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Anti-windup design for directionality compensation
with application to quadrotor UAVs

Pietro Ghignoni1, Nicolò Buratti1, Davide Invernizzi1, Marco Lovera1

Abstract—In this paper we propose an anti-windup strategy
to counteract directionality effects arising in saturated MIMO
systems in which independent dynamical subsystems are coupled
through a static mixing of the inputs. Since such systems are af-
fected by undesired input cross-couplings when saturation occurs,
we propose an anti-windup augmentation scheme built on top of
the baseline controller and tailored to achieve satisfactory time-
domain performance for reference signals of interest. Motivated
by the quadrotor application, in which position control has higher
priority over yaw control for safety reasons, we embed in the anti-
windup synthesis procedure the possibility to prioritize the level
of performance degradation during saturation for the different
system outputs.

Index Terms—Anti-windup design, saturated MIMO systems,
directionality, quadrotor, DLAW

I. INTRODUCTION

THE design of control laws for quadrotor Unmanned
Aerial Vehicles (UAVs) is typically carried out by refer-

ring to the six-dimensional dynamical model of a rigid body
in which four inputs are available: a force acting along the
positive direction of the axis orthogonal to the propeller rotors
(thrust axis) and a torque in any direction. This setting allows
one to deal with the quadrotor underactuation by implementing
hierarchical control architectures in which the torque is used
to track a desired yaw rotation while tilting the thrust axis
in the direction of the force required for position tracking.
Since the thrust and the torque are actually intermediate
inputs obtained by a static mixing of the thrusts delivered by
the propellers, onboard implementation requires an allocation
step. Due to the peculiar structure of the quadrotor mixing
map, applications which push the actuators to the saturation
limit (e.g., aggressive maneuvers, heavy payload) can give
rise to motions in undesired directions, making quadrotors
a good testbed for the design of compensation methods for
directionality effects.

Directionality issues are commonly tackled in the literature
about quadrotors by using iterative thrust-mixing schemes that
prioritize roll-pitch control over thrust and yaw [1], [2]. While
Anti-Windup (AW) augmentation designs with formal stability
and performance guarantees have been developed in recent
years for directionality compensation [3], [4], [5], the specific
case of quadrotors has been dealt with in a systematic manner
only in [6], which proposed full-order pseudo-decentralized
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and channel-by-channel AW compensators by extending the
AW approach of [7].

While in a previous work [8] we considered the problem
of saturated attitude control in quadrotors and we dealt with
integral windup effects, in this paper directionality issues
arising in the position and yaw control are addressed. Dif-
ferently from [6], which addressed directionality issues for
exponentially stable linear systems and sought a global result,
this work addresses windup effects that come up when specific
bounded reference signals are commanded, notably step-like
references, which is one the most common operating scenario
for quadrotors. To this aim, by referring to a generalized sector
condition which includes the input mixing map, we appeal
to the ideas of [9] and cast the AW design as a LMI-based
optimization problem in which the objective is to penalize a
weighted mismatch between the response of a suitably selected
reference model and the response of the saturated system
with AW compensation. Emphasis is placed on prioritization
of control objectives and on time-domain performance in
practical conditions by embedding in the AW synthesis model
a filter which replicates the reference signals of interest.

After tuning a fixed-dynamics compensator having the struc-
ture of a static compensator cascaded with a unit delay (to
avoid solving algebraic loops in real time implementations
[10]), the performance of the augmented controller has been
assessed in simulations by considering a combined position
and yaw maneuver which induces cross-directional effects.
Simulation results have shown that the proposed synthesis
procedure can allow one to obtain a decentralized AW com-
pensator (up to numerical errors), which is desirable in practice
to reduce complexity as well as to avoid undesired cross-
couplings that a full AW compensator would unavoidably
induce during saturation. Following a consolidated approach
in robust control for MIMO systems, by changing the weight
of the performance outputs in the synthesis procedure we
show that it is possible to achieve prioritization of the control
objectives straightforwardly.

