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Data-Driven Tests for Controllability*
Vikas Kumar Mishra1, Ivan Markovsky1 and Ben Grossmann1

Abstract—The fundamental lemma due to Willems et al. “A
note on persistency of excitation,” Syst. Control Lett., vol. 54,
no. 4, pp. 325–329, 2005 plays an important role in system
identification and data-driven control. One of the assumptions
for the fundamental lemma is that the underlying linear time-
invariant system is controllable. In this paper, the fundamental
lemma is extended to address system identification for uncon-
trollable systems. Then, a data-driven algebraic test is derived to
check whether the underlying system is controllable or not. An
algorithm based on the singular value decomposition of a Hankel
matrix constructed from the data is provided to implement the
developed test. The algorithm has cubic computational cost.
Examples are given to illustrate the theoretical results.

Index Terms—Behavioral approach, data-driven controllabil-
ity, system identification.

I. INTRODUCTION

DATA-DRIVEN control is an approach to control prob-
lems where rather than using direct knowledge of the

system’s properties, one uses only the system’s trajectories.
Examples of questions that might be answered via data-
driven approach include the determination of structural prop-
erties (e.g., controllability, stability, and stabilizability) and
the design of control laws to enforce desired properties (e.g.,
state/output feedback design to enforce stability). This paper
is mainly concerned with the former of these questions. In
particular, we consider the problem of determining whether a
discrete-time linear time-invariant (LTI) system is controllable.

Roughly speaking, a system is controllable if it is possible
to “switch” between any two system trajectories. Many appli-
cations of control theory (for instance, system identification
and feedback control) require the underlying system to be
controllable. There are several equivalent criteria to verify the
controllability of an LTI system that can be applied if one has
a complete representation of the system under consideration.
One such criterion due to Hautus [1] states that a state-space
system with parameters A,B is controllable if and only if
rank

[
A− λI B

]
= n for all λ ∈ C.

Recently, an algebraic data-driven test for controllabil-
ity/stabilizability called a “data-driven Hautus test” [2, The-
orem 8] was developed. While the result does not require
a representation of the system, it is derived for state-space
models and assumes knowledge of a state trajectory. In this
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paper, we formulate an analogous data-driven Hautus-type test
for a general input/output system that assumes no knowledge
of the state. We also provide an algorithm for data-driven
verification of controllability. The algorithm is based on the
singular value decomposition of the Hankel matrix built from
the given data.

Theorem 1 of [3] (which we refer to throughout this paper
as the fundamental lemma) states that if we are given an
input/output trajectory of a controllable system and if the
input trajectory is persistently exciting of sufficiently high
order, then we can recover all trajectories of the system.
In other words, we can uniquely recover the data gener-
ating system. This result has been utilized in developing
identification algorithms [4, Chapter 8] and in data-driven
simulation and control [5]. Recently, the fundamental lemma
has received considerable attention due to growing interest
in data-driven control problems [6], [7], [8], [9], [10], [11],
[12], [13]. A weakness of the fundamental lemma, however,
is that it requires an a priori assumption that the system under
consideration is controllable.

Inspired by the results of [14], we prove an extension of
the fundamental lemma that applies to uncontrollable systems
(see Theorem 1). Our results show that it is possible to
recover the controllable part of the data generating system and
possibly, depending on the data, a (part of) the uncontrollable
subsystem. Moreover, with a data-driven controllability test
(see Theorem 3), it is possible to check whether the data are
actually generated by a controllable system. With these results
all assumptions of the fundamental lemma can be verified from
the data with the only prior knowledge of the true system’s
order.

The rest of the paper is structured as follows: Section II
defines the notation and recalls some mathematical prelimi-
naries needed for the development of this work. In Section III,
we consider the identification of uncontrollable systems. We
prove that if the input is persistently exciting of sufficiently
high order, the exact system must include the controllable part
of the system. Then we state and prove our data-driven test
for controllability in Section IV. An algorithm for the imple-
mentation of this data-driven controllability test is developed
in Section V. The computational aspects of the developed
algorithm is discussed in Section VI. Examples illustrating
the developed results are presented in Section VII. Finally,
conclusions are offered in the last section.

