
Self-Configuring Robot Path Planning with Obstacle
Avoidance via Deep Reinforcement Learning

Bianca Sangiovanni, Gian Paolo Incremona, Marco Piastra and Antonella Ferrara

Abstract—This work proposes a hybrid control methodology to
achieve full body collision avoidance in anthropomorphic robot
manipulators. The proposal improves classical motion planning
algorithms by introducing a Deep Reinforcement Learning (DRL)
approach trained ad hoc for performing obstacle avoidance, while
achieving a reaching task in the operative space. More specifically,
a switching mechanism is enabled whenever a condition of
proximity to the obstacles is met, thus conferring to the dual-
mode architecture a self-configuring capability in order to cope
with objects unexpectedly invading the workspace. The proposal
has been finally tested relying on a realistic robot manipulator
simulated in a V-REP environment.

Index Terms—Deep learning, path planning, robot control,
collision avoidance.

I. INTRODUCTION

A. Background

AS robots are required to perform increasingly demanding
tasks in different and complex environments, great focus

is put in robotics research to ensure that such systems are
able to move and interact with the surroundings without
endangering equipment and, most importantly, humans [1]. In
fact, in the context of the so-called physical Human-Robot
Interaction (pHRI) or in case of robots operating alone in
cluttered environments, obstacle avoidance remains a core
issue [2], [3].

A number of contributions documents the interest in han-
dling physical interaction between the robots and the envi-
ronment. Artificial potential fields, introduced in [4], detect
obstacles in the proximity and, based on that, generates an
artificial force field that is then transformed into joint torques.
This approach was later improved in [5], [6], while real-
time, adaptive motion planning was instead explored in [7],
[8]. Furthermore, among the possible strategies, the majority
relies on Optimal Control Problems (OCPs) [9]–[11]. It is
worth highlighting that, in order to implement potential fields
methods, the dynamical model of the manipulator must be
known or accurately estimated, whereas planning methods
require constant sampling and online planning of the trajectory
in order to find an obstacle free path. Both requirements might

This is the final version of the accepted paper submitted to IEEE Con-
trol Systems Letters. B. Sangiovanni, M. Piastra and A. Ferrara are with
Dipartimento di Ingegneria Industriale e dell’Informazione, University of
Pavia, 27100 Pavia, Italy (e-mail: bianca.sangiovanni01@universitadipavia.it,
marco.piastra@unipv.it, antonella.ferrara@unipv.it).

G. P. Incremona is with Dipartimento di Elettronica, Informazione e
Bioingegneria, Politecnico di Milano, 20133 Milan, Italy (e-mail: gian-
paolo.incremona@polimi.it).
The authors gratefully acknowledge the full help provided by the master
student Nikolas Sacchi for the simulations.

be hard to satisfy in presence of multiple moving obstacles or
unknown environment.

A recent alternative to the mentioned methods is instead
given by Reinforcement Learning (RL) approaches. Specif-
ically, Deep Reinforcement Learning (DRL), following the
work in [12], has been researched as a promising approach
for solving hard to engineer tasks, as in cases where it is
difficult to have an accurate enough model description of
the considered system. By letting the robot interact with its
environment, for any given control operation, it is possible to
find an optimal strategy to successfully conclude the task [13],
[14]. In [15], [16], for instance, such algorithms have been
used to train the agent to grasp sparse objects via convolution
neural networks for pose estimation. In [17], and then in [18],
data efficient methodologies for dexterity operations have been
applied. In [19], further improvements have been made for
enabling a robot to accomplish a stacking task by using soft
Q-learning. Although RL approaches have been successfully
applied to systems with discrete action space, many real-
world applications require an agent to select optimal actions
from continuous spaces. Indeed, discrete actions could not be
adequate for devising strategies where a very small change in
an action can significantly affect the outcome. This motivates
recent researches dealing with DRL adaptation to systems
featuring continuous state and action spaces. Specifically,
continuous variants of Q-learning are Deep Deterministic
Policy Gradient (DDPG) [20] and Normalized Advantage
Function (NAF) [21], which have also been employed for
end-to-end control of robotics systems. Yet, despite the recent
improvements, DRL for robotics systems raises concerns over
safety issues: long training times are required, and a high
level of domain randomization is needed to prevent undesirable
effects and unexpected behaviors. For this reason, the majority
of the research in the field is carried out in simulation [22].
Therefore, despite the recognized potential, it is still difficult
and expensive to achieve near-optimal behaviors using fully
autonomous, end-to-end control strategies with DRL.

