
ar
X

iv
:2

00
3.

02
74

3v
2 

 [
m

at
h.

O
C

] 
 2

3 
Ju

n 
20

20

A Generalization of the Classical Kelly Betting

Formula to the Case of Temporal Correlation
Joseph D. O’Brien, Kevin Burke, Mark E. Burke, and B. Ross Barmish

Abstract—For sequential betting games, Kelly’s theory, aimed at
maximization of the logarithmic growth of one’s account value,
involves optimization of the so-called betting fraction K. In this
Letter, we extend the classical formulation to allow for temporal
correlation among bets. To demonstrate the potential of this new
paradigm, for simplicity of exposition, we mainly address the
case of a coin-flipping game with even-money payoff. To this
end, we solve a problem with memory depth m. By this, we
mean that the outcomes of coin flips are no longer assumed
to be i.i.d. random variables. Instead, the probability of heads
on flip k depends on previous flips k − 1, k − 2, ..., k − m. For
the simplest case of n flips, with m = 1, we obtain a closed form

solution Kn for the optimal betting fraction. This generalizes
the classical result for the memoryless case. That is, instead
of fraction K∗

= 2p − 1 which pervades the literature for a
coin with probability of heads p ≥ 1/2, our new fraction Kn

depends on both n and the parameters associated with the
temporal correlation. Generalizations of these results for m > 1

and numerical simulations are also included. Finally, we indicate
how the theory extends to time-varying feedback and alternative
payoff distributions.

Index Terms—Stochastic systems, Markov processes, Finance,
Control applications.

I. INTRODUCTION

IN Kelly’s 1956 seminal paper [1], the notion of Expected

Logarithmic Growth (ELG) was introduced as the perfor-

mance criterion for a memoryless repeated betting game. For

a sequence of i.i.d. gambles, for example a coin flip with

the probability of heads being p > 1/2, the theory leads to

an optimal betting fraction K∗, which, owing to its constant

nature from bet to bet is viewed as a time-invariant feedback

gain. That is, with Vk being the account value after k plays,

the optimal (k + 1)-th bet size is K∗Vk , where, for classical

coin flipping with even-money payoff, K∗ = 2p− 1.

The ELG approach has resulted in a voluminous body of

literature extending and applying the theory to other well-

known gambling games such as Blackjack and sports bet-

ting considered in [2] and [3], asset management and stock

trading as in [4]–[10]; see also the extensive bibliography

in the textbook [11]. Papers such as [12]–[17] have also
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covered related issues including asymptotics, problems related

to aggressiveness of wagers and alternative risk metrics.

The main feature which differentiates this paper from existing

work is our emphasis on the issue of temporal correlation

among games. While it is standard to assume correlation

among components of a multi-dimensional bet, for example, in

modern portfolio theory [5], temporal correlation is an entirely

different matter. Interestingly, although temporal effects are

studied in the context of prediction for financial time-series,

as in [18] and [19], this issue has received little attention in

the context of bet sizing in Kelly’s ELG framework; e.g., see

[20] where only one numerical example is considered.

Motivated by the fact that a bettor may gain an “edge”

by taking advantage of temporal correlation, we generalize

ELG theory to the case of a history-cognizant coin where

each outcome is no longer i.i.d. but dependent on the pre-

vious m results. Our analysis of this new framework lays

the groundwork for its use in financial applications with

temporally correlated returns, in particular by relating the

binary lattice model proposed in the sequel to stock price

movements (up or down) over a sequence of time points.

With this setting in mind, our primary analysis considers

two-outcome, even-money random variables Xk ∈ {−1, 1}
with a time-invariant feedback gain governing the bet size

which takes temporal autocorrelation into account. Although

we also provide further extensions to accommodate ℓ possible

outcomes given by Xk ∈ {x1, x2, ..., xℓ} and time-varying

feedback gains, our main focus is developing a new ELG

theory in the presence of memory with arbitrary depth, m ≥ 1.

The remainder of the paper is organized as follows: After

formalizing the notion of autocorrelated betting in Section II,

we consider the history-cognizant coin in Section III. Then,

our main result and extensions are provided in Section IV.

This includes, for n bets and memory depth m = 1, a closed-

form solution for the optimal betting fraction Kn, generalizing

the classical K∗ = 2p − 1 result, and steady state analysis;

Section V is devoted to proof of this main theorem. Section VI

provides results for arbitrary memory depth m ≥ 1 and model

estimation, followed by numerical simulations and conclusions

in the remaining two sections.

