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Kernel Regularization in Frequency Domain:
Encoding High-Frequency Decay Property

Yusuke Fujimoto , Member, IEEE

Abstract—This letter discusses the kernel regularization
in the frequency domain. In particular, this letter proposes
a new kernel which encodes prior knowledge on the rate
of high frequency decay. The proposed kernel has a simi-
lar structure to the one of the first order spline kernel. By
exploiting the known properties of such kernel, the deter-
minant and the inverse of the Gram matrix of the proposed
kernel are given in closed form. One of the important advan-
tages of the proposed kernel is the computational burden
reduction. In fact, it turns out that the complexity is lin-
ear in the dataset size N , while standard methods require
O(n2) memory and O(n3) flops, where n is the impulse
response length usually satisfying N � n2 in regularization
frameworks.

Index Terms—System identification, regularization,
impulse response.

I. INTRODUCTION

BLANCING model complexity and data fit is one of the
key issues in system identification field (e.g., [1, Ch. 16]).

A new approach for this issue, which is called the kernel regu-
larization method [2], [3], has attracted much attention in these
days [4], [5]. In kernel-based identification for linear systems,
the unknown impulse response is estimated via regularized
least squares. The advantage of such approach w.r.t. classic
parametric methods is that the trade-off between data fit and
model complexity is ruled by a real parameter instead of a dis-
crete value, thus allowing for more flexibility. From the above
background, many works on kernel regularization have been
reported; e.g., kernel design [6], [7], kernel properties [8]–[10],
hyperparameter tuning [11]–[13], input design [14]–[16], and
so on.

One of the main advantages of the kernel regularization
is that it can encode a prior knowledge on the systems. For
instance, most of the previous methods encode the expo-
nential decay of the impulse response in the regularization
term, and this makes the estimated impulse responses decay
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exponentially. By using such an appropriate prior knowledge,
the identification accuracy can be improved.

In this letter, we focus on encoding the system proper-
ties in the frequency domain, on which there are few works.
For example, [17] and [7] discuss the identification from the
frequency viewpoint. However, their ideas are rather trans-
forming a prior knowledge in the time domain into the
frequency one. In contrast, this letter directly designs the
regularization based on a prior knowledge in the frequency
domain.

A property that can be available as prior information is
the high frequency decay rate. There are a lot of systems
(such as mechanic or electronic systems) which are known
to evidence such property. In addition, the high frequency
decay rate is known in advance in some cases. In fact, if
the relative degree of the underlying system is known to
be d, then the high frequency decay rate is given by −20d
[dB/decade].

This letter employs the high frequency decay rate to design
the regularization term, and reformulates the regularized least
squares problem in the frequency domain. This reformulation
drastically reduces the computational burden. Let n and N be
the length of impulse response and observed data, respectively.
The proposed method requires O(N) memory and O(N) flops
to construct the model, while the standard kernel regulariza-
tion requires O(n2) memory and O(n3) flops. Note that O(n2)

or O(n3) are too large for some applications, e.g., acoustic
engineering. Note also that N � n2 in most cases, thus
the proposed method significantly reduces the computational
burden.

The main contributions of this letter are the following:
• It proposes a quadratic regularization based on a prior

knowledge in the frequency domain, i.e., the rate of high
frequency decay.

• It shows that the linear equation can be solved in compu-
tationally efficient way under a mild condition. In more
detail, this letter assumes that the input/output relation is
given by the circular convolution.

To the best of the author’s knowledge, these contribution are
novel.

This letter is organized as follows. The problem setting is
shown in Section II, and the regularized least squares in the
frequency domain is shown in Section III. Some properties of
the proposed kernel are given in Section IV. Based on these
properties, an efficient implementation is shown in Section V.
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Section VI shows a numerical demonstration to illustrate the
properties of the proposed kernel.

Notation: The sets of natural, real and complex numbers
are denoted by N,R and C. Re(z) and Im(z) denote the real
and imaginary parts of a complex vector z, and z denotes the
complex conjugate of z. The n× n identity matrix is denoted
by In. For a vector a, ‖a‖2W denotes a�Wa. The �-th element
of a vector a is denoted by a�. For a vector a ∈ R

N , diag(a)

denotes the N × N diagonal matrix whose (�, �) element is
a�. K � 0 indicates that the matrix K is positive definite.
Throughout this letter, i and s denote the imaginary unit and
the complex frequency of the Laplace transform, respectively.