B. Contribution

The goal of this paper is to present a hybrid dual-mode
architecture which enables the use of motion planning without
the burden of taking obstacles into account, and only use an
end-to-end DRL-based control strategy once more complex
tasks are required. In the proposed case study, with respect
to the previous research on collision avoidance discussed in
[23], the full body end-to-end collision avoidance approach is
extended to a more general scenario with obstacles moving



in multiple directions, exploiting experience transfer during
training. Our intention is to remove the need for prolonged
training to enable the robot to reach a point in space and
reduce the level of uncertainties that come with end-to-end
approaches. On the other hand, using DRL for performing
the obstacle avoidance removes the need for model-based
approaches to ensure that the robot full body does not collide
with obstacles, which are hard to hand-engineer. This is
convenient when obstacles are not known a-priori or we do
not have an accurate knowledge of the system dynamics.

II. MODEL OF THE ROBOT AND
THE INTERACTION SCENARIO

This work focuses on the situation in which a robot manip-
ulator is requested to move in a populated industrial environ-
ment, possibly invaded by obstacles. During the motion, the
robot could collide with obstacles, while reaching its target or
executing a specific task. In the following, we assume that,
apart from the encoder fastened on the robot joints, a vision
system is present to detect objects motions with respect to a
world frame. Furthermore, the objects move randomly so that
physical interaction between the environment and the robot
can unexpectedly happen.

A. Robot model

Let us consider an industrial manipulator with an open
kinematic chain, and let q ∈ R

n be the joint variables
related to the motor positions, with n being the number of
degrees of freedom (i.e., of joints). Given the end-effector
pose vector xe =

[
pe Φe

]> ∈ R
m, with m being the

dimension of the operative space, pe being the position and
Φe the orientation in the workspace, the direct kinematics [24]
is indicated as xe = k(q), with k(q) ∈ Rm being a nonlinear
function depending on the joint variables. Since in practice it is
convenient to provide joint position and/or velocity references
to the internal control loops, the dynamic model of the robot
can be expressed as

q̈ = f(q, q̇) , (1)

where f : Rn × Rn → R
n is a function of path coordinates

and its time derivatives.

B. Motion planner

Let us concentrate on a general tracking problem in which
we assume that the robot moves in the free-motion operative
space. The goal is to track a smooth reference trajectory x?e ,
starting from xe0 towards the target point at x∗. Relying on
classical approaches, such as those in [24], motion planning
constitutes a crucial aspect, and, in order to find a collision-
free trajectory, it can be performed in two ways: i) in the
configuration space, by defining motion independently for
each joint from an initial configuration q0 to a final one q∗

or ii) in the operative space, by determining x?e . Although
planning trajectories in the joint space is simpler and compu-
tationally lighter, planning trajectories in the operative space
provides a more natural task description and obstacles can

be accounted in the design phase of the path. However, if a
collision can occur, it entails high computational costs due to
the online calculation of the inverse kinematics to take into
account the obstacles position. In the following we provide
an alternative solution to overcome this problem, proposing a
self-configuring path-planning to rapidly cope with obstacles
invading the workspace. Moreover, from here on, we assume
that local joints controllers are capable to perfectly track the
desired joint path, namely q?, as well as its derivative q̇?(t),
that is q(t) = q?(t) and q̇(t) = q̇?(t), ∀ t ≥ 0.