Notation. In this paper Z(Z>0,Z≥0) denotes the set of
integers (positive, nonnegative integers), R(R>0,R≥0) denotes
the set of real numbers (positive, nonnegative real numbers),
Rn denotes the n-dimensional Euclidean space and Rm×n the
set of m× n real matrices. The ith vector of the canonical
basis of Rn is denoted as ei and the identity matrix in
Rn×n is denoted as In := [e1 · · ·ei · · ·en]. Given A ∈ Rn×n,
we use the compact notation A ∈ Rn×n

>0 (Rn×n
<0 ) to represent

a positive (negative) definite matrix. For a square matrix
X , we denote He(X) := X + X>. Given a sequence x(t),
t ∈ Z≥0, x+ is a shorthand notation for x(t + 1). Func-



tion satūu(·) denotes the decentralized saturation function,
i.e., given u ∈ Rn and some bounds u, ū ∈ Rn

≥0, satūu(u) :=
(max(min(ū1,u1),−u1), . . . ,max(min(ūn,un),−un)). Finally,
co{vr ∈ Rn, r = 1, . . . ,nv} is the closed convex hull, i.e., the
smallest closed convex set that contains the points identified
by the vectors vr. The S map S(·) : R3 → so(3) := {W ∈
R3×3 : W = −W>} is defined such that given a,b ∈ R3 one
has S(a)b = a×b.

II. MODELING SATURATION EFFECTS IN QUADROTORS

A quadrotor UAV is an aerial vehicle made by a central
body and four arms, each of which carries a propeller. In this
work we focus on operating conditions for which the model
of quadrotors in near hovering flight, i.e.,

α̇ = ω, ẋ = v (1)
Jω̇ = τc + τe, mẍ = mgS(α)e3 +(Tc−mg)e3 + fe, (2)

can be considered sufficiently accurate [11]. In (1)-(2) J =
J> ∈ R3×3

>0 is the UAV inertia matrix with respect to the
center of mass OB, m ∈ R>0 is the mass, g = 9.81m/s2 is
the gravitational acceleration, α := (φ ,θ ,ψ) ∈ R3 collects
the roll (φ), pitch (θ) and yaw (ψ) angles, x ∈ R3 is the
position vector from the origin of an inertial frame to OB,
S(α)e3 = [θ −φ 0 ]>, ω ∈ R3 is the angular velocity, v ∈ R3 is
the inertial translational velocity. Finally (Tce3,τc) ∈R6 is the
control wrench delivered by the propellers while ( fe,τe) ∈R6

is the disturbance wrench including, e.g., aerodynamic effects
and gyroscopic torque of the rotors.

For a quadrotor UAV, the control force and torque are the
resultant at OB of the thrusts, delivered by the four propellers,
which are applied along the unit vector b3 representing the
direction orthogonal to the propellers. The magnitudes of the
thrusts, denoted henceforth with Ti ∈ R for i ∈ {1,2,3,4},
are the inputs for control design. Let us now introduce the
relative (with respect to hovering) control torque ∆τc := τc
and thrust ∆Tc := Tc−mg and the relative propeller thrusts
∆Ti := Ti−TH , where TH := mg

4 is the hovering thrust for each
propeller. Following a consolidated approach in the literature
about small-scale quadrotors [2] these variables are related by
the following static map: ∆Tc

∆τc1
∆τc2
∆τc3

=

[
1 1 1 1

`sin(β1) `sin(β2) `sin(β3) `sin(β4)
−`cos(β1) −`cos(β2) −`cos(β3) −`cos(β4)

σ −σ σ −σ

]
︸ ︷︷ ︸

X

[
∆T1
∆T2
∆T3
∆T4

]
, (3)

where X ∈R4×4 is the input map, `∈R>0 is the distance from
the i-th rotor hub to OB, σ is the ratio between the propeller
thrust and torque coefficient and βi = π/4+π/2(i−1) is the
angle about the b3 axis between each pair of axes of the arms.

A. Baseline control architecture

Given the desired relative thrust ∆T d
c ∈ R and control

torque ∆τd
c ∈R3, assuming no bound on the ∆Tis and relying

on the invertibility of X , the selection [∆T1 ∆T2 ∆T3 ∆T4 ]
> =

X−1 [∆T d
c ∆τd>

c ]> allows one to write (1)-(2) directly in terms
of ∆T d

c and ∆τd
c , since [∆Tc ∆τ>c ]> = X [∆T1 ∆T2 ∆T3 ∆T4 ]

