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Necessary and Sufficient Conditions for

Frequency-Based Kelly Optimal Portfolio
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Abstract—In this paper, we consider a discrete-time portfolio
with m ≥ 2 assets optimization problem which includes the rebal-
ancing frequency as an additional parameter in the maximization.
The so-called Kelly Criterion is used as the performance metric;
i.e., maximizing the expected logarithmic growth of a trader’s
account, and the portfolio obtained is called the frequency-based
Kelly optimal portfolio. The focal point of this paper is to extend
upon the results of our previous work to obtain various optimality
characterizations on the portfolio. To be more specific, using
Kelly’s criterion in our frequency-based formulation, we first
prove necessary and sufficient conditions for the frequency-based
Kelly optimal portfolio. With the aid of these conditions, we then
show several new optimality characterizations such as expected
ratio optimality and asymptotic relative optimality, and a result
which we call the Extended Dominant Asset Theorem. That is,
we prove that the ith asset is dominant in the portfolio if and only
if the Kelly optimal portfolio consists of that asset only. The word
“extended” on the theorem comes from the fact that it was only
a sufficiency result that was proved in our previous work. Hence,
in this paper, we improve it to involve a proof of the necessity
part. In addition, the trader’s survivability issue (no bankruptcy
consideration) is also studied in detail in our frequency-based
trading framework. Finally, to bridge the theory and practice,
we propose a simple trading algorithm using the notion called
dominant asset condition to decide when should one triggers a
trade. The corresponding trading performance using historical
price data is reported as supporting evidence.

Index Terms—Financial Engineering, Stochastic Systems, Port-
folio Optimization, Frequency-Based Stock Trading, Uncertain
Systems.

I. INTRODUCTION

The takeoff point for this paper is the classical Kelly

trading problem [1]–[5], which calls for maximizing the

Expected Logarithmic Growth (ELG) of a trader’s account.

To be more specific, the problem is often formulated by a

sequence of trades with independent and identically distributed

(i.i.d.) returns with known probability distribution. The trader’s

objective is to specify a fraction K of its account value at

each stage seeking to maximize the ELG at the terminal

stage. While many of the existing papers contributed on the

Kelly’s problem and its application to stock trading; e.g.,

see [2]–[5], [17]–[19], the effects of rebalancing frequency

is still not heavily considered into the existing literature.

Some initial results along these lines regarding rebalancing

frequency effects can be found in [14]–[16] and our most

recent work in [9]–[11]. Indeed, in [14], a portfolio optimiza-

tion with returns following a continuous geometric Brownian
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work given in [9] and [10].

motion was considered. However, only two extreme cases:

High-frequency trading and buy and hold were emphasized in

their results. On the other hand, in [15] and [16], a portfolio

optimization was considered with the constant gain K selected

without regard for the frequency with which the portfolio

rebalancing is done. Subsequently, when this same gain K
is used to find an optimal rebalancing period, the resulting

levels of ELG are arguably suboptimal.

In contrast to [14] and [15], our formulation to follow,

achieved by adopting our previous work published in [9] and

[10], considers full range of rebalancing frequencies and both

the probability distribution of the returns and the time interval

between rebalances are arbitrary. That is, we deal with what we

view to be a more appropriate frequency-based Kelly trading

formulation and seek an optimal portfolio which depends on

the rebalancing frequency.

A. Idea of Frequency-Based Formulation

Specifically, within this frequency-based trading context, we

let ∆t be the time between trade updates and n ≥ 1 be the

number of steps between rebalancings. Then the frequency

is f := 1/(n∆t). In the sequel, we may call the quantity n
to be the rebalancing period. Now, letting V (k) denote the

trader’s account value at stage k, the trader invests KV (0)
with K ≥ 0 at stage k = 0 and waits n ≥ 1 steps before

updating the trade size. After each trade, the broker takes

its share and the balance of the money is left to “ride”

with resulting profits or losses viewed as “unrealized” until

stage n is reached. When n is small, this is viewed as the

high-frequency case, and when n is large, one use the term

“buy and hold”.