C. Collision avoidance problem

Consider now model (1) where q̇ is assumed to be the input
action, namely a in the following. Furthermore, the workspace
strictly depends on the manipulator geometry and the mechan-
ical limits on the joints, so that input and state constraints are
of the form h(q, q̇) ≤ 0 with h : Rn ×Rn → R

`, and ` being
the number of constraints. Finally, let W(q(t)) ⊂ R

m be the
space occupied by the robot at the instant t, and O ⊂ R

m

be the space occupied by the obstacles. Having in mind to
execute a possible industrial task (e.g., spot welding, pick and
place, or point-to-point motions), our goal is to find a velocity
control sequence q̇? over the horizon T , which makes the
robot end-effector move from the initial state xe0 to a target
point x∗, (eventually following a predefined trajectory x?e ),
while avoiding the obstacles O ⊂ Rm with minimum deviation
from the target point and applying minimum control action.
Therefore, our finite-horizon Collision Avoidance Optimal
Control Problem (CAOCP) is given by

min
a

∫ T

0

c1RT(xe(q), x∗) + c2‖q̇‖2 dt

s.t. q̈ = f(q, q̇), q̇ = a, xe(q) = k(q)

h(q, q̇) ≤ 0

W(q(t)) ∩ O ≡ ∅
xe(0) = xe0

(2)

where the function RT(xe(q), x∗) is defined as the following
Huber-Loss function:

RT =

{
1
2d

2 for d < δ

δ
(
d− 1

2δ
)

otherwise
(3)

where d = ‖xe − x∗‖ is the Euclidean distance between the
tip and the target and δ is a parameter that determines the
smoothness. Moreover, the positive constants c1 and c2 are
suitably selected weights. The key difficulty in solving (2) is
given by the presence of the collision avoidance constraints
W(q(t))∩O ≡ ∅, which are in general non-convex and non-
differentiable.

III. DRL FOR COLLISION AVOIDANCE

A. Preliminaries on DRL

The RL framework [25] relies on the concept that an agent
(i.e., the robot) autonomously learns how to accomplish a
given task by iteratively interacting through actions with the
environment. At any given time t, the agent observes (i.e.,



through sensors and cameras) the environment, represented
by a certain state st ∈ S, with S being the state space,
and according to a certain policy π(a|s) performs a certain
action at ∈ A, with A being the action space, thus changing
the environment’s state. When entering a new state, the agent
receives a reward rt, that is a scalar feedback on ’how well’
the agent has performed. The agent’s goal is to maximize,
over a window of length T , the expected cumulative reward
in the long run, i.e., Rt =

∑T
k=0 γ

krt+k+1, where the term
0 ≤ γ ≤ 1 is the discount rate, depending on how one wants
to prioritize early rewards over later ones. To this end, a value
function V π is considered, that is the expected cumulative
reward the agent can receive in the long run, starting from a
given state and following the policy π thereafter. Specifically,
the value of a state can be measured in two ways: state-value
functions V π(s) and action-value functions Qπ(s, a), whether
it depends on the state alone or both state and action.

In case of continuous action problems with a large num-
ber of states, such as those commonly found in robotic
systems, a parametric approximator of the Q-function (Q-
learning) is generally used. This learning method allows the
convergent, incremental updating of a suitable approxima-
tion Q̃ towards the optimal Q?, as experience progresses.
A way to build such approximator is a Deep Neural Net-
work (DNN) [26], i.e., a parametric function that can model
complex non-linear relationships. The so-called NAF algo-
rithm proposed in [21] is hereafter used due to its effec-
tiveness for high-dimensional systems with continuous ac-
tion space (see [20] and [23] for a deeper discussion). In
order to find the policy µ̃(s) = argmaxaQ̃(s, a), the ap-
proximator is chosen as Q̃

(
s, a|θ(Q)

)
= Ã

(
s, a|θ(A)

)
+

Ṽ
(
s|θ(V )