II. AUTOCORRELATED KELLY BETTING

For the sake of self-containment, before introducing autocor-

relation, we review Kelly’s classical solution. Indeed, we start

by considering a discrete-time even-money coin-flipping game

with repeat i.i.d. bets and initial account value V0 > 0. Letting

http://arxiv.org/abs/2003.02743v2
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Fig. 1: Feedback control configuration

Vn denote the bettor’s account value after n plays, the classical

Kelly strategy is aimed at maximizing the expected value of

the logarithm of Vn rather than simply its expected value.

Letting Xk ∈ {−1, 1} be a random variable which represents

the pay-off from the kth coin toss where, Xk = 1 corresponds

to a head and Xk = −1 corresponds to a tail, the (k + 1)-th
bet is KVk with −1 ≤ K ≤ 1. The quantity |K| is referred

to as the betting fraction with K < 0 representing a bet on

tails rather than heads. Viewing Vk as a state, as noted for

example in [14], this defines a linear time-invariant feedback

control uk = KVk for the nonlinear system as depicted in

Figure 1, leading to the update

Vk+1 = Vk +Xkuk

= (1 +KXk)Vk.

We proceed to consider a game of n bets with outcomes given

by the sample path

X
.
= (X0, X1, X2, . . . , Xn−1) ∈ X

.
= {−1, 1}n.

This being the case, the corresponding account value at

terminal stage n, as a function of the pair (K,X), resulting

from this sample path is given by

Vn(K,X) = V0

n−1
∏

k=0

[1 +KXk] ,

and an optimal betting fraction is obtained by maximizing the

Expected Logarithm Growth given by

ELG(K) =
1

n
E

{

log

[

Vn(K,X)

V0

]}

.

Since ELG(K) above is independent of V0, in the sequel,

without loss of generality, whenever convenient, it is assumed

that V0 = 1. In the standard i.i.d. setup, where p is the

probability of a head, the ELG is maximized at K∗ = 2p− 1.

We now proceed to generalize the standard approach by

assuming a probability distribution over X is available, and let

PX denote the probability of a sample path X. This is a joint

distribution over the components Xi of X, and, at this high

level of generality, this probability distribution is arbitrary.

In the analysis to follow, we first provide a result for this

general case which is abstract and then specialize to a scenario

frequently encountered in practice. That is, we consider the

case when the outcome of a given coin toss is correlated with
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Fig. 2: Sample paths with n = 2 and X−1 = x−1 ∈ {−1, 1}

the previous m outcomes. We henceforth refer to m as the

memory depth noting that a small value of m means that the

kth outcome is only related to the recent history. In this case, it

is straightforward to see that the probability PX of a sequence

X reduces to

PX =

n−1
∏

k=0

Pr(Xk|Xk−1, Xk−2, . . . , Xk−m)

which is initialized by the m events X−m, X−m+1, . . . , X−1

prior the first outcome X0 at stage k = 0.

III. THE HISTORY-COGNIZANT COIN

Building on the above, we consider the simplest case of an

autocorrelated bet: a coin whose current flip is affected by the

previous flip. This is a coin with Markov memory, i.e., the

probability of a head on the kth flip is

Pr (Xk = 1 |Xk−1, Xk−2, . . . ) = Pr(Xk = 1 |Xk−1)

= ω0 + ω1Xk−1

with ω0 and ω1 assumed to be known; see Section VI for

considerations of how these parameters may be estimated. For

the parameterized linear function above, it is readily verified

that the conditions |ω1| < 0.5, |ω1| < ω0 < 1−|ω1| guarantee

that Pr(Xk = 1 |Xk−1) ∈ (0, 1). Now, via a straightforward

calculation, these requirements reduce to
∣

∣

∣

∣

ω0 −
1

2

∣

∣

∣

∣

+ |ω1| <
1

2

which we recognize as describing the interior of an ℓ1 sphere,

the so-called “diamond” with center (1/2, 0) and radius (1/2).
In this setting, we have memory depth m = 1, and we assume

that we have observed one coin toss prior to betting, i.e.,

X−1 = x−1 ∈ {1,−1}. Figure 2 shows some illustrative

sample paths, consistent with the formulation presented above.

As mentioned in Section I, this binary lattice can serve as a

model for stock price movements over time categorized as

“up” (Xk = 1) or “down” (Xk = −1).