> =

XX−1 [∆T d
c ∆τd>

c ]>= [∆T d
c ∆τd>

c ]>. Then, the linear system Jα̈ =
∆τd

c + τe, mẍ = mgS(α)e3 +∆T d
c e3 + fe is underactuated but

controllable, and a common control solution is based on a
hierarchical design in which the roll and pitch angles are used
as virtual inputs to stabilize the position dynamics in the x1,x2
plane. For instance, to track a desired position xd ∈R3 and yaw
angle ψd ∈ R, one of the most common architecture is based
on P/PID loops (see, e.g., [12]) with the following structure:

∆T d
c := PIx3(z)

(
ko

p,x3
(xd3 − x3)− v3

)
−Dx3(z)v3 (4)

∆τd
c := PIR(z)

(
Kp,R [φv−φ θv−θ ψd−ψ ]>−ω

)
−DR(z)ω, (5)

where the virtual roll and pitch angles are

φv := 1
mg

(
PIx2(z)

(
ko

p,x2
(xd2 − x2)− v2

)
−Dx2(z)v2

)
, (6)

θv :=− 1
mg

(
PIx1(z)

(
ko

p,x1
(xd1 − x1)− v1

)
−Dx1(z)v1

)
(7)

in which PI(·)(z) := ki
p,(·) + ki

i,(·)ts
1

z−1 , D(·)(z) :=
ki

d,(·)N
i
(·)

z−1
z−1+Ni

(·)ts
are discrete transfer functions defining,

respectively, a proportional-integral and (filtered) derivative
actions, ts ∈ R>0 denotes the sampling time, k(·)

(·,·) ∈ R>0 are
scalar gains while Kp,R ∈ R3×3

>0 is a diagonal gain matrix and
N(i)
(·) ∈ R>0 is the filter time constant.

B. Control allocation and directionality issues in quadrotors

Common propellers for quadrotors are unidirectional and
have finite power, meaning that they can deliver only a positive
and bounded thrust along their spinning axis, i.e., 0≤ Ti ≤ TM
∀i ∈ {1,2,3,4}. Equivalently, in terms of relative thrusts,
−TH ≤ ∆Ti ≤ TM−TH ∀i ∈ {1,2,3,4}. Since TM > TH for the
quadrotor to fly, the hovering thrust can be expressed as a
fraction of the maximum one, i.e., TH =ηTM η := mg

4TM
∈ (0,1].

Therefore, when saturation occurs, one cannot transfer the
commanded action ∆T d

c , ∆τd
c to the quadrotor since the actual

relative force and torque transferred are given by [∆Tc ∆τ>c ]> =
Xsatūu(X

−1 [∆T d
c ∆τd>

c ]>), where ui := −ηTM, ūi := (1−η)TM
for i ∈ {1,2,3,4}. The associated directional change of the
control vector induces cross coupling phenomena among the
different inputs, giving rise to windup effects which are
referred to as directionality issues in the literature on saturated
multivariable plants. Note, in passing, that quadrotors are
usually designed to hover at 50% or less of the available thrust,
i.e., TH ≈ 0.5TM (η = 0.5) so that there is more than enough
margin to allocate control actions for standard maneuvers
before reaching saturation. Nonetheless, when looking for
high performance controllers, abrupt maneuvers (e.g., step
references or large initial errors with respect to the desired
trajectory) or operations in off-design conditions (e.g., heavy
payload transportation, wind disturbances) can make the pro-
pellers saturate and therefore induce windup effects which are
mainly associated with the induced cross-coupling among the
inputs. In particular, due to the lower effectiveness of the
yaw-torque generation mechanism with respect to the roll-
pitch one (the coefficient σ in (3) has a small value compared
to the arm length `), combined position and yaw maneuvers
can more easily push actuators to saturation bounds thereby
inducing possibly dangerous effects due to directionality. One



way to address this issue is to reduce the aggressiveness of
yaw control or to scale down the commanded yaw torque τc3
until saturation is not reached any more when inverting (3)
(at least until possible, see [1], [2]). In contrast, the approach
that we propose herein is based on a systematic design of
an AW augmentation scheme which allows one to adjust the
relative level of position and yaw performance deterioration
during saturation, while keeping the optimal performance of
a baseline controller in an unsaturated regime.