)
, with Ã and Ṽ being parametric approximators

of the advantage function Aπ(s, a) = Qπ(s, a) − V π(s)
and of the value function V π(s), respectively, while θ(·)

are vectors of parameters. Then, the advantage function
is selected as the quadratic expression Ã

(
s, a|θ(A)

)
=

−0.5
(
a− µ̃(s|θ(µ))

)>
P (s|θ(P ))

(
a− µ̃(s|θ(µ))

)
, where P is

a state dependent, positive-definite square matrix. Hence,
having the Q-function quadratic in the action, by computing
its maximum, one can easily achieve the optimal policy given
by a = µ̃(s|θ(µ)).

B. Recast of the CAOCP into the RL framework

Making reference to the CAOCP in (2), we want to recast
it using the RL framework elements. Assuming to not com-
pletely know the robot dynamics, along with the manipulator,
the environment contains a target point in the operative space
and randomly moving obstacles. Depending on the kind of
the considered experiment, the above elements are arranged
in different configurations. According to the RL settings, the
state space S is defined as

S = {q, q̇, pe, p
?, po, ṗo} , (4)

where all quantities are vectors, with p? being the target point
position, po being the obstacles positions and ṗo their velocity.
The action space A is instead

A = {q̇?} , (5)

where q̇? is the vector of reference velocities for each joint.
An action issued at time t means that the robot must reach
the requested velocities in the following time step t+ 1. The
reward function is designed as follows

r = −(c1RT + c2RA + c3RO) , (6)

where the minimization equivalent to the CAOCP is achieved
by maximizing the reward r, where a negative sign appears
differently from (2). Specifically, RT is defined as in (3), and
RA is a regularization term, computed as follows

RA = ‖a‖2 , (7)

which has the purpose of encouraging smaller control actions.
Finally, letting do be the minimum distance between the whole
robot body and the obstacles, RO is defined as

RO = min

(
kr
RT

c2
;

(
d?

do + d?

)g)
(8)

where d? is a constant parameter ensuring that 0 < RO < 1,
and g is a hyperparameter aimed at increasing the decay
rate of the reward component when the robot is far from
the obstacles [23]. Moreover, kr is a positive integer that
ensures a minimum, fixed proportion between RO and RT.
The relative weights of the three terms above can be tuned
via the constant parameters c1, c2 and c3. In the context
of machine learning there are predefined parameters, called
hyperparameters. In practice, these values are determined
through a preliminary search activity aiming to identify the
most effective combination. We refer to [23] for more details.

C. DRL algorithm with experience replay

In this section the so-called transfer learning is discussed.
This concept generally refers to transferring knowledge ac-
quired in a particular training scenario to a different, pos-
sibly more complex one. This means that if tasks change,
although the training procedure should be repeated, it can
be facilitated by previously acquired experience. Using the
NAF algorithm, there are two different possibilities to perform
transfer learning: i) model transfer, that is reusing the learned
parameters of the action-value function as initializers for the
action-value function in the subsequent training activity, or
ii) experience transfer, that is reusing the set of collected
quadruplets {st, at, rt, st+1} as initializers for an experience
replay buffer, which collects all the samples produced by the
training process throughout the episodes.

The evaluation of the overall approach with NAF algorithm
for obstacle avoidance is hereafter performed by considering
three scenarios, with one obstacle for the sake of simplicity,
but without loss of generality: S1) the target is kept fixed
in a predefined position while the obstacle moves randomly,
at fixed speed or stays immobile, along a linear path (fixed
target, 1D movement); S2) the target is still kept fixed in a
predefined position, but the obstacle now moves randomly on
a plane while avoiding areas closer to the target (fixed target,
2D movement); S3) the target is randomly initiated at the
beginning of each episode, and the obstacle moves randomly
on a plane while avoiding areas closer to the target (random
target, 2D movement).



