class of specifications expressed by nondeterministic
finite automata (NFA) as defined below.

Definition 2.2. [17] A nondeterministic finite automaton (NFA) is a tuple A = (Q,Q0,Σ, δ, F ), where Q is
a finite set of states, Q0 ⊆ Q is a set of initial states, Σ is a finite set (a.k.a. alphabet), δ : Q×Σ→ P (Q) is a
transition function, where P (Q) denotes the power set of Q, and F ⊆ Q is a set of accepting (or final) states.

NFA A is called deterministic if the transition function is defined as δ : Q × Σ → Q, and we refer to it
as deterministic finite automata (DFA). Since every NFA can be converted to its equivalent DFA using the
powerset construction [18], in the rest of the paper, we only deal with DFA. Moreover, it is well known that

the complement of a DFA A, denoted by Ac, is again a DFA [19]. We use the notation q
σ−→ q′ to denote

transition relation (q, σ, q′) ∈ δ. A finite word σ = (σ0, σ1, . . . , σk−1) ∈ Σk is accepted by DFA A if there exists

a finite state run q = (q0, q1, . . . , qk) ∈ Qk+1 such that q0 ∈ Q0, qi
σi−→ qi+1 for all 0 ≤ i < k and qk ∈ F . The

accepted language of A, denoted by L(A), is the set of all words accepted by A.

In this work, we consider those specifications given by the accepting languages of DFA A defined over a
set of atomic propositions Π, i.e., the alphabet Σ = Π. We should highlight that all linear temporal logic
specifications defined over finite traces, referred to as LTLF , are recognized by DFA [20].

2.3. Satisfaction of Specification by po-JDS. A given po-JDS S in (2.1) is connected to the specification
given by the accepting language of a DFA A defined over a set of atomic propositions Π, with the help of a
measurable labeling function L : X → Π as described in the next definition which is similar to [21, Definition
2].

Definition 2.3. For a po-JDS S as in (2.1) and the labeling function L : X → Π, a finite sequence σ(ξaυ) =
(σ0, σ1, . . . , σk−1) ∈ Πk, k ∈ N, is a finite trace of the solution process ξaυ over a finite time horizon [0, T ) ⊂ R+

0

if there exists an associated time sequence t0, t1, . . . , tk−1 such that t0 = 0, tk = T , and for all j ∈ {0, 1, . . . , k−
1}, tj ∈ R+

0 following conditions hold
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• tj < tj+1;
• ξaυ(tj) ∈ L−1(σj);
• If σj 6= σj+1, then for some t′j ∈ [tj , tj+1], ξaυ(t) ∈ L−1(σj) for all t ∈ (tj , t

′
j); ξaυ(t) ∈ L−1(σj+1) for

all t ∈ (t′j , tj+1); and either ξaυ(t′j) ∈ L−1(σj) or ξaυ(t′j) ∈ L−1(σj+1).

Next, we define the probability that the solution process ξaυ of the po-JDS S starting from some initial state
ξaυ(0) = a ∈ X0 under control policy υ satisfies the specification given by DFA A.

Definition 2.4. The finite trace corresponding to the solution process of a po-JDS S starting from a ∈ X and
under the control policy υ over a finite-time horizon [0, T ) ⊂ R+

0 , i.e. σ(ξaυ) = (σ0, σ1, . . . , σj , . . . , σk−1) ∈ Πk

as in Definition 2.3, satisfies a specification given by the language of a DFA A, denoted by σ(ξaυ) |= A, if there
exists j ∈ {0, . . . , k − 1} such that (σ0, σ1, . . . , σj) ∈ L(A). The probability of satisfaction of the specification
given by A is denoted by P{σ(ξaυ) |= A}.
Remark 2.5. The set of atomic propositions Π = {p0, p1, . . . , pM} and the labeling function L : X → Π
provide a measurable partition of the state set X = ∪Ni=1Xi as Xi := L−1(pi). Without loss of generality, we
assume that Xi 6= ∅ for any i.