B. Plan for the Remainder of the Paper

In Section II, we first recall our frequency-based formula-

tion considered in [9] and [10]. Then, in Section III, based

on the formulation, we offer our main result which gives

necessary and sufficient conditions for the frequency-based

optimal Kelly portfolio. In addition, several technical results

regarding the various optimality conditions are also provided;

e.g., extended dominant asset theorem, the expected ratio

optimality, and asymptotic relative optimality are proved. In

Section IV, we propose a simple trading algorithm which uses

the idea of extended dominant asset theorem to determine

when should one trigger a trade on an underlying asset or

not. Several back-testing simulations using historical prices

are provided to support the trading performance of the algo-

rithm. In Section V, a concluding remark is provided. Finally,

in Appendix, we also address an important issue regarding

survivability (no-bankruptcy).

http://arxiv.org/abs/2004.12099v1
mailto: chunghan.hsieh@wisc.edu


II. PROBLEM FORMULATION

To study the effect of rebalancing frequency in portfolio

optimization problems, as seen in Section I, let n ≥ 1 being

the number of steps between rebalancings. For k = 0, 1, . . . ,
we consider a trader who is forming a portfolio consisting

of m ≥ 2 assets and assume that at least one of them is

riskless with nonnegative rate of return r ≥ 0. That is, if

an asset is riskless, its return is deterministic and is treated

as a degenerate random variable with value r for all k with

probability one. Alternatively, if Asset i is a stock whose price

at time k is Si(k) > 0, then its return is

Xi(k) =
Si(k + 1)− Si(k)

Si(k)
.

In the sequel, for stocks, we assume that the return vec-

tors X(k) := [X1(k)X2(k) · · · Xm(k)]T have a known dis-

tribution and have components Xi(·) which can be arbitrarily

correlated.1 We also assume that these vectors are i.i.d. with

components satisfying Xmin,i ≤ Xi(k) ≤ Xmax,i with known

bounds above and with Xmax,i being finite and Xmin,i > −1.

The latter constraint on Xmin,i means that the loss per time

step is limited to less than 100% and the price of a stock

cannot drop to zero.

A. Feedback Control Perspectives

Consistent with the literature [6]–[12], we bring the control-

theoretic point of view into our problem formulation. That

is, the system output at stage k is taken to be the trader’s

account value V (k) and the ith feedback gain 0 ≤ Ki ≤ 1
represents the fraction of the account allocated to the ith asset

for i = 1, . . . ,m. Said another way, the ith controller is a

linear feedback of the form Ii(k) = KiV (k). Since Ki ≥ 0,

the trader is going long.2 In view of the above and recalling

that there is at least one riskless asset available, without loss

of generality, we consider the unit simplex constraint

K ∈ K :=

{

K ∈ R
m : Ki ≥ 0 for all i,

m
∑

i=1

Ki = 1

}

which is classical in finance; e.g., see [2], [10], [17]. That is,

with K ∈ K, we have a guarantee that 100% of the account

is invested. Moreover, we claim that the constraint set K

assures trader’s survivability; i.e., no bankruptcy is assured;

see Appendix for a proof of this important property.

B. Frequency-Dependent Dynamics and Feedback Setting

Letting n ≥ 1 be the number of steps between rebalancings,

at time k = 0, the trader begins with initial investment control

u(0) =
m
∑

i=1

KiV (0)

1Again, if the ith asset is riskless, then we put Xi(k) = r ≥ 0 with
probability one. If a trader maintains cash in its portfolio, then this corresponds
to the case r = 0.

2In finance, a long trade means that the trader purchases shares from the
broker in the hope of making a profit from a subsequent rise in the price of
the underlying stock.

and waits n steps in the spirit of buy and hold.

Then, when k = n, the investment control is updated

to be u(n) =
∑m

i=1
KiV (n). Now, to study the perfor-

mance which is dependent on rebalancing frequency, for

i = 1, 2, . . . ,m, we use the compound returns

Xn,i :=

n−1
∏

k=0

(1 +Xi(k))− 1

which are readily seen to satisfy Xn,i > −1 for all n ≥ 1
and we work with the random vector Xn having ith compo-

nent Xn,i. Then, for an initial account value V (0) > 0 and

rebalancing period n ≥ 1, the corresponding account value at

stage n is described by the stochastic recursion

V (n) = (1 +KTXn)V (0).