II. NOTATION AND PRELIMINARIES

For any matrix U ∈ Rp×q , U> denotes its transpose. The
set of all generalized eigenvalues of a matrix pair (U, V )
is denoted by Λ(U, V ). If U, V have the same number of



columns, col(U, V ) := [ UV ] . For subspaces R ⊆ Rp and
S ⊆ Rq , we define the direct sum R ⊕ S ⊆ Rp+q of these
subspaces by

R⊕ S := {col(u, v) : u ∈ R, v ∈ S}

and the orthogonal complement S⊥ of S by

S⊥ := {x ∈ Rq : xT y = 0 for all y ∈ S}.

I denotes the identity matrix, and 0 denotes the zero-matrix.
Where it is helpful to do so, we may include subscripts to
indicate the size of the matrix: In ∈ Rn×n, 0n ∈ Rn, and
0m×n ∈ Rm×n.

We now recall some notions from behavioral system theory.
For interested readers, we refer to [15]. A dynamical system is
defined by the triplet (T,W,B), where T ⊆ R is the time axis,
W ⊆ Rq is the signal space, and B ⊆WT is the behavior with
WT the set of all functions (i.e., trajectories or time series) w :
T→W. We consider discrete-time systems, so that T ⊆ N.

By Lq , we denote the set of finite-order LTI systems with
W ⊆ Rq . Each B ∈ Lq admits a kernel representation B =
{w : R(σ)w = 0}, where R ∈ Rg×q[ξ] is a polynomial matrix
and σ is the backward shift operator defined as (σw)(t) =
w(t + 1). The number of inputs of B ∈ Lq is denoted by
m(B).

A system B ∈ Lq over T = N is controllable if and only
if for every w ∈ B, there exists a w̄ ∈ B and t1 < t2 ∈ N,
such that w̄(t) = w(t) for t ≤ t1 and w̄(t) = 0 for t ≥ t2.
Equivalently, matrix R(λ) has constant rank for all λ ∈ C.
Given a system B, we define Bcont to be the controllable part
of the system, i.e. the largest subset of B for which Bcont is
itself an LTI system and Bcont is controllable.

Because we are primarily concerned with discrete-time
systems, [a, b] denotes an integer interval. For any trajectory
w : [1, T ] → Rq , we will use w|[a,b] to denote the restriction
of w to the interval [a, b] ⊂ [1, T ]. The restriction of the
behavior B to the interval [1, L] is defined as

B|L = {w|[1,L] : w ∈ B}.

Given a time series wd : [1, T ]→ Rq , the associated Hankel
matrix with L ∈ N block-rows is defined as

HL(wd) =


wd(1) wd(2) · · · wd(T − L+ 1)
wd(2) wd(3) · · · wd(T − L+ 2)

...
...

. . .
...

wd(L) wd(L+ 1) · · · wd(T )

 .
This time series is persistently exciting of order L if the Hankel
matrix HL(wd) is full row rank.

For matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and
D ∈ Rp×m, we define B(A,B,C,D) to be the associated
input/state/output system i.e., the set of trajectories w =
col(u, x, y) with u : N→ Rm, x : N→ Rn, and y : N→ Rp
that satisfy

x(t+ 1) = Ax(t) +Bu(t), (1)

y(t) = Cx(t) +Du(t), (2)

for all t ∈ N. Similarly, we define B(A,B) to be the associated
input/state system, i.e., the set of trajectories w = col(u, x) for
which u, x satisfy equation (1).

For a behavior B with input/output partition Rq = Rm⊕Rp,
we say that B(A,B,C,D) is a state-space representation of
B if

B = {(u, y) : (u, x, y) ∈ B(A,B,C,D)

for some x : N→ Rn}.

The order of B, denoted by n(B), is defined to be the
smallest n for which B has a state-space representation with
state dimension n. The representation B(A,B,C,D) is state
minimal if n = n(B). Note that a state minimal representation
need not be state controllable, i.e., the controllability matrix

C =
[
B AB · · · An−1B

]
.

need not be full row rank. As shown in [16, p. 270], a
state minimal representation is observable (considering the
state variables as latent variables) and state trim (i.e., for all
x0 ∈ Rn there exists (u, x, y) ∈ B(A,B,C,D) such that
x(0) = x0).

For (u, x) ∈ B(A,B), HL(x, u) denotes the matrix

HL(x, u) = col(H1(x[1,T−L+1]),HL(u[1,T ])),

X ⊆ Rn denotes the subspace

X = span{x(1), x(2), . . . , x(T − L+ 1)},

and R ⊆ Rn denotes the subspace of reachable states, i.e., the
column-space of the controllability matrix C.