II. PROBLEM SETTING

We consider a discrete-time linear time invariant dynamic
system described as

y(t) =
t∑

j=0

g(j)u(t − j)+ w(t), (1)

where y(t), u(t), g(t) and w(t) denote the output, input, impulse
response and the measurement noise at time t, respectively.
The measurement noise is an i.i.d. Gaussian random variable,
and its mean and variance are zero and σ 2, respectively. The
goal of this letter is to estimate the impulse response g(t) (t =
0, . . . , N − 1) from the observed data {(u(t), y(t))}N−1

t=0 . For
the simplicity of discussion on the Discrete Fourier Transform
(DFT), we assume that N is even. The extension to the odd
case is straightforward, thus it is omitted in this letter.

Before setting the problem in more detail, we briefly recall
the N-point DFT and set some notation. Let

y = [y(0), . . . , y(N − 1)]� ∈ R
N, (2)

u = [u(0), . . . , u(N − 1)]� ∈ R
N, (3)

g = [g(0), . . . , g(N − 1)]� ∈ R
N, (4)

w = [w(0), . . . , w(N − 1)]� ∈ R
N . (5)

Also let F ∈ C
N×N be the matrix whose (�, m)-th element is

given by

F�,m = exp

(
−2π i(�− 1)(m− 1)

N

)
. (6)

Then, the DFTs of y, u, g and w are given by

Y = Fy ∈ C
N, (7)

U = Fu ∈ C
N, (8)

G = Fg ∈ C
N, (9)

W = Fw ∈ C
N . (10)

For later discussions, note that these vectors have the following
properties.
• The first and (N

2 + 1)-th elements are real values.
• The latter half is the complex conjugate of the former

half. For instance, Y� = YN+2−� for � = N
2 + 2, . . . , N.

• When the input u(t) is periodic and u(t − N) = u(t),

Y = diag(U)G +W . (11)

The convolution under the assumption u(t − N) = u(t)
is called circular convolution. The circular convolution can

ignore some difficulties such as leakage, and is often employed
in acoustic engineering (e.g., [18]). In the rest of this letter,
we assume u(t − N) = u(t) and consider (11).

Note also that G is the frequency response of the system.
For discussions in the frequency domain, let ω(k) = 2π

N k (k =
0, . . . , N−1). With a slight abuse of notation, the (k+1)-th ele-
ment of G is denoted by G(ω(k)) to emphasize the dependence
on the frequency. Then, if the system shows high frequency
decay, |G(ω(k))| decays with −20d [dB/decade] where d is a
natural number for sufficiently large ω(k).

Remark 1: From the viewpoint of digital filtering, d is the
relative degree of the underlying analogue filter.

Now the problem discussed in this letter is set as follows.
Problem 1: Assume that {u(t), y(t)}N−1

k=0 is given. Also
assume that the system is known to show high frequency decay
with −20d [dB/decade] for some known d ∈ N. Estimate g(t)
so that the model shows high frequency decay with −20d
[dB/decade].

To this end, this letter employed the kernel regularization
technique.

III. REGULARIZED LEAST SQUARES IN

FREQUENCY DOMAIN

Although the final goal is to estimate g(t), this letter pro-
poses to estimate G first, and then reconstruct g(t) by the
inverse Fourier transform. In particular, the regularized least
squares method in the frequency domain is formulated in this
section. Note that G must satisfy some constraints to make g
a real vector. To make the regularized least squares uncon-
strained, Section III-A introduces a specific parametrization
of G. Then the regularized least squares in the frequency
domain is formulated in Section III-B, and Section III-C pro-
poses a regularization matrix and the corresponding kernel.
Properties of the kernel are investigated in Section IV.

A. Parametrization With Real and Imaginary Part

As mentioned above, this letter considers the regularized
least squares in the frequency domain. However, employing
G as the optimization variable is not easy. This is because
the impulse response, F−1G, must be a real vector, and thus
G must satisfy some constraints. To make the optimization
problem unconstrained, consider

Gre =
⎡

⎣Re
(
G1: N

2 +1

)

Im
(
G2: N

2

)

⎤

⎦ ∈ R
N . (12)

Here, G�:�+m denotes the m + 1 dimensional vector whose
elements are the �-th to (�+m)-th elements of G. Recall that
the latter half of G is the complex conjugate of the former
half. In this way, all the information of G is included in the
real vector Gre, which is going to be our optimization variable.
Note that reconstructing G from Gre is straightforward, i.e., the

former half of G is given by Gre1: N
2 +1+i

⎡

⎢⎣
01×( N

2 −1)