In the sequel, we may sometimes write V (n,K) to emphasize

the dependence on the feedback gain K .

C. Frequency-Dependent Optimization Problem

Consistent with our prior work in [9] and [10], for any re-

balancing period n ≥ 1, we study the problem of maximizing

the expected logarithmic growth

gn(K) :=
1

n
E

[

log
V (n,K)

V (0)

]

=
1

n
E
[

log(1 +KTXn)
]

and we use g∗n to denote the associated optimal expected

logarithmic growth. It is readily verified that gn(K) is con-

cave in K . Furthermore, any vector K∗ ∈ K ⊂ R
m satisfy-

ing gn(K
∗) = g∗n is called a Kelly optimal feedback gain. The

portfolio which uses the Kelly optimal feedback gain is called

frequency-based Kelly optimal portfolio.

III. RESULTS ON OPTIMALITY

In this section, we provide necessary and sufficient con-

ditions which characterize the frequency-based Kelly opti-

mal portfolio.

Theorem 3.1 (Necessity and Sufficiency): The feedback gain

K∗ is optimal to the frequency-dependent optimization prob-

lem described in Section II if and only if for i = 1, 2, . . . ,m,

E

[

1 + Xn,i

1 +K∗TXn

]

= 1, if K∗

i > 0

E

[

1 + Xn,i

1 +K∗TXn

]

≤ 1, if K∗

i = 0.

Proof. To prove necessity, define Rn := Xn + 1 representing

the total return with ith component Rn,i = Xn,i + 1 and

1 := [1 1 · · · 1]T ∈ R
m. We now consider the frequency-

dependent optimization problem as an equivalent constrained

convex minimization problem as follows:

max
K

−E[logKTRn]

subject to

KT
1− 1 = 0;

−KT ei ≤ 0, i = 1, 2, ...,m



where ei is unit vector having 1 at ith component. Then the

Karush-Kuhn-Tucker Conditions, see e.g., [13], tell us that

if K∗ is a local maximum then there is a scalar λ ∈ R
1 and

a vector µ ∈ R
m with component µj ≥ 0 such that

∇(−E[logK∗TRn]) + λ1−

m
∑

i=1

µiei = 0

with 0 ∈ R
m being zero vector and µjK

∗T ej = 0 for

j = 1, 2, . . . ,m. This implies that for j = 1, . . . ,m, we

have µjK
∗

j = 0 and

−E

[

Rn,j

K∗TRn

]

+ λ− µj = 0. (1)

We note here that the interchanging of differentiation and

expectation is justifiable since Xn,i is bounded. Now we take

a weighted sum of equation (1); i.e.,

m
∑

j=1

K∗

j

(

−E

[

Rn,j

K∗TRn

]

+ λ− µj

)

= 0

which leads to

−

m
∑

j=1

K∗

jE

[

Rn,j

K∗TRn

]

+

m
∑

j=1

K∗

j λ−

m
∑

j=1

K∗

j µj = 0.

Using the facts that µjK
∗

j = 0 for all j and
∑m

j=1
K∗

j = 1,

we have

−

m
∑

j=1

K∗

jE

[

Rn,j

K∗TRn

]

+ 1 · λ+ 0 = 0. (2)

Note that

m
∑

j=1

K∗

jE

[

Rn,j

K∗TRn

]

= E

[

K∗TRn

K∗TRn

]

= 1.

Thus, substituting the result above back into equation (2), we

obtain λ = 1. This tells us that for j = 1, . . . ,m,

−E

[

Rn,j

K∗TRn

]

+ 1− µj = 0

and µjK
∗

j = 0. Thus, to sum up, if K∗

j > 0, implies that

µj = 0 and

E

[

Rn,j

K∗TRn

]

= 1.

If K∗

j = 0, implies that µj ≥ 0 implies that

E

[

Rn,j

K∗TRn

]

≤ 1.

Now, transforming the Rn back to Xn by Rn = Xn + 1
and using the fact that

∑m

i=1
K∗

i = 1 again, we obtain the

desired conditions. Finally, by concavity of E[logKTRn], the

conditions above are also sufficient.