III. IDENTIFICATION OF UNCONTROLLABLE SYSTEMS

The Hankel matrix HL(wd) provides a convenient way of
encoding the information obtained from a trajectory wd about
a data generating system B. In particular, we can deduce from
the trajectory wd that B|L must contain all trajectories w :
[1, L]→W for which

col(w(1), . . . , w(L)) = HL(wd)g,

where g ∈ Rq(T−L+1). The set of such trajectories form the
subspace BMPUM|L, where BMPUM ⊆ B denotes the most
powerful unfalsified model (MPUM), i.e., the least complex
model that fits the data exactly [4, Chapter 8].

A natural question that arises is that of when it is possible
to guarantee that BMPUM|L = B|L. In other words, under
what conditions can we guarantee that HL(wd) completely
specifies the behavior over [1, L]? The fundamental lemma
provides conditions that guarantee BMPUM|L = B|L; one of
these conditions is that B is controllable. In the following
theorem, we extend this result to show exactly how much of
B|L can be determined for an uncontrollable system B.

Theorem 1: Consider a system B ∈ Lq . If wd = (ud, yd) ∈
B|T is such that ud is persistently exciting of order L+n(B),
then BMPUM|L ⊇ Bcont|L.

In order to prove the theorem, we make use of the following
two lemmas, which are extracted from the proof of Theorem 1
of [14].

Lemma 1: If (u, x) ∈ B(A,B)|T and u is persistently
exciting of order L + n, then HL(x, u) has left kernel equal
to X⊥ ⊕ {0mL}. Equivalently, the column span of HL(x, u)
is X ⊕ RmL.



Lemma 2: If u is persistently exciting of order L+ n, then
R ⊆ X .

Proof: Lemma 1: It trivially holds that X⊥ ⊕ {0mL} is
a subspace of the left kernel of HL(x, u); we therefore only
prove the reverse inclusion. To prove Lemma 1, it suffices to
show that for any element col(ξ, η) of the left kernel with
ξ ∈ Rn and η ∈ RmL, we must have η = 0. This conclusion
is indeed reached in the proof of Theorem 1 from [14].

Lemma 2: We equivalently show that X⊥ ⊆ R⊥. Let
ξ ∈ X⊥. Following the proof from [14], we conclude that
ξ>B = ξ>AB = · · · = ξ>An−1B = 0. In other words,
ξ lies in the orthogonal complement to the column space of
the controllability matrix [B AB · · · An−1B]. That is,
ξ ∈ R⊥, as desired.

Remark 1: As a consequence of the above lemma, we see
that if u is persistently exciting of order L + n and the
input/state system defined by A and B is controllable, then
HL(x, u) has full row rank, which agrees with Theorem 1
of [14]. This also holds when u, x, y have complex entries
since we could rewrite with the proof in this context using
essentially the same steps.

Next, we prove Theorem 1.
Proof: Let B(A,B,C,D) be a state-space representation

of B, and let x be such that col(ud, x, yd) ∈ B(A,B,C,D)|T .
Define

TL =


D 0 ··· 0
CB D ··· 0
CAB CB ··· 0

...
...

. . .
...

CAL−2B CAL−3B ··· D

 , OL =


C
CA
CA2

...
CAL−1

 ,
ML =

[
0 ImL
OL TL

]
. (3)

For 1 ≤ t ≤ T − L+ 1, we have

ML col (x(t), ud(t), . . . , ud(t+ L− 1)) =

col(ud(t), . . . , ud(t+ L− 1), yd(t), . . . , yd(t+ L− 1)). (4)

Consequently,

col(HL(ud),HL(yd)) = MLHL(x, ud).

The column-space of col(HL(ud),HL(yd)) consists of vectors
of the form vec(w|[1,L]), where we define

vec(w|[1,L]) = col(u(1), . . . , u(L), y(1), . . . , y(L)). (5)

Thus, this column-space is equal to

{vec(wL) : wL ∈ BMPUM|L}.

On the other hand, by Lemma 1, the column-space of
HL(x, ud) is equal to X⊕RmL, which means that the column-
space of col(HL(ud),HL(yd)) is equal to {MLv : v ∈
X ⊕ RmL}.

The controllable sub-behavior Bcont ⊆ B consists of all tra-
jectories w ∈ B, for which the corresponding state-trajectory
satisfies x(t) ∈ R for all t. Since x(t) could be any element of
R and by equation (4), wL ∈ B|L corresponds to a controllable
trajectory if and only if vec(wL) ∈ {MLv : v ∈ R⊕ RmL}.