D. DRL policy validation

Considering scenario S3, both experience and model trans-
fer from scenarios S1 and S2 are performed. For the robot
manipulator considered in the case study, Figure 1 shows
that experience transfer allows for faster convergence (i.e., in
less episodes) and improved performance (i.e., higher average
cumulative reward) with respect to model transfer, and both
approaches outperform ex-novo training of the policy, as is
evident in Table I, where the corresponding average cumulative
rewards and the standard deviations (between brackets) are
reported after 250 episodes (i.e., after convergence). Moreover,
the percentage variation of the reward, namely ∆R%, with
respect to ex-novo training is indicated.

TABLE I
EFFECTIVENESS OF TRANSFER LEARNING MODES

training R ∆R%

ex-novo −2.52× 104 (4.69× 103) –
model −1.65× 104 (4.59× 103) 34.56%

experience −9.05× 103 (2.56× 103) 64.13%

Fig. 1. Cumulative reward in case of ex-novo training (solid line), model
transfer (dashed line) and experience transfer (dot-dashed line), and close-up
when the rewards converge after 500 episodes

The achieved policy was tested after training for 500 differ-
ent target positions, spanning the workspace of interest, with
random initial robot configuration and random initial obstacle
position. The procedure was repeated 30 times and an average
of the selected performance indices was computed. More in
detail, the following were evaluated: i) the failure rate if
computed as the percentage of time instants over an episode
in which the distance between obstacle and robot is measured
equal to zero (that is, a collision event occurs), and ii) the
root mean square (rms) value of the distance between the end-
effector position xe and the target one x∗, namely it = rms(d),
in order to have a measure of precision of the executed task.
A graphic rendering of these indices is reported in Figure 2,
where concerning the failure rate if we get the overall average
of 0.36%, while as for it the average is 0.16 m, justified by
the fact that the robot moves away from the target every time
the obstacles invade its operation space, thus increasing the
distance between the end-effector and the target position.

Remark 1. Both indices are related to environmental con-
ditions (e.g., position initialization, shape and number of
obstacles), and manipulability of the robot. �

(a) if (%) (b) it (m)

Fig. 2. Indices averaged for 30 simulations per target position of the trained
policy with end-to-end approach. a) failure rate if . b) rms value it of the
distance between end-effector and target

IV. HYBRID DUAL-MODE STRATEGY

The main objective of the proposed strategy, presented in
this section and summarized in Algorithm 1, consists of the
following motion tasks: T1) to follow a desired trajectory in
order to reach a pre-specified target; T2) to avoid unexpected
obstacles invading the workspace, while reaching the target.

Algorithm 1 Hybrid motion planning approach
Input: threshold ε, current joints’ position q, target pose x∗

Output: a collision-free motion reference for (1)
1: repeat
2: compute xe as xe = k(q)
3: compute the metric µ(do)
4: if µ(do) < ε then
5: use DRL and pose q̇? = at, as in (5)
6: else
7: let xe0 = xe

8: use SBL starting from the initial condition xe0 to the
final pose x∗

9: let (q?, q̇?) = (q?, q̇?)�

10: end
11: until xe 6= x∗

12: return (q?, q̇?) (SBL) or q̇? (DRL)

Starting from an initial configuration, the motion planner
finds a trajectory that connects the initial pose xe0 of the
end-effector with the pose of the target point x∗. During
the execution of the motion solved by the motion planner,
if the metric chosen to evaluate the risk of collision with the
obstacles, namely µ(do) (e.g., the minimum distance between
the robot and obstacles), is below a fixed threshold, called
ε, suitably selected by the designer for the sake of safety,
the system hands over the control to the DRL policy. Once
this condition is no longer satisfied, i.e., the obstacles, which
can have different shape and behavior, are considered at safe
distance, the motion planner is once again initialized with
starting point as the current end-effector pose xe.