Remarks: It is interesting to note that if n = 1, then

Theorem 3.1 reduces to the classical result in classical Kelly

theory; see [2, Theorem 16.2.1]. Additionally, Theorem 3.1 is

also closely related to the Dominant Asset Theorem given in

our prior work [10]. For the sake of completeness, we recall

the statement of the theorem as follows: Given a collection of

m ≥ 2 assets, if Asset j is dominant; i.e., Asset j satisfies

E

[

1 +Xi(0)

1 +Xj(0)

]

≤ 1

for every other asset i 6= j, then K∗ = ej. Thus, K∗

i = 0 for

i 6= j.3 In fact, this result can be viewed as a special case of

Theorem 3.1. It should be also noted that the Dominant Asset

Theorem is about sufficiency on optimal K∗— not necessity.

Fortunately, with the aids of Theorem 3.1, we are now able

to prove the missing part on necessity of Dominant Asset

Theorem. This is summarized in the next theorem to follow.

Theorem 3.2 (Extended Dominant Asset Theorem): The

optimal Kelly feedback gain K∗ = ej if and only if

E

[

1 +Xi(0)

1 +Xj(0)

]

≤ 1.

Proof. The sufficiency is proved in our prior work

in [10, Dominant Asset Theorem]. Hence, for the sake of

brevity, we only provide a proof of necessity here. Assuming

that K∗ = ej , we must show the desired inequality holds.

Applying Theorem 3.1, it follows that for i 6= j, K∗

i = 0 and

E

[

1 + Xn,i

1 +K∗TXn,j

]

= E

[

1 + Xn,i

1 + Xn,j

]

≤ 1.

Using the definition of Xn,i =
∏n−1

k=0
(1 + Xi(k))) − 1, the

equality above indeed implies that

E

[

n−1
∏

k=0

1 +Xi(k)

1 +Xj(k)

]

≤ 1.

Since Xi(k) are i.i.d., in k, we have
(

E

[

1 +Xi(0)

1 +Xj(0)

])n

≤ 1. (3)

Note that Xi(0) > −1 for all i = 1, 2, . . . ,m, it follows that

the ratio
1 +Xi(0)

1 +Xj(0)
> 0

with probability one; hence its expected value is also strictly

positive. Thus, in combination with inequality (3), we con-

clude

E

[

1 +Xi(0)

1 +Xj(0)

]

≤ 1.

Remark: When the condition

E

[

1 +Xi(0)

1 +Xj(0)

]

≤ 1 (4)

the Extended Dominant Asset Theorem 3.2 tells us to invest

all available funds on the jth asset. In the sequel, the inequal-

ity (4) is called the dominant asset condition. As seen later

in Section IV, this condition allows us to construct a simple

algorithm which may be useful for practical stock trading.

In the rest of this section, some other new optimality results

are provided.

3Intuitively speaking, the Dominant Asset Theorem tells us that when
condition is right, one should “bet the farm.”



Lemma 3.3 (Expected Ratio Optimality): Let K∗ be the

frequency-based optimal Kelly feedback gain. Then

E

[

1 +KTXn

1 +K∗TXn

]

≤ 1

for any K . In addition, we have

E

[

log
1 +KTXn

1 +K∗TXn

]

≤ 0

for any K .

Proof. Let K be given. From Theorem 3.1, it follows that for

a Kelly optimal feedback gain K∗, we have

E

[

1 +Xn,i

1 +K∗TXn

]

≤ 1

for all i = 1, . . . ,m. Multiplying this inequality by Ki and

summing over i, we obtain

m
∑

i=1

KiE

[

1 +Xn,i

1 +K∗TXn

]

≤

m
∑

i=1

Ki = 1

which is equivalent to

E

[

1 +KTXn

1 +K∗TXn

]

≤ 1.

To complete the proof, we invoke Jensen’s inequality on the

quantity E

[

log 1+KT
Xn

1+K∗TXn

]

and observe that

E

[

log
1 +KTXn

1 +K∗TXn

]

≤ logE

[

1 +KTXn

1 +K∗TXn

]

≤ log 1 = 0.

Hence, the proof is complete.

Remark: Lemma 3.3 above tell us that the frequency-based

Kelly optimal portfolio also maximizes the expected relative

wealth E[ 1+KT
Xn

1+K∗TXn

]. In addition, we note that the for any K ,

1 +KTXn = 1 +

m
∑

i=1

KiXn,i

≥ 1 + min
j

Xmin,j

m
∑

i=1

Ki

> 0.