III. DECENTRALIZED ANTI-WINDUP AUGMENTATION
STRATEGY FOR INPUT-COUPLED PLANTS

In this work we focus on windup effects arising in quadro-
tors when step-like setpoints are commanded, which is one of
the most typical operating conditions for this kind of UAVs.
As discussed in Section II-B, the combination of yaw-position
maneuvers and of an aggressive controller is more likely to
induce directionality issues due to the peculiar allocation map
of quadrotors, even when not so large steps are commanded.
Accordingly, to tailor the anti-windup compensation design for
reference signals which reflect practical operating conditions,
a regional approach has been considered herein1. Specifically,
the AW compensation problem will be addressed in the
framework of the Direct Linear AW compensator (DLAW)
design [13], extending the performance-oriented approach of
[9] to discrete-time systems2.

A. Performance-oriented AW design: preliminaries and prob-
lem formulation

The linearized quadrotor model in (1)-(2) belongs to a class
of saturated systems in which the plant is made of several in-
dependent dynamical subsystems which are statically coupled
through the inputs. Let us consider a linearized discrete time-
invariant plant

(P)


x+p = Apxp +Bp,uu

y =Cp,yxp +Dp,yuu

z =Cp,zxp +Dp,zuu,

(8)

where the state space matrices are block-diagonal with n
blocks, xp ∈ Rnp , y ∈ Rny , z ∈ Rnz and u ∈ Rn. The input u
is a mixing of the actual plant inputs ua ∈ Rn through a non-
singular matrix X ∈ Rn×n, i.e., u = Xua. Consider a linear
control law

(C)

{
x+c = Acxc +Bc,yy+Bc,ww+ vx

yc =Ccxc +Dc,yy+Dc,ww+ vy,
(9)

where again the state space matrices are made of n subsystems,
xc ∈Rnc is the state of the controller, yc ∈Rn is the correspond-
ing output, w ∈Rnw is the set-point and vx ∈Rnc , vy ∈Rn are

1The quadrotor model in (1)-(2) is unstable (not exponentially), meaning
that global results can be achieved only with a nonlinear compensation
scheme [13, Section 2.3]. However, we are not interested in achieving global
results here (which would also question the use of a linearized model for the
quadrotor) but rather seek good performance in practical conditions.

2The emphasis on discrete-time plants is natural for the application consid-
ered in this work in view of onboard implementations. Moreover, identified
flight models to be used in AW synthesis are typically obtained in the form
of discrete-time systems (see, e.g., [14]).

additional inputs to be used for the AW augmentation. When
assuming no bound for ua and exploiting the invertibility of X ,
the interconnection of (P) and (C) through ua =X−1yc yields n
decoupled subsystems which are assumed to be well posed and
internally stable. For quadrotors, the linearized closed-loop
system (1)-(2) has a block-diagonal structure made by four
subsystems: the altitude (x3), the longitudinal-lateral (x2,φ)-
(x1,θ) and the yaw (ψ) subsystems, respectively controlled
by ∆Tc, ∆τc1 , ∆τc2 and ∆τc3 ; the performance output is
z = (x,ψ)∈R4 while the reference input is w = (xd ,ψd)∈R4.
In practice, due to actuator saturation, each uai is bounded
between [−ui, ūi], and the interconnection of (P) and (C) by
means of

ua = satūu(X
−1yc), (10)

forms the constrained closed-loop system. Whenever X is
not diagonal, the closed loop loses its decentralized structure
during saturation. To alleviate this effect, the compensation
signals vx, vy are injected in (9); these signals are the outputs
of the linear filter

(AW )


x+aw = BawqX[
vx

vy

]
=

[
0

Inu

]
xaw +

[
D̄aw

0nu

]
︸ ︷︷ ︸

Daw

qX , (11)

qX := yc−Xsatūu(X
−1yc) (12)

where xaw ∈ Rn. As noted in [6], the use of q := X−1yc −
satūu(X

−1yc) instead of (12) as the deadzone nonlinearity
driving the AW compensator would hide the decentralized
structure of the closed-loop system in unsaturated conditions
(see Remark 2 for additional details). The AW compensator
in equation (11) corresponds to a static full-authority AW in
which the signal vy is cascaded with a unit delay, which is
included to avoid solving in real time implementations the
algebraic loop arising in the controller (see, i.e., [10])3.

Control
law X−1 sat X UAV

AW

Controller
Plant

w = (xd,ψd) T d
c ,τd

c

qX

−v2

Tc,τc
v,x,ω,q

v1

Figure 1. Anti-windup augmentation scheme.