With these observations and by Lemma 2,

{vec(wL) : wL ∈ Bcont|L} = {MLv : v ∈ R⊕ RmL}
⊆ {MLv : v ∈ X ⊕ RmL}
= {vec(wL) : wL ∈ BMPUM|L}.

Therefore, BMPUM|L ⊇ Bcont|L, as desired.

IV. DATA-DRIVEN CONTROLLABILITY TESTS

We first summarize results from [2] that we use. For any
trajectory f : [1, T ] → Rk, we will use the notation f+ :=
f |[2,T ] and f− := f |[1,T−1]. Suppose that A ∈ Rn×n, B ∈
Rn×m, and (ud, xd) ∈ B(A,B)|T . Define Σn(u−d , xd) to be
the set of all pairs (A,B) whose associated system contains
trajectory (u−d , xd).

We say that the data (u−d , xd) are informative for controlla-
bility/stabilizability if every (A,B) ∈ Σn(u−d , xd) is such that
the associated input-state system is controllable/stabilizable.

Theorem 2 ([2]): The data (u−d , xd) are informative for
controllability if and only if for all λ ∈ C,

rank
(
H1(x+d )− λH1(x−d )

)
= n. (6)

Likewise, the data (u−d , xd) are informative for stabilizability
if and only if equation (6) holds for all λ ∈ C with |λ| ≥ 1.

We now consider the extension of this condition to arbitrary
LTI systems. Let B ∈ Lq be such a system. Suppose we have
access to a trajectory wd ∈ B|T .

It is known that from a given trajectory wd = (ud, yd), we
can construct an associated state trajectory by concatenating
the trajectory with its shifts. That is, it is possible to build
a state-space representation of wd in which (ud, xc, yd) ∈
B(A,B,C,D) is such that xc(t) = vec(wd|[t,t+L−1]), with
L = n(B) and vec as defined in (5). See, for example, [17,
Section 2.3.3] and [18]; more recently, the technique has been
exploited in [8, Section VI]. Generally, the constructed state-
space representation may not be state minimal.

In view of this construction, a natural approach to extending
Theorem 2 is to replace the state-data with this concatenated
input/output trajectory. That is, one might consider using
xc(t) and then considering the rank of H1(x+c ) − λH1(x−c ).
However, because of the general non-minimality of the state-
space trajectory in RqL, the matrix H1(x+c ) − λH1(x−c ) can
never achieve full row rank, and hence Theorem 2 cannot be
applied directly.

Nevertheless, we can indeed determine whether a system is
controllable by considering the rank of H1(x+c ) − λH1(x−c )
(which has the same rank as HL(w+

d )− λHL(w−d ) since the
two matrices have the same rows arranged in different orders)
by the following result.

Theorem 3: Let wd ∈ B|T and B ∈ Lq . Suppose that we
have window-length L ≥ n(B), and that wd = (ud, yd) is such
that the input ud is persistently exciting of order n(B)+L+1.
Then, B is controllable if and only if for all λ ∈ C,

rank
(
HL(w+

d )− λHL(w−d )
)

= n(B) + m(B)L. (7)

Likewise, B is stabilizable if and only if equation (7) holds
for all λ ∈ C with |λ| ≥ 1.



Proof: We only prove the statement regarding control-
lability since the proof of the statement regarding stabiliz-
ability is essentially the same. Let B(A,B,C,D) be a state
minimal state-space representation of B. Then the trajectory
wd(t) = col(ud(t), yd(t)) of B is such that (ud, x, yd) ∈
B(A,B,C,D)|T for some x : [1, T ] → Rn with n = n(B).
Let m := m(B). We note that by the minimality of the
representation, the resulting state-space representation is ob-
servable. Let ML denote the block-matrix associated with this
system defined in equation (3).

Suppose that B is not controllable. It follows that the
pair (A,B) describes an uncontrollable input/state system. By
Theorem 2, there exists a λ ∈ C such that rank(H1(x+) −
λH1(x−)) < n. For this λ, it follows that

rank
[
H1(x+)− λH1(x−)
HL(u+d )− λHL(u−d ))

]
< mL+ n, (8)

so that

rank(HL(w+
d )− λHL(w−d ))

= rank
(
ML

[
H1(x+)− λH1(x−)
HL(u−d )− λHL(u−d )

])
≤ rank

[
H1(x+)− λH1(x−)
HL(u+d )− λHL(u−d )

]
< mL+ n.