Hence, the ratio 1+KT
Xn

1+K∗TXn

> 0. Now using the Markov

inequality, the condition

E

[

1 +KTXn

1 +K∗TXn

]

≤ 1

for any K implies that

P

(

1 +KTXn

1 +K∗TXn

> c

)

≤
1

c

for any c > 0. The following lemma indicates a stronger result

on the asymptotic relative optimality of K∗.

Lemma 3.4 (Asymptotic Relative Optimality): The optimal

feedback vector K∗ is such that

lim sup
n→∞

1

n
log

1 +KTXn

1 +K∗TXn

≤ 0

with probability one.

Proof. The idea of the proof is very similar to the one

presented in [2, Theorem 16.3.1]. However, for the sake

of completeness, we provide our own proof here. Recalling

Lemma 3.3, we have

E

[

1 +KTXn

1 +K∗TXn

]

≤ 1

and Markov inequality tell us that

P

(

1 +KTXn

1 +K∗TXn

> cn

)

≤
1

cn

for any cn > 0. Hence,

P

(

1

n
log

1 +KTXn

1 +K∗TXn

>
1

n
log cn

)

≤
1

cn
.

Take cn := n2 and summing all n, we have

∞
∑

n=1

P

(

1

n
log

1 +KTXn

1 +K∗TXn

>
2 logn

n

)

≤

∞
∑

n=1

1

n2
< ∞.

Therefore, applying the Borel-Cantelli Lemma; e.g., see [20],

it leads to

P

(

1

n
log

1 +KTXn

1 +K∗TXn

>
2 logn

n
infinitely often

)

= 0.

Thus, there exists N > 0 such that for all n ≥ N , we have

1

n
log

1 +KTXn

1 +K∗TXn

≤
2 logn

n
.

It follows that

lim sup
n→∞

1

n
log

1 +KTXn

1 +K∗TXn

≤ 0

with probability one.

Remark: Note that for n ≥ 1, V (n) = (1 +KTXn)V (0),
thus, Lemma 3.4 implies that

lim sup
n→∞

1

n
log

V (n)

V ∗(n)
≤ 0

with probability one where V ∗(n) = (1 +K∗TXn)V (0).

IV. DOMINANT RATIO TRADING ALGORITHM

Besides the theoretical interests, as mentioned in Section III,

we view that Theorem 3.1 and Extended Dominate Asset

Theorem 3.2 may be useful to design an algorithm for practical

stock trading. The main idea is to take advantage of the

Dominant Asset Condition stated in Theorem 3.2; i.e.,

E

[

1 +Xi(k)

1 +Xj(k)

]

≤ 1,

if it holds, then we set K∗

j = 1; otherwise, K∗

j = 0.
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Figure 1: Daily Closing Stock Prices Si(k), i = 1, 2, 3 for VT, BND,
and BNDX, respectively.

A. Bridging Theory and Practice

To implement the idea described above, we proceed as

follows: Using si(k) to denote the kth daily realized prices

for the ith stock, we calculate the associated realized return,

call it xi(k), where

xi(k) :=
si(k + 1)− si(k)

si(k)

for i = 1, 2, . . . ,m. It should be noted that, in practice, the

realized returns xi(k) are often nonstationary. Hence, when

testing the dominant asset condition, we work with a sliding

window consisting of the most recent M trading steps.4 That

is, we estimate the expected ratio in the Dominant Asset

Condition by

Rij(k) :=
1

M

M−1
∑

ℓ=0

1 + xi(k − ℓ)

1 + xj(k − ℓ)
.

Then, if Rij ≤ 1 for all i 6= j, we set K∗

j (k) = 1;

otherwise, we set K∗

j (k) = 0. We call the procedure above the

Dominant Ratio Trading Algorithm. An illustrative example

using historical prices data is provided in the next subsection

to follow.