I N
2 −1

01×( N
2 −1)

⎤

⎥⎦Gre N
2 +2:N ,

where 01×( N
2 −1) indicates the 1× (N

2 − 1) zero matrix. With
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the above construction, the resulting F−1G becomes a real
vector for any Gre. Similarly, let Yre ∈ R

N and Wre ∈ R
N be

Yre =
⎡

⎣Re
(
Y1: N

2 +1

)

Im
(
Y2: N

2

)

⎤

⎦ ∈ R
N ,Wre =

⎡

⎣Re
(
W1: N

2 +1

)

Im
(
W2: N

2

)

⎤

⎦ ∈ R
N . (13)

With these notations, the relation (11) is reduced to

Yre = UreGre +Wre, (14)

where (�, m) element of Ure ∈ R
N×N is given by

Ure,�,m =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

U1 � = m = 1
U N

2 +1 � = m = N
2 + 1

Re(U�) � = 2, . . . , N
2 , m = �

−Im(U�) � = 2, . . . , N
2 , m = �+ N

2
Im(U�) � = N

2 + 2, . . . , N, m = �− N
2

Re(U�) � = N
2 + 2, . . . , N, m = �,

(15)

which comes from

Yk = [Re(Uk)Re(Gk)− Im(Uk)Im(Gk)]

+ i[Re(Uk)Im(Gk)+ Im(Uk)Re(Gk)]. (16)

B. Regularized Least Squares

From (14), the following regularized least squares method
is employed to estimate Gre.

Ĝre = argmin
Gre∈RN

‖Yre − UreGre‖2W + G�reK−1Gre, K � 0 (17)

W�,m =
⎧
⎨

⎩

1 � = m = 1, N
2 + 1

0 � �= m
2 otherwise.

, W ∈ R
N×N (18)

Remark 2: The weight matrix W is introduced to make the
first term of (17) equal to the square error ‖Y − diag(U)G‖2.
Recall that the latter half of Y and related vectors are the
complex conjugate of the former half. Hence j-th element of
Yre, where j = 2, . . . , N

2 , N
2 + 2, . . . , N appears in Y twice.

It should be noted that the optimization problem (17) is
unconstrained. This is because we employ the parametrization
introduced in Section III-A. From the above observation, Ĝre

is reduced to

Ĝre =
(
U�re WUre + K−1

)−1U�re WYre. (19)

C. Design of Regularization Matrix

Now let us consider how to design K. Recall the following
two points:
• The optimization variables are the real and imaginary

parts of the frequency response.
• The system is known to show high frequency decay.

Based on these observations, this letter proposes the following
regularization matrix:

K =
[

Kre 0
0 Kim

]
∈ R

N×N, (20)

where (�, m) elements of Kre ∈ R
( N

2 +1)×( N
2 +1) and Kim ∈

R
( N

2 −1)×( N
2 −1) are given by

Kre,�,m = kHFD(ω(�− 1), ω(m− 1)),

Kim,�,m = kHFD(ω(�), ω(m)). (21)

kHFD(ω(�), ω(m)) = η1 min

(
1

(
ω(�)2 + η2

)d ,
1

(
ω(m)2 + η2

)d

)

(22)

The hyperparameter is [η1, η2]� and η1 > 0, η2 > 0. The
kernel defined by (22) is called High-Frequency Decay (HFD)
kernel in the rest of this letter. Recall that Kre,�,� regulates the
real part of G� = G(ω(� − 1)), while Kim,�,� regulates the
imaginary part of G�+1 = G(ω(�)). Equation (21) is based on
these indexes.

The derivation and properties of the HFD kernel are shown
in Section IV.

IV. PROPERTIES OF PROPOSED KERNEL

This section discusses some properties about the proposed
kernel given by (22).

A. Relation With First Order Spline Kernel

The HFD kernel is derived from the first order spline kernel.
The first order spline kernel is defined as

kS(x�, xm) = η1 min(x�, xm). (23)

Hence the proposed kernel (22) is understood as the spline
kernel with the coordinate change

x� = 1
(
ω(�)2 + η2

)d . (24)

The Bayesian estimation framework is useful for intuitive
understanding of the proposed kernel. Figs. 1 to 3 illustrate
the variances of Gaussian process whose covariance functions
correspond to the first order spline kernel, TC kernel and HFD
kernel, respectively. The vertical axes show the variance, and
the horizontal axes show x, time and frequency, respectively.
Fig. 1 shows that the variance with the first order spline kernel
increases linearly.