IV. MAIN RESULT

In this section, we provide our main result whose proof is

relegated to the next section. The first part of the theorem



below provides an abstract characterization of the optimal

betting fraction Kn in terms of the expected number of

heads E(Hn(X)) in the sample path X of length n, i.e., it

holds for arbitrary sample path distributions PX including and

beyond those considered here. It also points the way to the

second part of the theorem which addresses the case of a

history-cognizant coin and makes use of notation

p0
.
= ω0 + ω1x−1

corresponding to the unconditional probability that X0 = 1,

p∞
.
=

ω0 − ω1

1− 2ω1

which is later seen to be the steady state unconditional

probability of heads, and

λn
.
=

1

n

[

1− (2ω1)
n

1− 2ω1

]

which satisfies the condition

0 < λn < 1

since |2ω1| < 1 and tells us the relative weights of p0 and p∞
in the optimal solution.

Theorem: For n flips of the history-cognizant coin with

memory-depth m = 1 and conditional probability of heads

given by Pr(Xk = 1 |Xk−1) = ω0 + ω1Xk−1, the expected

logarithmic growth ELG(K) is maximized by

Kn = 2

{

E(Hn(X))

n

}

− 1,

where the expected value above is obtained as the convex

combination

E(Hn(X))

n
= λnp0 + (1− λn)p∞.

A. Special Cases, Generalizability and Remarks

The remainder of this section focusses on finer details of our

theory including its reduction to the classical Kelly formula for

the memoryless case, results regarding the limiting values of

the parameters used in the theorem, and generalizations of the

theory beyond the simple case of time-invariant even-money

two-outcome bets.

When Coin Flips are Independent: For the special case with

all payoffs Xk being i.i.d., we note that E(Hn) = np where

p = p0 = p∞ = ω0 is the probability of a head. In this case,

Kn = K∗ = 2p − 1, which is the classical result obtained

in the absence of autocorrelation among bets as described in

Section II.

Long Run Steady State Considerations: Of general interest

are the limiting values of the quantities E(Hn) and Kn

described in the theorem as n → ∞. The first point to note is

that λn(ω1) → 0 which in turn implies that

lim
n→∞

E(Hn(X))

n
= p∞

and immediately leads to optimal betting fraction

K∞ = 2p∞ − 1.

The interpretation of this limit is quite simple: If we are

playing forever, the long-run probability of a head, p∞, leading

to K∞ is the same betting fraction as that which one would

obtain by ignoring correlation among the Xk and treating p∞
as if it is the unconditional probability of a heads in the

classical i.i.d. case. On the other hand, if we are betting for

a fixed time horizon n, the difference between E(Hn)/n and

p∞ is important. In particular, the optimal betting fraction Kn

depends on n and the startup probability p0 = ω0 + ω1x−1,

whereas K∞ does not. In practice, the importance of x−1

depends on the size of n, and magnitude of autocorrelation

coefficients ω0 and ω1.

Multiple Outcomes: As indicated in Section I, our theory

may be modified to address more general scenarios. For

example, consider the case where there are ℓ possible out-

comes x1, x2, ..., xℓ ∈ (−1,∞) for Xk. Let PX be an arbitrary

probability mass function over sample paths and let Hn,i(X)
be a random variable denoting the number of times, in a path

of length n, that Xk = xi for i = 1, 2, ..., ℓ. Then, using an

argument quite similar to the one used in the proof of the

theorem, we obtain

ELG(K) =

ℓ
∑

i=1

E(Hn,i(X))

n
log(1 +Kxi),

which is straightforward to maximize numerically since it is

concave in K .

Time-Varying Feedback: A second generalization which may

also be considered, involves the use of time-varying feedback

gains rather than the time-invariant K synonymous with

previous literature. The most straightforward extension in this

direction is where, prior to the start of the game, the bettor

decides on a vector of betting fractions

K =
[

K̃0, K̃1, . . . , K̃n−1

]T

.

Note that the tilde notation distinguishes these time-varying

gains from the time-invariant Kn of our main theorem. Thus,

defining pk = Pr(Xk = 1) to be the unconditional probability

of a head on the kth coin toss,

ELG(K) =
1

n

n−1
∑

k=0

{

pk log
(

1 + K̃k

)

+ (1− pk) log
(

1− K̃k

)}

,

and this is maximized at

K̃k = 2pk − 1.

Interestingly, it is straightforward to show that

Kn =
1

n

n−1
∑

k=0

K̃k,

i.e., the time-invariant gain over n bets is the average of the

time-varying gains.



V. PROOF OF THE THEOREM

This section can be skipped by those readers solely interested

in the application aspects of this work. Indeed, to determine

the optimal betting fraction, we maximize the Expected Log-

arithm Growth. For simplicity of notation, we suppress the

dependence of Hn on the sample path X and calculate

ELG(K) =
1

n
E

{

n−1
∑

k=0

log(1 +KXk)

}

=
1

n

∑

X∈X

PX

{

n−1
∑

k=0

log(1 +KXk)

}

=
1

n

∑

X∈X

PX {Hn log(1 +K)

+(n−Hn) log(1−K)}

=
E(Hn)

n
log(1 +K)

+

{

1−
E(Hn)

n

}

log(1−K).