The interconnection of (8), (9) and (11) through qX can be
written in compact form by introducing the augmented closed-
loop (ACL):

(ACL)


x+a = Aaxa +Ba,qqX +Ba,ww

z =Ca,zxa +Da,zqqX +Da,zww

yc =Ca,uxa +Da,uqqX +Da,uww,
(13)

where xa := (xp,xcl ,xaw). In contrast to the majority of works
in the framework of DLAW design [13], which are focused

3The simple structure considered in (11) stands out for its computational
efficiency among the ones that can be used in the proposed AW design. More
complex solutions, possibly yielding better performance, can be included in
our design following [9, Section 4].



on the minimization of the `2-gain from w to z, we propose a
discrete-time version of the performance-oriented approach de-
veloped for continuous-time systems in [9]. Such an approach
starts by defining a reference model (RM)

(RM)

{
x+rm = Armxrm +Brm,ww

zrm =Crm,zxrm +Drm,zww
(14)

which is used to describe the (desired) unconstrained closed-
loop behavior. As conditions inducing propeller saturation can
be assimilated with the use of step references, we include the
filter

(F) w+ = Inw(1− ε)w, w(0) = w0, R>0 3 ε � 1, (15)

into the closed-loop system used for the AW synthesis, as
suggested in [9] to achieve good time-domain responses in
practical conditions (the initial condition of the filter w0 can
be considered as the step amplitude). Thus, by defining the
augmented state ξ = (xa,xrm,w) ∈Rnξ , the interconnection of
(13), (14) and (15) through qX is given compactly by

ξ+ = Aξ +BqqX

ze =Czξ +DzqqX

yc =Cyξ +DyqqX ,

(16)

where all the involved matrices can be uniquely determined
from (8), (9), (11), (14) and (15) and where ze := z− zrm
is a performance output introduced to evaluate the mismatch
between the reference and the actual system response. Starting
from the above representation, the problem that we will
address can be formulated as follows.

Problem 1: Given the compact representation in (16), find
the matrices of the AW compensator in (11) such that the
`2-norm of the performance output ze is as small as possible.

B. Fixed-dynamics AW compensator synthesis

In this section we provide a constructive solution to Problem
1 by exploiting an extension of the well-known generalized
sector condition (see, e.g., [13]), which is adapted from [5].

Lemma 1: Consider any diagonal matrix M ∈ Rn×n
>0 , H ∈

Rn×nξ , a non singular matrix X ∈ Rn×n and define M̄ :=
X−T MX−1. Then, the following condition holds:

−q>X M̄ (qX − yc +XHξ )≥ 0, ∀ξ ∈Rnξ : sat(Hξ ) =Hξ . (17)

We now state our AW synthesis result, corresponding to
the following theorem, whose proof is omitted due to space
constraints, which leverages the generalized sector condition
in Lemma 1 and can be considered as an extension of the
results presented in [9] to discrete-time systems.

Theorem 1: Consider the system in (16), define nr directions
of interest r1, . . . ,rnr ∈ Rnw and select a diagonal matrix
W ∈ Rnz×nz

≥0 to be used for control objectives prioritization. If

there exist matrices Q = Q> ∈ R
nξ×nξ
>0 , Y ∈ Rn×nξ , U ∈ Rn×n

>0

diagonal, B̂aw ∈ Rn×n, D̂aw ∈ R(nc+n)×n and a scalar γ ∈ R>0
satisfying

He


−Q

2 QC>y 0 0
−XY −G+Dcl,uqG+Dcl,uvD̂aw 0 0

WCzQ W
(
Dcl,zqG+Dcl,zvD̂aw

)
− γ

2 Inz 0

AQ

Bcl,qG+Bcl,vD̂aw
B̂aw

0

 0 −Q
2

< 0,

(18)

[
¯̄u2
i Yi

Y>i Q

]
≥ 0, D̂aw jk = 0,

 Q
[

0
rh

]
[
0 r>h

]
1

≥ 0, (19)

where G := XUX>, Yi denotes the i-th row of Y (i = 1, . . . ,n),
¯̄ui := min(ui, ūi) is the i-th input bound, Bcl,q, Bcl,v, Dcl,uq,
Dcl,uv, Dcl,zq, Dcl,zv are defined as in Appendix A, D̂aw jk

is the element in the j-th row k-th column of D̂aw ( j ∈
{nc +1, . . . ,nc +n}, k ∈ {1, . . .nc}) and h∈ {1, . . .nr}, then by
selecting the anti-windup matrices in equation (11) as