The TC kernel defined as

kTC(t�, tm) = η1 min(exp(−η′2t�), exp(−η′2tm)), (25)

which is the combination of the spline kernel and the coor-
dinate change x = exp(−η′2t) where t denotes time, implies
that the variance decays exponentially as shown in Fig. 2.
If we employ the TC kernel for the prior distribution of the
impulse response, the estimated impulse response also decays
exponentially.

As shown in Fig. 3, the variance with the HFD kernel decays
slower than the TC kernel. Recall that the gain of the first order
delay system P(s) = K

s+α
is given by

|P(iω)|2 = K2

ω2 + α2
. (26)

(26) and (20) indicate that the variances of real and imaginary
parts of the frequency response function decay at the same
rate as a d-th order delay system, and η1, η2 correspond to
K2, α2.
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Fig. 1. Illustration of variance with first order spline kernel.

Fig. 2. Illustration of variance with TC kernel.

Fig. 3. Illustration of variance with HFD kernel.

B. Determinant and Inverse Matrix

Since the structure of (21) is the same as the one of first
order spline kernel, the determinant and the inverse matrix of
K can be computed in closed form. To this end, the following
lemma plays an important role.

Lemma 1 (Chen et al. [8]): Let 0 < x1 < · · · < xn and
KS ∈ R

n×n be the matrix whose (�, m)-th element is given
by (23). Then,

det(KS) = ηn
1x1

n−1∏

j=1

(xj+1 − xj), (27)

and the (�, m) element of the inverse matrix of KS is given by

K−1
S,�,m =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
η1

x2
x1(x2−x1)

� = m = 1,
1
η1

x�+1−x�−1
(x�+1−x�)(x�−x�−1)

� = m = 2, . . . , n− 1,
1
η1

1
xn−xn−1

� = m = n,

0 |�− m| > 1,

− 1
η1

1
max(x�,xm)−min(x�,xm)

otherwise.

.(28)

For ease of notation, let

G(j) = 1
(
ω(j)2 + η2

)d . (29)

The following theorem is obtained in a straightforward manner
from Lemma 1.

Theorem 1: For K defined by (20) and (21), we have

det(K) = det(Kre) det(Kim), (30)

det(Kre) = η
N
2 +1

1 G

(
N

2

)
�

N
2 −1
j=0 (G(j)− G(j+ 1)), (31)

det(Kim) = η
N
2 −1

1 G

(
N

2
− 1

)
�

N
2 −2
j=1 (G(j)− G(j+ 1)). (32)

The inverse of K is given by

K−1 =
[

K−1
re 0
0 K−1

im

]
, (33)

where the (�, m)-th elements of K−1
re and K−1

im are given by

K−1
re,�,m =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
η1

G(N/2−1)
G(N/2)(G(N/2−1)−G(N/2))

� = m = N/2+ 1,
1
η1

G(�−2)−G(�)
(G(�−2)−G(�−1))(G(�−1)−G(�))

� = m = 2, . . . , N
2 ,

1
η1

1
G(0)−G(1)

� = m = 1,

0 |�− m| > 1,

− 1
η1

1
max(G(�−1),G(m−1))−min(G(�−1),G(m−1))

otherwise

(34)

K−1
im,�,m =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
η1

G(N/2−2)
G(N/2−1)(G(N/2−2)−G(N/2−1))

� = m = N/2− 1,
1
η1

G(�−1)−G(�+1)
(G(�)−G(�+1))(G(�−1)−G(�))

� = m = 2, . . . , N
2 ,

1
η1

1
G(1)−G(2)

� = m = 1,

0 |�− m| > 1,

− 1
η1

1
max(G(�),G(m))−min(G(�),G(m))

otherwise.

(35)

Proof: Due to the space limitation, only the proof for Kre

is shown. The extension to Kim is straightforward and thus
omitted in this letter.

Let T ∈ R
( N

2 +1)×( N
2 +1) be the matrix whose all anti-diagonal

elements are 1 and the other elements are zero. Then, T is a
permutation matrix which flips the rows of the matrix up to
down. Note that T is the orthogonal matrix and T�T = I N

2 +1,
and is of course nonsingular. Note also that T is symmetric.
This implies that det(T)2 = det(T) det(T−1) = 1.