B. Illustrative Example Via Back-Testing

Consider a one-year long portfolio consisting of three

assets with duration from February 14, 2019 to Febru-

ary 14, 2020: Vanguard Total World Stock Index Fund ETF

Shares (Ticker: VT), Vanguard Total Bond Market Index Fund

ETF Shares (Ticker: BND), and Vanguard Total World Bond

EFT (Ticker: BNDX) where the price trajectories are shown

in Figure 1.5

Begin with initial account value V (0) = $1, we implement

the algorithm described above using a window size M = 20
days. That is, the initial trade is triggered after receiving the

first twenty daily prices data. We ran MATLAB script and

4Again, we note here that the unit of “steps” here can be any time stamp
such as milliseconds, minutes, days, months, etc.

5The data are provided by Wharton Research Data Services.

20 40 60 80 100 120 140 160 180 200 220 240
0.95

1

1.05

1.1

1.15

1.2

1.25

Dominant Ratio Trading Algorithm
Buy and Hold Strategy

Figure 2: Trading Performance Comparison: Dominant Ratio Trading
Algorithm with M = 20 versus Buy and Hold strategy.

plot a typical trading performance in terms of the trajectory

of account value V (k), which is shown in Figure 2. In

Figure 2, we find that the account value obtained by Dominant

Ratio Trading Algorithm is increasing from V (0) = 1 to

V (252) ≈ 1.23, which yields a returns about 23% and is

obviously higher than the account value obtained by standard

buy and hold strategy. We also reported the corresponding

trading signal Ki(k) for i = 1, 2, 3 in Figure 3 where a

flavor of bang-bang control is seen. To close this section, we

also tested various sliding window sizes using equally-spaced

M = 1, 5, 15, . . . , 60 with increment 5 between elements and

we seen that the algorithm produces similar trading perfor-

mance to the one seen in Figure 2. This example provides a

potential for bridging the theory and practice in stock trading.

Further developments along this line might be fruitful to

pursue as a direction of future research. For example, an initial

computational complexity analysis and trading with various

stocks may be of the next interests to pursue.

V. CONCLUSION AND FUTURE WORK

In this paper, we studied necessary and sufficient conditions

for the frequency-based optimal Kelly portfolio. With the aid

of these conditions, we derived various different optimality

characterizations such as expected ratio optimality, asymptotic

relative optimality, and Extended Dominant Asset Theorem.

Moreover, to bridge the theory and practice, we used the

notion of dominant asset to construct a trading algorithm

which indicates the trader when to invest all available funds

into the dominant asset.

Regarding further research, one obvious continuation would

be to study the case when Ki < 0 is allowed; i.e., short

selling should be considered as a next level extension of the

formulation. In this situation, we envision a similar results

along the lines of those given here. In addition, it would be of

interest to relax some of the assumptions in the formulation

from i.i.d. return sequences to time-dependent sequences.

Finally, for cases when the distribution model for re-

turns Xi(k) is either partially known or completely unknown,

it would be of interest to study the extent to which the
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Figure 3: Feedback Gains Ki(k) with i = 1, 2, 3 for VT, BND, and
BNDX, respectively. One sees a bang-bang flavored control signals.

theory in this paper can be extended. For example, the line

along the data-driven algorithm described in Section IV might

be helpful.
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APPENDIX A

SURVIVAL CONSIDERATIONS

In the context of stock trading, the very first goal for a trader

is to assure that the bankruptcy would never occur for the

entire trading period; i.e., one must assure V (k) > 0 for all k.

If this is the case, we say the trades are survival.6 Below, we

provide a result which indicates that the any feedback gain K
satisfying the constraint set K considered in Section II assures

survival.

Lemma: If K ∈ K, then V (n) > 0 for all n ≥ 1.

Proof. We first note that for n = 1, the account value is

V (1) = (1 +KTX1)V (0) = (1 +KTX(k))V (0) > 0.

Now, to show V (n) > 0 for n > 1, we observe that

V (n) = (1 +KTXn)V (0)

=

(

1 +

m
∑

i=1

Ki

(

n−1
∏

k=0

(1 +Xi(k))− 1

))

V (0)

≥

(

1 +

m
∑

i=1

KiXi,min

)

V (0)

6 As stability is to the classical control system, so is survivability to the
financial system. In fact, in our prior work [12], the survivability problem is
regarded as a state positivity problem.

where Xi,min := (1 +Xmin,i)
n − 1 > −1 for all i, Hence,

V (n) ≥



1 + min
i=1,...,m

Xi,min

m
∑

j=1

Kj



V (0)

=

(

1 + min
i=1,...,m

Xi,min

)

V (0)

> 0

where the last inequality holds since Xi,min > −1 for all i
implies miniXi,min > −1 and the proof is complete.