Conversely, suppose that B is controllable. Let λ ∈ C, and let
ũ, x̃ be new input and state variables defined by ũ = u+d −λu

−
d

and x̃ = x+−λx−. Let B̄(A,B) denote the input/state system
described by A,B whose inputs and states are allowed to have
complex entries. Because B(A,B) is controllable, B̄(A,B) is
controllable as well. By the LTI property, (ũ, x̃) must also be
a valid trajectory of B̄(A,B).

Because u is persistently exciting of order L + n + 1, ũ
must be persistently exciting of order L+ n. Indeed,

−λI I

. . . . . .
−λI I

I 0

HL+n+1(ud) =

[
HL+n(ũ)

H1(ud|[1,T−L−n])

]
. (9)

Because HL+n(ũ) is obtained by selecting rows from the
above full row rank matrix, HL+n(ũ) is full row rank.

By Remark 1, the matrix HL(ũ, x̃) has full row rank
mL+ n. So,

HL(x̃, ũ) =

[
H1(x+ − λx−)
HL(u+d − λu

−
d )

]
=

[
H1(x+)− λH1(x−)
HL(u+d )− λHL(u−d )

]
has full row rank as well. Finally, having L ≥ n ensures that
ML has full column rank. It follows that

rank(HL(w+
d )− λHL(w−d ))

= rank
(
ML

[
H1(x+)− λH1(x−)
HL(u+d )− λHL(u−d )

])
= rank(ML) = mL+ n,

as desired.
Remark 2 (Connection with the fundamental lemma): The

prerequisites for the fundamental lemma to hold are: (i) B
is controllable, and (ii) the input is persistently exciting of
order n(B) + L. Condition (ii) can be verified from the data,

but it was believed that (i) can only be assumed since it is
not verifiable from the data. However, by using Theorem 3,
condition (i) can also be checked from the given data only
provided that the input is persistently exciting of sufficiently
high order. Thus, we can verify both conditions required for
the fundamental lemma directly from the given data.

Remark 3 (Continuous-time systems): Theorems 1 and 3
apply to continuous-time systems. For a given sampling time
δT > 0, let

ud =
(
ud(1), ud(1 + δT ), . . . , ud(1 + (T − 1)δT )

)
,

yd =
(
yd(1), yd(1 + δT ), . . . , yd(1 + (T − 1)δT )

)
.

be a sampled trajectory and the input ud is persistently exciting
of sufficiently high order. Then the zero order hold input signal
corresponding to ud and the sampled output yd suffice to
obtain the full behavior of the sampled-data system for generic
choices of δT .

Remark 4 (When an upper bound to n(B) is known):
As is allowed for by Theorem 1 and exemplified in Ex-

amples 1 and 2 (see Section VII), it is possible (even with
persistently exciting input of sufficiently high order) for the
MPUM of an uncontrollable system B to be controllable with
n(BMPUM) < n(B). Thus, in the absence of additional infor-
mation, it is generally impossible to verify the controllability
of a system without exact knowledge of the order.

However, if we have access to an upper bound to n(B), i.e.,
we know a positive integer nu such that n(B) ≤ nu, then it
is possible to verify the uncontrollability of a system. Since
Theorem 3 guarantees that rank(HL(w+

d ) − λHL(w−d )) will
be constant for all λ ∈ C if B is controllable, we can conclude
that B is uncontrollable if rank(HL(w+

d )−λHL(w−d )) fails to
be constant (provided that ud is persistently exciting of order
nu + L+ 1).

V. THE ALGORITHM

In this section, we develop an algorithm to check condition
(7). It is based on the singular value decomposition (SVD) of
the matrix HL(w−d ).

Algorithm 1: Data-driven controllability test
Input: Observed time series wd ∈ B|T , input cardinality m(B),
order n(B), and window-length L ≥ n(B).
Output: B is controllable/uncontrollable.

1: Perform the SVD: U>HL(w−d )V =

[
S 0
0 0

]
, and let r =

rankHL(w−d ).
2: Partition the matrix HL(w+

d ) as U>HL(w+
d )V =[

H11 H12

H21 H22

]
, where H11 ∈ Rr×r.

3: Compute the generalized eigenvalues of the matrix pair
(H11, S).