Consider K′ = TKreT . This matrix has exactly the same
structure as the Gram matrix of the first order spline kernel
with xj = G(N

2 + 1− j). Hence det(K′) and K′−1 are given by
Lemma 1, and

det(Kre) = det(T) det(K′) det(T) = det(K′), (36)

K−1
re = TK′−1T, (37)

gives the determinant and the inverse matrix of Kre.
The main point of this theorem is that the inverse of K is

tridiagonal and the number of non-zero element is at most
3N − 2. Thanks to this sparsity, the computationally efficient
implementation of (19) is available.

V. COMPUTATIONALLY EFFICIENT IMPLEMENTATION

This section discusses the implementation of (19), and
hyperparameter tuning.

A. Solving Linear Equation

To investigate the sparsity of the matrix which appears
in (19), the following theorem is useful.

Theorem 2: Consider Ure and W defined by (15) and (18).
Then, U�re WUre is a diagonal matrix.

Proof: Note that W is a diagonal matrix. This indicates that
the statement is proven by showing that all rows of Ure are
orthogonal to each other.

Let Uj be the j th row of Ure. From (15), U1 is the only
vector which has non-zero element in the first column. Because
the rest of U1 are all zero, this implies that U1U�j = 0 for
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Algorithm 1 TDMA (Thomas Algorithm)

Require: A ∈ R
N×N, b ∈ R

N

Ensure: x ∈ R
N

PN−1 ←−AN,N−1
AN,N

, QN−1 ← bN
AN,N

for j = N − 1 : − 1 : 2 do
Pj−1 ←− Aj,j−1

Aj,j+Aj+1,jPj
, Qj−1 = bj−Aj+1,jQj

Aj,j+Aj+1,jPj
end for
x1 ← b1−A1,2Q1

A1,1+A1,2P1
for j = 1 : N − 1 do

xj+1 ← Pjxj + Qj

end for

j = 2, . . . , N. Similarly, U N
2 +1 satisfies U N

2 +1U�j = 0 for

j = 1, . . . , N
2 , N

2 + 2, . . . , N.
Now consider Uj, j �= 1, (N

2 + 1). When j ≤ N
2 , the �-th

element of Uj is given as

Uj,� =
⎧
⎨

⎩

Re
(Uj
)

� = j
−Im

(Uj
)

� = j+ N
2

0 otherwise
, (38)

and when j ≥ N
2 + 2,

Uj,� =
⎧
⎨

⎩

Im
(Uj
)

� = j− N
2

Re
(Uj
)

� = j
0 otherwise

. (39)

These equations show that UjU�j′ = 0 if j �= j, and the
statement has been proven.

Note that this result holds since we consider the regularized
least squares in the frequency domain. In the time domain,
such a special structure does not appear in general.

Corollary 1: The matrix U�re WUre +K−1 is symmetric and
tridiagonal.

Corollary 1 gives an important observation for an efficient
computation of Ĝre. Recall that Ĝre in (19) is the solution of
the linear equation

(
U�re WUre + K−1

)
Ĝre = U�re WYre. (40)

Since (U�re WUre+K−1) is tridiagonal, the TriDiagonal Matrix
Algorithm (TDMA), also known as Thomas algorithm, can be
employed to compute Ĝre. For the notational convenience, con-
sider a linear equation Ax = b where A ∈ R

N×N is tridiagonal
and its (�, m)-th element is denoted by A�,m. Then, TDMA is
given as Algorithm 1 [19].

TDMA consists of two loops and the intermediate variables
are Pj and Qj (j = 1, . . . , N− 1). Hence TDMA only requires
O(N) memory and O(N) flops. This is much lower than the
standard kernel regularization which requires O(N2) memory
and O(N3) flops.

B. Hyperparameter Tuning

Although the solution Ĝre can be computed efficiently, the
hyperparameter η is not easy to compute so fast. The widely
used methods for the hyperparameter tuning are empirical
Bayes, SURE, or generalized cross validation. However, these
methods require more than O(N3) computations in general.

One simple method to exploit the fast optimization of (19) is
to use validation data. Assume that we can use {u(t), yv(t)}N−1

t=0 ,
where the input is the same as the original experiment. The
only difference between y(t) and yv(t) is the realization of the
measurement noise. Then, the following procedure can select
an appropriate hyperparameter.

Step 1 Prepare the candidates of the hyperparameter
{η1, . . . , ηm}.