Remark 2. Note that we assume that the internal control
is ideal. However, since the proposed learning approach is
exclusively based on data from sensors, independently of the
inner control law, a certain degree of robustness is guaranteed
in case of reasonable control errors. �

The motion planning from the initial pose of the end-
effector to the target point in the operational space is done
accordingly to the Single-Query Bi-Directional Probabilistic



Roadmap Planner with Lazy Collision Checking (SBL) algo-
rithm [27], i.e., a sample based planning algorithm that relies
on the construction of explorable trees in the configuration
space. SBL is computationally light and is prone to find the
shortest path [28]. In the proposed approach, the SBL path
(q?, q̇?)� is computed without accounting for the presence
of obstacles in the operative space, significantly speeding
up calculations and reducing cases where the planner does
not find a feasible trajectory. Collision avoidance is instead
performed using the policy obtained by training the agent.
Hence, at each step, given st as in (4), the policy produces
the target velocities q̇? for each joint in the next time step as
actions at, according to (5). The policy is deployed after a
suitable number of training episodes and the convergence of
the cumulative reward.

V. MOTION TESTS

A. Environment specifications

Experiments have been carried out in V-REP [29], interfaced
with TensorFlow, through the PyRep plugin [30], using a 6
joints robot by Comau1. The robot must complete task T1, with
random initial conditions. Throughout its actions, the robot
must perform also task T2, with randomly moving obstacles
(planarly or spatially), with different shape and behavior.
Minimum distances measurements doi, i ∈ N indicating the
ith obtacle, are provided by the simulator. The metric µ =
mini{doi} is used for switching DRL and SBL, with threshold
ε = 0.16 chosen heuristically. The time step is equal to 50 ms.

B. Results

Figure 3 shows the performance indices introduced in Sec-
tion III-D in three different cases: i) single obstacle, planar mo-
tion, ii) single obstacle, spatial motion, iii) multiple obstacles
of different shape, planar motion. Referring to Figure 3-(a,b)
for case (i), it can be observed that the average failure rate if is
0.24%, while the average of it is 0.093 m, showing improve-
ments with respect to the end-to-end approach discussed in
Section III-D. Figure 3-(c,d), for case (ii), shows comparable
results with average values if = 0.31% and it = 0.091 m.
Figure 3-(e,f), in case (iii), presents instead average values
if = 1.35% and it = 0.16 m. As an example, in Figure
4, distance between the end-effector and the target point and
distances between the robot and two obstacles are reported in
case of genuine end-to-end DRL (a), and of our proposal (b).
As expected, when the used metric is below the threshold,
the DRL policy is used (shadow windows), otherwise the
motion is solved by SBL planner. Differently from end-to-end
method, the proposal ensures more stable movements during
the reaching phase, maintaining the position of the end-effector
exactly on the target. On the other hand, the end-to-end DRL
strategy tends to deviate from such reference, thus reducing
the precision of the executed task. Finally, in order to show the
validity of the proposal in industrial field, in Figure 5, a spot-
welding task with circular path and two different obstacles of
different shape and behavior is illustrated.

1A video showing the performance of the hybrid approach is at the link:
https://www.youtube.com/watch?v=xU43i8mryMY.

(a) if (%), case (i) (b) it (m), case (i)

(c) if (%), case (ii) (d) it (m), case (ii)

(e) if (%), case (iii) (f) it (m), case (iii)

Fig. 3. Indices averaged for 30 simulations per target position of the trained
policy with the proposed hybrid approach for cases (i), (ii) and (iii)

(a) end-to-end approach

(b) hybrid approach

Fig. 4. Distance from target d, distance from obstacles doi, i = 1, 2, and
threshold ε, in case of end-to-end strategy (a), and of hybrid approach (b,
with DRL used in the shadow windows when µ = mini{doi} < ε)

Fig. 5. Hybrid approach deployed to perform a spot-welding task

https://www.youtube.com/watch?v=xU43i8mryMY


C. Comparison with a model-based approach
The proposed hybrid approach has been also tested using

both the trained DRL strategy and the model-based approach
in [4]. Figure 6 shows that, for the same scenario, both
approaches perform successful avoidance. It is worth notic-
ing that, while the model-based approach requires intensive
computation to perform the torque compensation derived from
the artificial potential field, our strategy has the significant
advantage to be model-free. Indeed, apart from the off-line
training phase, it can be deployed in real-time requiring only
the available sensor measurements from the robot itself and the
surrounding environment, while providing velocity references
to the robot joints.