2.4. Problem Definition. Now, we formally define the main synthesis problem considered in this work.

Problem 2.6. Given a po-JDS S as in (2.1), a specification given by the accepting language of DFA A =
(Q,Q0,Π, δ, F ) over a set of atomic propositions Π = {p0, p1, . . . , pM}, a labeling function L : X → Π, and
a real value ϑ ∈ (0, 1), compute an offline control policy υ (if existing) such that P{σ(ξaυ) |= A} ≥ ϑ, for all
a ∈ L−1(pi) and some i ∈ {0, 1, . . . ,M}.

Finding a solution to Problem 2.6 (if existing) is difficult in general. We should highlight that the proposed
approach here is sound in solving the considered synthesis problem. This means that if the proposed method
provides a solution to a synthesis problem, then we can formally conclude that the proposed controller renders
the given specification with the corresponding lower bound on the probability of satisfaction. However, if the
method fails to provide any solution, then there may or may not exist a solution to the original synthesis
problem). Our approach is to compute a policy υ together with a lower bound ϑ. Our aim is to find the
potentially largest lower bound, which can be compared with ϑ and gives policy, i.e., a solution for Problem
2.6 if ϑ≥ ϑ. Instead of computing a control policy that guarantees the lower bound ϑ, we compute a policy
that guarantees P{σ(ξaυ) |= Ac} ≤ ϑ̄, for any a ∈ L−1(pi) and some i ∈ {0, 1, . . . ,M}. Then for the same
control policy the lower bound can be easily obtained as ϑ= 1 − ϑ̄. This is done by constructing a DFA Ac
whose language is the complement of the language of DFA A. To synthesize a controller, we utilize the notion
of control barrier functions defined for augmented jump-diffusion system S̃ introduced in the next section.

3. Control Barrier Functions

In this section, we provide sufficient conditions using so-called control barrier functions under which we can
provide the upper bound on the probability that the trajectories of system S starting from any initial state
in X0 ⊆ X reach X1 ⊆ X. To provide a result giving an upper bound on the reachability probability for the
trajectory of S, we provide conditions on barrier functions constructed over the augmented system S̃.

Theorem 3.1. Consider a po-JDS S as in (2.1), its estimator Ŝ as in (2.2), the resulting augmented system

S̃ as in (2.3) and sets X0, X1 ⊆ X. Suppose there exists a twice differentiable function B : X × X → R+
0 ,

constants c ≥ 0 and γ ∈ [0, 1) such that

∀(x, x̂) ∈ X0 ×X0, B(x, x̂) ≤ γ, (3.1)

∀(x, x̂) ∈ X1 ×X, B(x, x̂) ≥ 1, (3.2)

∀x̂ ∈ X,∃u ∈ U,∀x ∈ X, DB(x, x̂, u) ≤ c. (3.3)

Then the probability that the solution process ξaυ of the system S starts from any initial state a ∈ X0 and
reaches region X1 under the control policy υ within time horizon [0, T ) ⊂ R+

0 is upper bounded by γ + cT .
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Proof. By using (3.1) and the fact that X1 × X ⊆
{

(x, x̂) ∈ X × X | B(x, x̂) ≥ 1
}

, we have P
{
ξaυ(t) ∈

X1 ∧ ξ̂âυ(t) ∈ X ∃t ∈ [0, T ) | a, â
}
≤ P

{
sup0≤t≤TB(ξaυ(t), ξ̂âυ(t)) ≥ 1 | a, â

}
≤ B(a, â) + cT ≤ γ + cT . The

second inequality is obtained by utilizing the result of [22, Theorem 1]. This implies that the probability of

the augmented trajectory of S̃ staring from any (a, â) ∈ X0 ×X0 and reaching X1 ×X is upper bounded by
γ + cT .