Baw = B̂awG−1 (20)

Daw = D̂awG−1, (21)

the ellipsoid E (Q−1) :=
{

ξ ∈ Rnξ : ξ>Q−1ξ ≤ 1
}

is
contained in the region of attraction of (16) and
co{(0,rh) ∈ Rnξ ,h = 1, . . . ,nr} ⊂ E (Q−1). Moreover, the
following condition on the `2 norm of ze is satisfied:

∞

∑
t=0

z>e W 2ze ≤ γ, ∀ξ (0) ∈ E (Q−1). (22)

The main idea behind the proposed design method consists
in first selecting reasonable step amplitudes by defining the
vectors ri and then tuning the AW compensator in such a
way that the unconstrained response is tracked at best for the
given references. This objective, since the smaller γ , the lower
the weighted mismatch ze, can be achieved by solving the
following semidefinite program:

min
Q,Y,U,γ,B̂aw,D̂aw

γ, subject to (18)-(19). (23)

Then, the optimal anti-windup matrices are recovered using
equations (20) and (21).

Remark 1: By suitably selecting the performance output
weight W in (23), one can penalize as little as wanted the
yaw performance output in the optimization step (23) (i.e.,
reducing the corresponding diagonal entry in W ) to guarantee
that the position tracking performance is less deteriorated than
the yaw one during saturation (see the simulation results in
Section IV). This tuning possibility, which comes from well-
known procedures in the robust control literature and has been
exploited in an anti-windup design setting in [7], is particularly
important for quadrotors since poor performance in position
tracking is much more dangerous for safety reasons than poor
yaw tracking, especially in cluttered environments. Whenever
this issue is not so stringent, one can relatively increase the
yaw weight in the AW synthesis according to a desired trade-
off. y



IV. SIMULATION RESULTS

This section is devoted to showing the capability of the
proposed AW compensation method in addressing direction-
ality issues affecting quadrotors. The AW synthesis has been
carried out by using an identified linear discrete-time model of
a lightweight quadrotor available from previous work in [8].
Instead, simulation results have been obtained by considering
a nonlinear model in which the baseline controller is the one
implemented in the PX4 autopilot [12] (which behaves for
small errors as (4)-(7)). Taking into account the input map
(3), the AW compensator proposed in (11) has been used to
augment the baseline controller as shown in Figure 1, where
the signal vy is used to compensate the virtual inputs T d

c , τd
c ,

while vx is used to modify the states of the position and attitude
controllers. Since the controller used in (9) is the equivalent
representation of the cascade of the outer position and inner
attitude controllers, vx can be partitioned as vx = (vx,v,vx,ω),
where vx,v, vx,ω are in charge of modifying, during satura-
tion, the PID states of the position and attitude controller,
respectively. The compensator has been tuned to face ma-
neuvers characterized by combined longitudinal, vertical and
directional motions giving priority to position control over
yaw control (W = diag(1,1,1,0)). In particular, the convex
set contained in the polyhedron made by eight vertices ri
corresponding to combinations of (±4m,0m,2m,±π/6rad)
and (0m,±4m,2m,±π/6rad) has been considered in the tun-
ing procedure, i.e., equation (23)), while according to the
considerations made in Section II-B we assumed hovering at
TH = 0.5TM , which implies that the relative propeller thrusts
∆Ti are constrained in the interval [−0.5TM, 0.5TM]. For the
considered vertices ri, the resulting AW compensator (11) has
the following (almost) block-diagonal structure

[
D̄aw
Baw

]
=


D(x3) • • •
• D(x2 ,φ) • •
• • D(x1 ,θ) •
• • • D(ψ)

B(Tc) • • •
• B(τc1 ) • •
• • B(τc2 ) •
• • • B(τc3 )

 , (24)

where, in virtue of the quadrotor control law (4)-(7), D̄aw ∈
R(1+4+4+2)×(1+1+1+1), Baw ∈ R(1+1+1+1)×(1+1+1+1) and the
terms • denote almost zero elements, while the superscripts
are used to relate the gains with the corresponding partition
of states/output of the controller.