Now, noting that K = Kn = 2 {E(Hn)/n} − 1 is the

unique point of zero derivative and that ELG(K) is a concave

function, it follows that Kn is the unique maximizer.

It remains to derive an explicit formula for E(Hn)/n for the

case of the history-cognizant coin. First, since the expected

number of heads on the kth coin toss is pk = Pr(Xk = 1),
the expected number of heads in n coin tosses is

E(Hn) =

n−1
∑

k=0

pk.

Now, to obtain a formula for the sum above, beginning with

conditional probability Pr(Xk = 1 |Xk−1) = ω0 + ω1Xk−1,

using the law of total expectation, we obtain a recursion

pk = E {Pr(Xk = 1|Xk−1)}

= ω0 + ω1E(Xk−1)

= 2ω1pk−1 + ω0 − ω1,

where the last line follows since E(Xk−1) = 2pk−1 − 1.

Initializing with p0 = ω0 + ω1x−1, the solution to this linear

equation is, since |2ω1| < 1,

pk = (2ω1)
kp0 +

[

1− (2ω1)
k
]

p∞

where p∞ = (ω0 − ω1)/(1− 2ω1). Thus,

E(Hn)

n
=

1

n

n−1
∑

k=0

(2ω1)
kp0 +

1

n

n−1
∑

k=0

[

1− (2ω1)
k
]

p∞

= λnp0 + (1− λn)p∞. �

VI. DEEPER MEMORY

We consider the general case of memory depth m > 1 and

show how analytic expressions for E(Hn) can be efficiently

obtained. Indeed, beginning with parameterization of the con-

ditional probability of heads

Pr(Xk = 1|Xk−1, Xk−2, ..., Xk−m) = ω0 +

m
∑

i=1

ωiXk−i

with assumed initial conditions

X−i = x−i for i = 1, 2, ...m.

To ensure that Pr(Xk = 1|Xk−1, Xk−2, ..., Xk−m) ∈ (0, 1)
we assume the ω parameters to lie in the “hyperdiamond”

∣

∣

∣

∣

ω0 −
1

2

∣

∣

∣

∣

+
m
∑

i=1

|ωi| <
1

2
.

Then, the unconditional probability pk that Xk = 1 is

pk = E{Pr(Xk = 1|Xk−1, Xk−2, . . . , Xk−m)},

= ω0 +

m
∑

i=1

ωiE(Xk−i)

for k = 0, 1, . . . , n − 1. Substituting E(Xk−i) = 2pk−i − 1,
above and taking note of the “induced” initial conditions

p−i =
(x−i + 1)

2
for i = 1, 2, . . . ,m,

we arrive at the recursion

pk = ω0 −
m
∑

i=1

ωi + 2
m
∑

i=1

ωipk−i

which holds for k = 0, 1, ..., n − 1, and from which E(Hn)
and hence Kn may be calculated. To illustrate a specific case,

for memory depth m = 3 and n = 2 flips, we find that

E(H2) = x−1(2ω
2
1 + ω1 + ω2) + x−2(2ω1ω2 + ω2 + ω3)

+ x−3(2ω1ω3 + ω3) + 2ω0ω1 + 2ω0 − ω1.

State-Space Formulation: As an alternative to the above,

which may perhaps prove useful in future research, we con-

sider a standard state-space realization of the “delay sys-

tem” to represent the scalar recursion for pk. That is, by

introducing the m-dimensional state vector which is given

by vk = [pk−m+1, pk−m+2, . . . , pk]
T , we readily obtain a

classical companion form realization vk+1 = Avk + buk

with triple (A, b, c), input u(k) ≡ 1 and output being pk. To

illustrate, for memory depth m = 3, we obtain

A =





0 1 0
0 0 1

2ω3 2ω2 2ω1



 ; b =





0
0

ω0 − ω1 − ω2 − ω3



 ;

and c = [0 0 1] with solution of the recursion given by

pk = c

(

Akv0 +
k−1
∑

i=0

Ak−1−ib

)

= c
(

Akv0 + (I −A)−1(I −Ak)b
)

and the matrix I − A is guaranteed to be invertible since

det(I−A) = 1−2
∑m

i=1
ωi must be non-zero due to the hyper-

diamond constraint on the ωi. In addition, from Gerschgorin’s

circle theorem [21] and the hyperdiamond constraint, each

eigenvalue of A has magnitude less than 1, and so Ak → 0
as k → ∞. Using this fact, beginning with pk above, this

leads to the generalization of our steady-state unconditional

probability

p∞ = c(I −A)−1b.