(a) model-based strategy

(b) DRL-based strategy

Fig. 6. Distance from target d, distance from obstacles doi, i = 1, 2, in case
of model-based strategy [4] (a), and of DRL-based approach (b)

VI. CONCLUSIONS

In this paper, a dual-mode, hybrid control structure was
proposed for robot manipulators to perform different tasks
while avoiding collisions. The structure consists of a collision
unaware motion planner and a DRL policy trained to avoid
obstacles, by directly controlling the joint velocities. The most
suitable mode is determined by a given metric, which confers
to the whole structure a self-configuring capability.

REFERENCES

[1] A. Bicchi, M. A. Peshkin, and J. E. Colgate, Safety for Physical Human–
Robot Interaction. Berlin, Heidelberg: Springer, 2008, pp. 1335–1348.

[2] A. De Luca and F. Flacco, “Integrated control for pHRI: Collision
avoidance, detection, reaction and collaboration,” in 4th IEEE RAS &
EMBS Int. Conf. on Bio. Robot. and Biomech., Rome, Italy, Jun. 2012,
pp. 288–295.

[3] S. Haddadin, A. De Luca, and A. Albu-Schäffer, “Robot collisions:
A survey on detection, isolation, and identification,” IEEE T. Robot.,
vol. 33, no. 6, pp. 1292–1312, 2017.

[4] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” Int. J. of Robot. Res., vol. 5, no. 1, pp. 90–98, 1986.

[5] C. W. Warren, “Global path planning using artificial potential fields,”
in IEEE Int. Conf. on Robot. and Autom., vol. 1, Scottsdale, AZ, USA,
May 1989, pp. 316–321.

[6] P. Ogren, L. Petersson, M. Egerstedt, and X. Hu, “Reactive mobile
manipulation using dynamic trajectory tracking: design and implementa-
tion,” in 39th IEEE Conf. on Decision and Control, vol. 3, San Francisco,
CA, USA, Dec. 2000, pp. 3001–3006.

[7] L. M. Capisani, T. Facchinetti, A. Ferrara, and A. Martinelli, “Obstacle
modelling oriented to safe motion planning and control for planar rigid
robot manipulators,” J. Intell. Robot. Syst., vol. 71, no. 2, pp. 159–178,
2013.

[8] L. Balan and G. M. Bone, “Real-time 3d collision avoidance method
for safe human and robot coexistence,” in IEEE/RSJ Int. Conf. on Intell.
Robot. and Syst., Beijing, PRC, Oct. 2006, pp. 276–282.

[9] L. Rozo, D. Bruno, S. Calinon, and D. G. Caldwell, “Learning optimal
controllers in human-robot cooperative transportation tasks with position
and force constraints,” in IEEE/RSJ Int. Conf. on Intell. Robot. and Syst.,
Hamburg, Germany, Sep. 2015, pp. 1024–1030.

[10] Y. Li, K. P. Tee, R. Yan, W. L. Chan, and Y. Wu, “A framework of
humanrobot coordination based on game theory and policy iteration,”
IEEE T. Robot., vol. 32, no. 6, pp. 1408–1418, 2016.

[11] Y. Wang, Y. Sheng, J. Wang, and W. Zhang, “Optimal collision-free
robot trajectory generation based on time series prediction of human
motion,” IEEE Robot. Autom. Lett., vol. 3, no. 1, pp. 226–233, 2018.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[13] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” Int. J. of Robot. Res., vol. -, no. -, pp. 1–37, 2013.

[14] H. A. Pierson and M. S. Gashler, “Deep learning in robotics: a review
of recent research,” Adv. Robot., vol. 31, no. 16, pp. 821–835, 2017.