Now we get P
{
ξaυ(t) ∈ X1∧ ξ̂âυ(t) ∈ X ∃t ∈ [0, T ) | a, â

}
≤ P

{
ξaυ(t) ∈ X1 ∃t ∈ [0, T ) | a

}
+P
{
ξ̂âυ(t) ∈ X ∃t ∈

[0, T ) | â
}
−P
{
ξaυ(t) ∈ X1∨ ξ̂âυ(t) ∈ X ∃t ∈ [0, T ) | a, â

}
. Since, the second and last terms trivially hold with

probability 1, one has P
{
ξaυ(t) ∈ X1 ∧ ξ̂âυ(t) ∈ X ∃t ∈ [0, T ) | a, â

}
≤ P

{
ξaυ(t) ∈ X1 ∃t ∈ [0, T ) | a

}
. Now,

since the right term of the and (i.e. ∧) is held for all time, the inequality above becomes an equality and one
gets P

{
ξaυ(t) ∈ X1 ∃t ∈ [0, T ) | a

}
≤ γ + Tc which concludes the proof. �

The function B in Theorem 3.1 satisfying (3.1)-(3.3) is usually referred to as the control barrier function.

Remark 3.2. Condition (3.3) implicitly associates a stationary controller u : X → U according to the
existential quantifier on u for any x̂ ∈ X and is independent of choice of x ∈ X. The stationary control policy

υ driving the system is readily given by υ(t) = u(ξ̂aυ(t)), where ξ̂aυ is the solution process of the estimator.

4. Formal Synthesis of Controllers

To synthesize control policies using control barrier functions enforcing specifications expressed by DFA A, we
first provide the decomposition of specifications into sequential reachability tasks which will later be solved
using control barrier functions.

4.1. Decomposition into Sequential Reachability. Consider a DFA A expressing the properties of inter-
est for the system S. Consider DFA Ac = (Q,Q0,Π, δ, F ) whose language is the complement of the language
of DFA A. The sequence q = (q0, q1, . . . , qk) ∈ Qk+1, k ∈ N is called an accepting state run if q0 ∈ Q0, qk ∈ F ,

and there exists a finite word σ = (σ0, σ1, . . . , σk−1) ∈ Πk such that qi
σi−→ qi+1 for all i ∈ {0, 1, . . . , k − 1}.

We denote the finite word corresponding to accepting state run q by σ(q). We also indicate the length of
q ∈ Qk+1 by |q|, which is k + 1. Let R be the set of all finite accepting state runs starting from q0 ∈ Q0

excluding self-loops, where

R:={q=(q0, q1, . . . , qk)∈Qk+1 | qk∈F, qi 6=qi+1,∀i<k}.

Computation of R can be done algorithmically by viewing Ac as a directed graph G = (V, E) with vertices

V = Q and edges E ⊆ V ×V such that (q, q′) ∈ E if and only if q′ 6= q and there exist p ∈ Π such that q
p−→ q′.

For any (q, q′) ∈ E , we donate the atomic proposition associated with the edge (q, q′) by σ(q, q′). From the
construction of the graph, it is obvious that the finite path in the graph starting from vertices q0 ∈ Q0 and
ending at qF ∈ F is an accepting state run q of Ac without any self-loop and therefore belongs to R. One can
easily compute R using depth first search algorithm [23]. For each p ∈ Π, we define a set Rp as

Rp := {q = (q0, q1, . . . , qk) ∈ R | σ(q0, q1) = p}. (4.1)

Decomposition into sequential reachability is performed as follows. For any q = (q0, q1, . . . , qk) ∈ Rp ∀p ∈ Π,
we define Pp(q) as a set of all state runs of length 3,

Pp(q) := {(qi, qi+1, qi+2) | 0 ≤ i ≤ k − 2}. (4.2)

Now, we define P(Ac) :=
⋃
p∈Π

⋃
q∈Rp Pp(q).