Step 2 Estimate g(t) from {u(t), y(t)}N−1
t=0 and ηj.

Step 3 Compute the predictive output ŷj(k) from the circu-
lar convolution.

Step 4 Compute the prediction error E(ηj) =∑N−1
t=0 (ŷj(t)− yv(t))2.

Step 5 Select η∗ = argminηj E(ηj) as the hyperparameter.
This procedure requires O(Nm) flops, hence it can be com-
puted efficiently.

Note that if we design the candidate {η1, . . . , ηm} to be grid
points on a specific space, the above procedure is almost the
same as the conventional exhaustive grid search used in the
machine learning field.

It should be noted that the candidates should be densely
placed to improve the identification accuracy, which may
increase the execution time. More efficient hyperparameter
tuning is a future task.

VI. NUMERICAL DEMONSTRATION

In this section, a numerical example is shown to demonstrate
the effectiveness of the proposed kernel.1

The target discrete-time system is constructed from P(s) =
10(s+10)

s2+2s+101
. Here, P(s) is discretized by zero-order hold where

the sampling rate is 3 times of the bandwidth of P(s). The
input sequence u(t) is generated from i.i.d Gaussian random
variable, with N = 3000. The output is generated by the
circular convolution, i.e., the above sequence is added to the
system twice, and the latter half of the output is recorded.
The variance of the measurement noise is set so that the
Signal-to-Noise Ratio becomes 20. The candidates of the
hyperparameters ηi (i = 1, 2) are 50 logarithmically equidis-
tant points from 10−8 to 105 obtained via MATLAB command
logspace, hence the number of candidate hyperparameters
couples is 2500.

Fig. 4 shows the estimated result with the procedure
described in Section V. The horizontal axis shows the
frequency [×π rad/sample], and the vertical axes show the
gain [dB] and the phase [rad], respectively. The thick solid,
thin solid, and the broken lines are the estimated model with
the HFD kernel, the one with the TC kernel, and the true
system. Hyperparameters of both the HFD kernel and the TC
kernel are tuned by the procedure described in Section V-B.

The estimated model with the HFD kernel decays with
−20 [dB/decade] as expected. The model with the TC kernel
also shows a good high frequency decay, but it is not smooth.
This is because the TC kernel only considers the smoothness
in the time domain.

1It is difficult to estimate the high frequency decay rate of the randomly
generated systems employed in e.g., [3]. Statistical analysis with randomly
generated systems is one of the future tasks.
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Fig. 4. Gain plots of estimated models.

Fig. 5. Estimated impulse response with proposed kernel.

The square errors between the true impulse response and
the estimated ones are 8.0 × 10−3 and 8.3 × 10−3 for the
HFD and TC kernel, respectively. Hence, the accuracies of
the model with these kernels are almost the same. The time
required to solve the linear equations are 1.6 × 10−2 [s] and
2.9× 10−1 [s] for the HFD and TC kernel, respectively. The
linear equation with the TC kernel is solved by the MATLAB
command mldivide. Here, the scripts are run with Intel
Core i9-7980XE (2.60 GHz), 64.0 GB RAM, Windows 10
Pro, and MATLAB 2019a. The computational time becomes
much faster by the proposed kernel.

Fig. 5 shows the true impulse response and the estimated
impulse responses with the proposed and TC kernels. The hor-
izontal axis shows the time, and the vertical axis shows the
impulse response. The thick solid, thin solid, and the broken
lines are the estimated model with the HFD kernel, the one
with the TC kernel, and the true system. The estimate with
the TC kernel shows high frequency oscillation around t = 500
to t = 1000. The estimate with the proposed kernel, on the
other hand, shows smooth behavior on this domain. However,
we can see oscillations in the estimate with the proposed
kernel near t = 3000. This is because the proposed kernel
does not consider the exponential decay in the time domain.
This indicates that the accuracy would be further improved by
combining both the prior knowledge in time and frequency
domains.

VII. CONCLUSION

This letter proposes a new kernel regularization method
that exploits a prior knowledge in the frequency domain, i.e.,
the high frequency decay property. The proposed kernel has
the same structure as the first order spline kernel, hence the
determinant and inverse matrix of its Gram matrix are given
in closed form. Thanks to the problem setting in the frequency
domain and the kernel structure, the linear equation to be
solved is described by a sparse matrix. This sparsity enables an
efficient implementation, with O(N) memory and O(N) flops.

Efficient implementations for the hyperparameter tuning and
the input design are future tasks.
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