[15] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning
hand-eye coordination for robotic grasping with deep learning and large-
scale data collection,” Int. J. of Robot. Res., vol. 37, no. 4–5, pp. 421–
436, 2017.

[16] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic
grasps,” Int. J. of Robot. Res., vol. 34, no. 4-5, pp. 705–724, 2015.

[17] M. P. Deisenroth, C. E. Rasmussen, and D. Fox, “Learning to control
a low-cost manipulator using data-efficient reinforcement learning,” in
Robot.: Sci. and Syst. V, Los Angeles, CL, USA, Jun. 2011, pp. 57–64.

[18] I. Popov, N. Heess, T. Lillicrap, R. Hafner, G. Barth-Maron, M. Vecerik,
T. Lampe, Y. Tassa, T. Erez, and M. Riedmiller, “Data-efficient deep
reinforcement learning for dexterous manipulation,” 2017.

[19] T. Haarnoja, V. Pong, A. Zhou, M. Dalal, P. Abbeel, and S. Levine,
“Composable deep reinforcement learning for robotic manipulation,” in
IEEE Int. Conf. on Robot. and Autom., St. Paul, MN, USA, May 2018,
pp. 6244–6251.

[20] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[21] S. Gu, T. P. Lillicrap, I. Sutskever, and S. Levine, “Continuous deep
q-learning with model-based acceleration,” in 33rd Int. Conf. on Mach.
Learn., New York, NY, USA, Jun. 2016.

[22] N. Snderhauf, O. Brock, W. Scheirer, R. Hadsell, D. Fox, J. Leitner,
B. Upcroft, P. Abbeel, W. Burgard, M. Milford, and P. Corke, “The
limits and potentials of deep learning for robotics,” Int. J. of Robot.
Res., vol. 37, no. 4-5, pp. 405–420, 2018.

[23] B. Sangiovanni, A. Rendiniello, G. P. Incremona, A. Ferrara, and M. Pi-
astra, “Deep reinforcement learning for collision avoidance of robotic
manipulators,” in European Control Conference, Lymassol, Cyprus, Jul.
2018, pp. 2063–2068.

[24] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: modelling,
planning and control. Springer Science & Business Media, 2010.

[25] R. S. Sutton, A. G. Barto, et al., Introduction to reinforcement learning.
Cambridge: MIT Press, 1998, vol. 2, no. 4.

[26] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, p. 436, 2015.

[27] G. Sánchez and J.-C. Latombe, A Single-Query Bi-Directional Prob-
abilistic Roadmap Planner with Lazy Collision Checking. Berlin,
Heidelberg: Springer, 2003, pp. 403–417.

[28] J. Meijer, Q. Lei, and M. Wisse, “An empirical study of single-query
motion planning for grasp execution,” in IEEE Int. Conf. on Adv. Intell.
Mechatronics, Munich, Germany, Jul. 2017, pp. 1234–1241.

[29] E. Rohmer, S. P. N. Singh, and M. Freese, “V-REP: a versatile and
scalable robot simulation framework,” in IEEE Int. Conf. on Intell.
Robot. and Syst., Tokyo, Japan, Nov. 2013, pp. 1321–1326.

[30] S. James, M. Freese, and A. J. Davison, “Pyrep: Bringing V-REP to
deep robot learning,” arXiv preprint arXiv:1906.11176, 2019.

https://www.researchgate.net/publication/342225239

	Introduction
	Background
	Contribution

	Model of the Robot and the Interaction Scenario
	Robot model
	Motion planner
	Collision avoidance problem

	DRL for Collision Avoidance
	Preliminaries on DRL
	Recast of the CAOCP into the RL framework
	DRL algorithm with experience replay
	DRL policy validation

	Hybrid Dual-Mode Strategy
	Motion Tests
	Environment specifications
	Results
	Comparison with a model-based approach

	Conclusions
	References