Remark 4.1. Note that Pp(q) = ∅ for |q| = 2. In fact, any accepting state run of length 2 specifies a subset
of the state set such that the system satisfies Ac whenever it starts from that subset. This gives trivial zero
probability for satisfying the specification, thus neglected in the sequel.
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For the illustration of the above sets, we kindly refer the interested reader to Example 1 in [8]. Having Pp(q)
in (4.2) as the set of state runs of length 3, in this subsection, we provide a systematic approach to compute
a policy together with a (potentially tight) lower bound on the probability that the solution process of S
satisfies the specifications given by DFA A. Given a DFA Ac, our approach relies on performing a reachability
computation over each element of P(Ac) (i.e.,

⋃
p∈Π

⋃
q∈Rp Pp(q)), where reachability probability is upper

bounded using control barrier functions along with appropriate choices of control inputs as mentioned in
Theorem 3.1. However, computation of control barrier functions and the policies for each element ν ∈ P(Ac),
can cause ambiguity while utilizing controllers in closed-loop whenever there are more than one outgoing edges
from a state of the automaton. To resolve this ambiguity, we simply merge such reachability problems into
one reachability problem by replacing the reachable set X1 × X in Theorem 3.1 with the union of regions
corresponding to the alphabets of all outgoing edges. Thus we get a common control barrier function and a
corresponding controller. This enables us to partition P(Ac) and put the elements sharing a common control
barrier function and a corresponding controller in the same partition set. These sets can be formally defined
as

µ(q,q′,∆(q′)) := {(q, q′,q′′) ∈ P(Ac)
| q, q′, q′′ ∈ Q and q′′ ∈ ∆(q′)}.

The control barrier function and the controller (as discussed in Remark 3.2) corresponding to the partition
set µ(q,q′,∆(q′)) are denoted by Bµ(q,q′,∆(q′))(x, x̂) and uµ(q,q′,∆(q′))(x̂), respectively. Thus, for all ν ∈ P(Ac), we

have
Bν(x, x̂) = Bµ(q,q′,∆(q′))(x, x̂) and uν(x̂) = uµ(q,q′,∆(q′))(x̂),

if ν ∈ µ(q,q′,∆(q′)).

4.2. Control Policy. From the above discussion, one can readily observe that we have different control
policies at different locations of the automaton which can be interpreted as a switching control policy.
Next, we define the automaton representing the switching mechanism for control policies. Consider the
DFA Ac = (Q,Q0,Π, δ, F ) corresponding to the complement of DFA A as discussed in Section 4.1, where
∆(q) denotes the set of all successor states of q ∈ Q. Now, the switching mechanism is given by a DFA
Am = (Qm, Qm0,Πm, δm, Fm), where Qm := Qm0 ∪ {(q, q′,∆(q′)) | q, q′ ∈ Q \ F} ∪ Fm is the set of states,
Qm0 := {(q0,∆(q0)) | q0 ∈ Q0} is the set of initial states, Πm = Π, Fm = F , and the transition relation
(qm, σ, q

′
m) ∈ δm is defined as

• for all qm = (q0,∆(q0)) ∈ Qm0,

(q0,∆(q0))
σ(q0,q

′′)−→ (q0,q
′′,∆(q′′)), where q0

σ(q0,q
′′)−→ q′′;

• for all qm = (q, q′,∆(q′)) ∈ Qm \ (Qm0 ∪ Fm),

– (q, q′,∆(q′))
σ(q′,q′′)−→ (q′, q′′,∆(q′′)), such that q, q′, q′′ ∈ Q, q′

σ(q′,q′′)−→ q′′, and q′′ /∈ F ; and

– (q, q′,∆(q′))
σ(q′,q′′)−→ q′′, such that q, q′, q′′ ∈ Q, q′

σ(q′,q′′)−→ q′′, and q′′ ∈ F .