4: Compute the rank of Hλ =

[
H11 − λS H12

H21 H22

]
for all

λ ∈ Λ(H11, S).
5: If rankHλ = n(B)+m(B)L for all λ ∈ Λ(H11, S), then
B is controllable. Otherwise, B is uncontrollable.

Note that to test for stabilizability, we only need to consider
the generalized eigenvalues λ of (H11, S) with absolute value
greater than or equal to 1.



VI. COMPUTATIONAL ASPECTS

In this section, we discuss the computational complexity
and numerical stability of the algorithm from Section V. For
the sake of simplicity, denote by M and N the number of
rows and columns in HL(w−d ). Note that M = qL, and N =
T−L+1. The computational cost of each step of Algorithm 1
is as follows.

1: The SVD of HL(w−d ) has computational cost of
O
(
N(M2 +N2)

)
flops.1

2: The matrix multiplication U>HL(w−d ) =: G requires
O(2M2N − MN) flops, and the multiplication GV
requires O(2MN2−MN) flops. Hence, this step requires
O
(
2(M2N +MN2 −MN)

)
flops in total.

3: Solving the generalized eigenvalue problem has compu-
tational cost of O(30M3) flops [19].

4: Since computation of rank done by computing the SVD,
this step has a computational cost of O

(
N(M2 +N2)

)
flops.

5: This step has been executed at no cost.
Summarizing, the computational cost of Algorithm 1 is:

O
(
N(M2 +N2) + 2(M2N +MN2 −MN)

+ 30M3 +N(M2 +N2)
)
,

and hence the algorithm is cubic in both M and N , and hence
cubic in q, L, and T . In other words, the algorithm is cubic in
max{q, L, T}. Usually, T is higher than q and L, and hence
the algorithm is cubic in T . This fact is confirmed empirically
in the result shown in Fig. 1.
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Fig. 1. Illustration of the result that the computational complexity of
Algorithm 1 is cubic in the number of samples of a given trajectory. We
applied the algorithm to a single-input single-output (SISO) system of order 4,
where the output data are generated with random initial conditions and random
input.

All computations performed in the algorithm (viz., SVD,
rank determination, and generalized eigenvalue computation)
are numerically stable. For this reason, we believe that Algo-
rithm 1 is numerically stable, and our experiments suggests
the same.

1A flop is a floating-point operation, i.e., a scalar addition or multiplication.

VII. ILLUSTRATIVE EXAMPLES

Example 1 (Overlap of Bcont,BMPUM,B):
Suppose that an uncontrollable system B has an observable

state-space representation BSS = B(A,B,C,D) presented in
its Kalman decomposition, so that

A =

[
A11 A12

0 A22

]
, B =

[
B1

0

]
.

That is, A11 is an r × r matrix (for some r < n), the pair
(A11, B1) describes a controllable input/state system, and the
set of reachable states of BSS is R = Rr ⊕ {0n−r}. Let
L ≥ n and (u, x, y) ∈ BSS |T , with u persistently exciting of
order L + n; note that (u, y) ∈ B|T . For 1 ≤ t ≤ T , write
x(t) = col(x1(t), x2(t)), with x1(t) ∈ Rr. The observability
of BSS and the choice L ≥ n ensures that ML has full column
rank, which means that R ⊂ X implies that {MLv : v ∈
R⊕RmL} = {MLv : v ∈ X⊕RmL}. That is, Bcont = BMPUM

if and only if R = X . Note moreover that the column space
of ML is equal to the (vectorized trajectories of the) true
behavior B|L, so that BMPUM = B if and only if X = Rn.

Lemma 2 ensures that X = span{x(1), x(2), . . . , x(T −
L+ 1)} contains R. It follows that for any vector v ∈ X , the
projection v⊥ of v onto R⊥ is also in X . In other words, X
contains the vectors col(0r, x2(t)) for 1 ≤ t ≤ T − L + 1.
Note that x2(t) = At−122 x2(1), and the persistently exciting
condition on u ensures that T − L + 1 ≥ m(L + n) ≥ n.
Thus, the span of {x2(t) : 1 ≤ t ≤ T −L+ 1} is equal to the
A22-invariant subspace generated by x2(1).

Therefore, we have Bcont = BMPUM if and only if R =
X , which occurs if and only if x2(1) = 0; otherwise, we
have a strict containment Bcont ⊂ BMPUM. Similarly, we have
BMPUM = B if and only if x2(1) is a cyclic vector for A22;
otherwise, we have a strict containment BMPUM ⊂ B.