Remark 2: In [6] an AW compensator with a decentralized
structure has been developed for open-loop exponentially
stable linear systems with the same form as the one considered
in our work. Having a decentralized AW structure can be
important in practice; for instance, in combined yaw-altitude
maneuver for which propellers reach saturation bounds, the
commanded roll and pitch torques are zero (∆τd

c1
= ∆τd

c2
= 0)

and, by construction, the saturation nonlinearity qX would not
introduce in-plane cross-couplings (the transferred roll and
pitch torques are zero (∆τc1 = ∆τc2 = 0)). Nonetheless, if the
AW compensator is not decentralized, then such couplings
would be induced by the corrective terms of the compensator.
We cannot a priori impose a decentralized structure to the AW
compensator through the synthesis (23); however, as shown
by (24), thanks to the block diagonal structure of the plant
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Figure 2. Quadrotor inputs time history.

(8) and the choice of the deadzone nonlinearity qX over
q := X−1yc − satūu(X

−1yc), a decentralized structure (up to
numerical errors) can be obtained. Numerical testing on the
synthesis algorithm has shown that such a structure is obtained
whenever the directions of interest ri form a polyhedron
with the eight vertices given by (±am,0m,cm,±d rad) and
(0m,±bm,cm,±d rad) for a,b,c,d ∈ R>0. y

In the following, the results of simulations considering a ref-
erence that combines a position step xd(t) := [4 0 2 ]> step(t−
1)m and a yaw step ψd(t) := 30step(t−1)deg are presented.
As can be seen from Figure 2, the requested set-points lead
the unconstrained controller to require a throttle percentage
exceeding the maximum one by a factor two, while the satu-
rated and the AW solution satisfy the bound. Figure 3 shows
instead a comparison of the set-point tracking performance for
the different controllers. As can be seen from the figure, the
presence of saturation in the propeller thrusts at the beginning
of the maneuver induces visible directionality effects, which
can be appreciated in the significant oscillations experienced
by the UAV along the x2 direction when using the baseline
controller (Figure 3 - middle, black-dashed line). The slight
overshoot visible in the unconstrained response of the baseline
controller is related to the action commanded by the nonlinear
version of (6)-(7) implemented in the simulator, which induces
a small rolling motion even if only pitch and yaw set-points
are commanded (see [15]). The AW compensator, on the other
hand, allows reducing the amplitude of the x2 oscillations and
almost recovering the unconstrained behavior; in this sense
the minimal AW architecture (11) shows very good position
tracking properties, without the need of increasing the anti-
windup order. At the same time, as desired by the control
priority objective, the yaw tracking performance of the AW
augmented controller exhibits a clear mismatch with respect
to the response of the unconstrained controller (Figure 4 -
bottom). Finally, by inspecting Figure 5, it is interesting
to observe how changing the weight W allows one to trade
control objectives off if needed. In particular, using the weight
W = diag(0,0,1,1), maximum priority can be given to the
altitude, yaw response as shown in Figure 5. In this case,
an almost unconstrained performance is obtained in the yaw
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Figure 5. Tracking performance with weighted yaw.

altitude channels at the price of worse tracking performance
on the longitudinal/lateral position.

V. CONCLUSIONS

In this paper we addressed the problem of compensation
of directionality effects in quadrotor UAVs. By referring to
a general class of input-coupled discrete-time linear plants,
a LMI-based synthesis procedure for AW compensators has
been proposed with a focus on time-domain performance and
prioritization of control objectives. The synthesis procedure
has been used to tune a fixed-dynamics AW controller: en-
couraging results achieved in simulations make the proposed
augmentation scheme a viable remedy to some windup issues
affecting quadrotors.

APPENDIX

Given ∆u := (I−Dc,yDp,yu)
−1, ∆y := (I−Dp,yuDc,y)

−1 the
matrices to be defined in LMI (18) are:[

Bcl,q
Dcl,zq
Dcl,uq

]
:=

[ −Bp,u∆u
−Bc,y∆yDp,yu
−Dp,zu∆u

I−∆u

]
,

[
Bcl,v
Dcl,uv
Dcl,zv

]
:=

[
0 Bp,u∆u

Inc Bc,y∆yDp,yu
0 ∆u
0 Dp,zu∆u

]
.

(25)
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