The hybrid controller defined over augmented state-space X ×Qm that is a candidate for solving Problem 2.6
is given by

ũ(x̂, qm) = uµ(q′m)
(x̂), ∀(qm, L(x̂), q′m) ∈ δm. (4.3)

The corresponding hybrid control policy υ is given by υ(t) = ũ(ξ̂(t), qm). For the illustration of the switching
mechanism, see Example 1 in [8, Section 5]. In the next subsection, we discuss the computation of bound on
the probability of satisfying the specification under such a policy, which then can be used for checking if this
policy is indeed a solution for Problem 2.6.

4.3. Computation of Probability. The next theorem provides an upper bound on the probability that the
solution process satisfies the specifications given by A.

Theorem 4.2. For a specification given by the accepting language of DFA A, let Ac be the DFA corresponding
to the complement of A, Rp be the set defined in (4.1), and Pp be the set of runs of length 3 defined in (4.2).
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Then the probability that the solution process of the system S starting from any initial state a ∈ L−1(p) under
the hybrid control policy υ associated with the hybrid controller (4.3) satisfies Ac within time horizon [0, T ) is
upper bounded by

P{σ(ξaυ)|=Ac}≤
∑

q∈Rp

∏
{(γν+cνT )|ν=(q,q′,q′′)∈Pp(q)}, (4.4)

where γν + cνT is the upper bound on the probability that the solution process of S starts from X0 :=
L−1(σ(q, q′)) and reaches X1 := L−1(σ(q′, q′′)) under control policy υ within time horizon [0, T ) which is
computed via Theorem 3.1.

Proof. The proof is similar to that of [8, Theorem 5.2] and is omitted here due to the lack of space. �

Theorem 4.2 enables us to decompose the specification into a collection of sequential reachabilities, compute
bounds on the reachability probabilities using Theorem 3.1, and then combine the bounds in a sum-product
expression.

Remark 4.3. In case we are unable to find control barrier functions for some of the elements ν ∈ Pp(q) in
(4.4), we replace the related term (γν + cνT ) by the pessimistic bound 1 and apply random control input. In
order to get a non-trivial bound in (4.4), at least one control barrier function must be found for each q ∈ Rp.

Corollary 4.4. Given the result of Theorem 4.2, the probability that the solution process of S starts from any
a ∈ L−1(p) under control policy υ and satisfies specifications given by DFA A over time horizon [0, T ) ⊂ R+

0

is lower-bounded by

P{σ(ξaυ) |= A} ≥ 1− P{σ(ξaυ) |= Ac}.

4.4. Computation of Control Barrier Functions. Proving the existence of a control barrier function and
finding one are in general hard problems. However, if functions f , h, g1, g2, r1, and r2 are polynomial with
respect to their arguments and partition sets Xi = L−1(pi), i ∈ {0, 1, 2, . . . ,M}, are bounded semi-algebraic
sets (i.e., they can be represented by polynomial (in)equalities), one can formulate conditions in Theorem 3.1
as a sum-of-squares (SOS) optimization problem. See [8, Section 5.3.1.] for a detailed discussion on a similar
approach. Having an SOS optimization problem, one can efficiently search for a polynomial control barrier
function Bν(x, x̂) and controller uν(x̂), for any ν ∈ P(A¬ϕ) as in (4.3) using SOSTOOLS [24] in conjunction
with a semidefinite programming solver such as SeDuMi [25] while minimizing constants γν and cν . Having
values of γν and cν for all ν ∈ P(A¬ϕ), one can simply utilize results of Theorem 4.2 and Corollary 4.4 to
compute a lower bound on the probability of satisfying the given specification.

Remark 4.5. Under the assumption that sets X,X0, and X1 in Theorem 3.1 are compact and input set U is
finite, one can utilize counterexample guided inductive synthesis (CEGIS) approach to search for barrier control
functions for more general nonlinear functions f, h, g1, g2, r1, and r2 in (2.1). For more detailed discussion on
CEGIS approach, we kindly refer interested readers to the algorithm in [8, Section 5.3.2.].