REFERENCES

[1] J. L. Kelly, “A New Interpretation of Information Rate,” Bell System

Technical Journal, vol. 35.4, pp. 917–926, 1956.
[2] T. M. Cover and J. A. Thomas, Elements of Information Theory, John

Wiley & Sons, 2012.
[3] P. H. Algoet and T. M. Cover, “Asymptotic Optimality and Asymptotic

Equipartition Properties of Log-Optimum Investment,” The Annals of
Probability, vol. 16, pp. 876–898, 1988.

[4] L. M. Rotando and E. O. Thorp, “The Kelly and the Stock Market,” The

American Mathematical Monthly, vol. 99, pp. 922–931, 1992.
[5] E. O. Thorp, “The Kelly Criterion in Blackjack Sports Betting and The

Stock Market,” Handbook of Asset and Liability Management: Theory

and Methodology, vol. 1, pp. 385–428, Elsevier Science, 2006.
[6] B. R. Barmish and J. A. Primbs, “On a New Paradigm for Stock

Trading Via a Model-Free Feedback Controller,” IEEE Transactions on

Automatic Control, AC-61, pp. 662–676, 2016.
[7] Q. Zhang, “Stock Trading: An Optimal Selling Rule,” SIAM Journal of

Control and Optimization, vol. 40, pp. 64–87, 2001.
[8] J. A. Primbs, “Portfolio Optimization Applications of Stochastic Re-

ceding Horizon Control,” Proceedings of the American Control Confer-

ence, pp. 1811–1816, New York, 2007.
[9] C. H. Hsieh, B. R. Barmish, and J. A. Gubner, “At What Frequency

Should the Kelly Bettor Bet,” Proceedings of the American Control

Conference, pp. 5485–5490, Milwaukee, 2018.
[10] C. H. Hsieh, J. A. Gubner, and B. R. Barmish, “Rebalancing Fre-

quency Considerations for Kelly-Optimal Stock Portfolios in a Control-
Theoretic Framework,” Proceedings of the IEEE Conference on Decision

and Control, pp. 5820–5825, Miami Beach, 2018.
[11] C. H. Hsieh, Contributions to the Theory of Kelly Betting with Appli-

cations to Stock Trading: A Control-Theoretic Approach, Ph.D. disser-
tation, University of Wisconsin–Madison, 2019.

[12] C. H. Hsieh, B. R. Barmish, and J. A. Gubner, “On Positive Solutions
of a Delay Equation Arising When Trading in Financial Markets,” IEEE

Transactions on Automatic Control, in press, 2019.
[13] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge Uni-

versity Press, 2004.
[14] D. Kuhn and D. G. Luenberger, “Analysis of the Rebalancing Frequency

in Log-Optimal Portfolio Selection,” Quantitative Finance, vol. 10, pp.
221–234, 2010.

[15] S. R. Das, D. Kaznachey and M. Goyal, “Computing Optimal
Rebalance Frequency for Log-Optimal Portfolios,” Quantitative Fi-

nance, vol. 14, pp.1489–1502, 2014.
[16] S. R. Das and M. Goyal, “Computing Optimal Rebalance Fre-

quency for Log-Optimal Portfolios in Linear Time,” Quantitative Fi-

nance, vol. 15, pp.1191–1204, 2015.
[17] D. G. Luenberger, Investment Science, Oxford University Press, New

York, 2011.
[18] A. W. Lo, H. A. Orr, and R. Zhang, “The Growth of Relative Wealth and

the Kelly Criterion,” Journal of Bioeconomics, vol. 20, pp. 49–67, 2018.
[19] L. C. Maclean, E. O. Thorp, and W. T. Ziemba “Long-term

Capital Growth: The Good and Bad Properties of The Kelly
and Fractional Kelly Capital Growth Criteria,” Quantitative Fi-

nance, vol. 10, pp. 681–687, 2010.
[20] J. S. Rosenthal, A First Look at Rigorous Probability Theory, World

Scientific, 2006.
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