If the input u fails to be persistently exciting of sufficiently
high order, then it is possible that we have neither BMPUM|L ⊇
Bcont|L nor BMPUM|L ⊆ Bcont|L. For example: consider

A =

1 0 0
0 2 0
0 0 3

 , B =

1 2
0 −1
0 0

 , C = I, D = 0,

and the trajectory with initial state x(1) =
[
0 0 1

]>
and

input u(t) =
[
1 0

]>
for t = 1, 2, . . . , T . Note that u fails to

be persistently exciting of any order. We can see that

X = span{
[
1 0 1

]>}, R = span{
[
1 1 0

]>}.
Note that neither of the spaces R,X contain the other and,
as we argue in the first paragraph above, the same applies to
Bcont and BMPUM.

Example 2 (RLC circuit):
Consider the RLC circuit shown in Fig. 2. The physical

model parameters are C, RC , L, and RL. By selecting all
of these parameters equal to 1, we obtain an uncontrollable
system.

After elimination of the latent variables, the behavioral
equation for the manifest variables i, v is given by the linear
constant coefficients differential equation (see [20])

d2

dt2
i+ 2

d

dt
i+ i =

d2

dt2
v + 2

d

dt
v + v.



This, in turn, gives us a kernel representation of the man-
ifest behavior with parameter R(s) =

[
P (s) −Q(s)

]
, with

P (s) = Q(s) = s2 + 2s+ 1.

v
i

RC C

RL L

System

Environment

Fig. 2. RLC circuit example from [20]. The behavior of the manifest variables
w = (i, v) is uncontrollable for specific values of the physical model
parameters C, RC , L, and RL.

If we consider the system with v as an input and i as an
output, then the corresponding transfer function is

H(s) =
s2 + 2s+ 1

s2 + 2s+ 1
,

i.e., from a classical input/output point of view the system is
a static unit gain. However, the behavior is second order and
uncontrollable. The system has an observable canonical state
space representation B(A,B,C,D) with

A =

[
−2 1
−1 0

]
, B =

[
0
0

]
, C =

[
1 0

]
, and D = 1.

In view of Remark 3, we discretize the continuous-time model
and simulate it with a zero mean random input. First, we
produce a trajectory wd = (vd, id) ∈ B|T under zero initial
conditions, where B is the discretized true system. Physically,
the zero initial conditions mean that the energy stored in
the capacitor and the inductor is initially zero. We obtain
the corresponding MPUM, which turns out to be the static
model {[ iv ] | i = v}. Indeed, as proved in Theorem 1, the
uncontrollable sub-behavior may not be identifiable. In this
case, the MPUM coincides with the controllable subsystem of
B. Even though we can not identify B from the data wd, we
can detect from wd and the prior knowledge that the order is
2 that B is uncontrollable using Algorithm 1.

Next, we simulate a trajectory wd ∈ B|T under nonzero
initial conditions. In this case, the MPUM coincides with B.
Again, this is consistent with Theorem 1, and Algorithm 1
correctly detects the uncontrollability property of the system
directly from wd.

VIII. CONCLUDING REMARKS

We have investigated the assumption of controllability in
the fundamental lemma. In this regard, we have shown that
for a given time series wd such that the input is persistently
exciting of sufficiently high order, it is always possible to
recover the controllable part of the system. We have developed
a data-driven test to check controllability of the underlying
LTI system: for a given time series wd with input that is

persistently exciting of sufficiently high order, we can check
directly whether it is generated by a controllable system. If
it is generated by a controllable system, we can employ the
fundamental lemma to recover the full data generating system;
otherwise, we can apply our result to recover the controllable
part of the system.

For the implementation of this controllability test, we
have given a numerical algorithm, which is based on the
singular value decomposition of the Hankel-structure matrix
constructed from an observed trajectory and the generalized
eigenvalue computation.
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[9] J. Berberich and F. Allgöwer, “A trajectory-based framework for data-
driven system analysis and control,” arXiv preprint arXiv:1903.10723,
2019.

[10] J. Coulson, J. Lygeros, and F. Dörfler, “Data-enabled predictive con-
trol: In the shallows of the DeePC,” in 2019 18th European Control
Conference (ECC). IEEE, 2019, pp. 307–312.
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