Computational Complexity: The number of triplets and hence the number of control barrier functions
needed to be computed are bounded by |Q|3, where |Q| is the number of states in DFA A. However, this is
the worst-case bound and in practice, the number of control barrier functions is much smaller. In the case
of sum-of-squares optimization approach, the computational complexity of finding polynomial control barrier
functions depends on both the degree of polynomials and the number of state variables. One can easily see
that for fixed polynomial degrees, the required computations grow polynomially with respect to the dimension
of the augmented system. For the CEGIS approach, due to its iterative nature and lack of guarantee on
termination, it is difficult to provide any analysis on the computational complexity.
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Figure 1. The DFA A representing specification (left) and the DFA Ac representing com-
plement of A (right).

5. Case Study

We consider a nonlinear Moore-Greitzer jet engine model in no-stall mode [26] as a partially observed jump-
diffusion systems by adding noise and jump terms which is given by:

d ξ1 = (−ξ2 −
3

2
ξ2
1 −

1

2
ξ3
1) d t+ 0.2 dW11t + 0.9 dPt,

d ξ2 = (ξ1 − υ) d t+ 0.06 dW12t,

d y = ξ2 d t+ 0.06 dW2t,

where ξ = [ξ1, ξ2]T , ξ1 = Φ− 1, ξ2 = Ψ−ψ− 2, Φ is the mass flow, Ψ is the pressure rise, and ψ is a constant.
Terms W11t,W12t, and W2t denote the standard Brownian motions and Pt denotes the Poisson process with
rate λ = 5. We consider a compact state set X = [−1, 3]× [−4, 4] and regions of interest X0 = [0, 1]× [−1, 1],
X1 = [−1,−0.2]× [−4,−2.5], X2 = [1, 3]× [2, 4], and X3 = X \ (X0∪X1∪X2). The set of atomic propositions
is given by Π = {p0, p1, p2, p3} with labeling function L(xj) = pj for all xj ∈ Xj , j ∈ {0, 1, 2, 3}. The objective
here is to compute a control policy that provides a lower bound on the probability that the trajectories of the
system satisfy the specification given by the accepting language of the DFA A given in Figure 1 over finite
time-horizon [0, T = 10). Language of A entails that if we start in X0 then the system will always stay away
from X1 or X2. The corresponding DFA Ac accepting complement of L(A) is shown in Figure 1. Following
Subsection 4.1, we only need to compute a control barrier function corresponding to triplet (q0, q1, q2).

Now with an estimator gain in (2.2) as K = [6.1394, 7.8927]T , we use SOSTOOLS and SeDuMi to compute
a sum-of-squares polynomial control barrier function B(x, x̂) of order 4, sum-of-square polynomials ψ0(x, x̂),
ψ1(x, x̂), ψ(x, x̂) of order 4, with total 1125 coefficients resulting in a computation time of about 15 minutes.
The corresponding controller of order 2 is obtained as follows:

u(x̂) = 0.7321x̂1 − 1.8612x̂1x̂2 − 1.4356x̂2. (5.1)

The values of γ = 0.099 and c = 1× 10−5 are obtained using bisection method resulting in P{σ(ξaυ) |= A} ≥
0.89 for all x0 ∈ L−1(p0), as discussed in Subsection 4.4. One can see that only one controller is enough for
enforcing the specification, thus we do not need any switching mechanism. Figure 2 shows a few trajectories
starting from different initial conditions under the control policy (5.1).

6. Conclusions

In this paper, we proposed a discretization-free approach for the formal controller synthesis of partially observed
jump-diffusion systems. The proposed method computes a hybrid control policy together with a lower bound
on the probability of satisfying complex temporal logic specifications given by the accepting language of DFA
A over a finite-time horizon. This is achieved by constructing control barrier functions over an augmented
system consisting of both the system and the estimator. As a result, the probability bound is computed
without requiring any prior information of estimation accuracy.
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