Now recognizing that this corresponds to the transfer function

H(z) for the triple (A, b, c) evaluated at z = 1, we immedi-

ately arrive at

p∞ =
ω0 − (ω1 + · · ·+ ωm)

1− 2(ω1 + · · ·+ ωm)
.

Estimation: In practice, prior to betting, it is necessary to ob-

tain values for the ωi parameters. First, define the “response”

variable Yk = (Xk + 1)/2 such that

E(Yk |Xk−1, Xk−2, . . . , Xk−m) = ω0 +
m
∑

i=1

ω1Xk−i.

Then, having observed data x−ℓ, . . . , x−1, we compute the

(ℓ−m)× 1 response vector

y
.
=

1

2

{

[x−ℓ+m, x−ℓ+m+1, . . . , x−1]
T + 1

}

,

and minimize the residual sum of squares

RSS(ω) =

−1
∑

k=−ℓ+m

(

yk − ω0 −

m
∑

i=1

ωixk−i

)2

,

with respect to ω = [ω0, ω1, . . . , ωm]T . Whereas classical

estimation theory leads to the least squares solution

ω̂ = argmin
ω

RSS(ω) = (XTX)−1XTy

with X being the (ℓ − m) × (m + 1) matrix whose ith row

is given by [1, xi−ℓ+m−2, xi−ℓ+m−3, . . . , xi−ℓ−1], enforce-

ment of the hyperdiamond constraints leads to a positive-

definite convex program to be solved.

VII. NUMERICAL SIMULATION

We present results for simulations with returns driven by a

process with Pr(Xk = 1 |Xk−1) = ω0 + ω1Xk−1, comparing

ELG performance for the classical Kelly K∗-bettor, the Kn-

bettor, and the K-bettor. Accordingly, from Section IV, the

classical K∗-bettor, disregarding temporal correlation, works

with the probability of heads being p∞ and uses the time-

invariant betting fraction K∗ = 2p∞ − 1. On the other

hand, assuming ω0 and ω1 are perfectly estimated, the Kn-

bettor exploits temporal correlation and uses fraction Kn =
2{λnp0 + (1 − λn)p∞} − 1, while the K-bettor, who is also

aware of the correlation, uses separate K values for each stage

via K̃k = 2pk − 1.

To provide a flavor of our findings, we first consider the

following scenario: We initialize the game by supposing that

the prior event was X−1 = 1, and take ω0 = 0.55, ω1 = 0.20.

In this specific situation, a straightforward calculation using

our theory directly leads to values of p0 = 0.75, p∞ = 0.583,

and λn ≈ 0.556(1 − 0.4n)/n; hence, K∗ ≈ 0.167 and

Kn ≈ 0.556(1−0.4n)/n+0.167 from which it is immediately

clear that Kn > K∗ (but tends to K∗ in the long run per

Section IV). In this setting, due to the positive correlation

(ω1 > 0), and fact that X−1 = 1, earlier coin tosses are more

likely to be heads than later ones. Therefore, when betting

for a fixed time horizon n, the Kn-bettor takes advantage

of the temporal correlation by placing larger bets than those

suggested by the correlation-ignoring K∗ value. However,

although accounting for autocorrelation, Kn is time-invariant.

For n = 2, Kn = 0.4, whereas K = (0.5, 0.3) (and recall

from Section IV that Kn is the average of the elements of

K). Thus, the K-bettor, recognizing that X0 is most likely

to be a head, bets more heavily on the first bet than on the

second. Of course, both the Kn- and K-bettors bet more

heavily than the K∗-bettor, and, indeed, for the n = 2 case,

we find that ELG(K∗) ≈ 0.053, ELG(Kn) ≈ 0.082, and

ELG(K) ≈ 0.088.

Beyond n = 2, Figure 3(a) shows ELG values for a range

of n over which the K-bettor outperforms the Kn-bettor who

in turn outperforms the K∗-bettor. This scenario is analogous

to one which arises for a financial asset on an upward trend

(since pk ≥ p∞ ≈ 0.5833). In such a setting, the majority of

strategies will do well, e.g., all three here have positive ELG,

but, importantly, incorporating temporal correlation boosts

performance. Figure 3(b) displays the results for a similar

simulation but with ω1 = −0.2. As with the first scenario,

this represents long-run upward trend since p∞ ≈ 0.5357, but

the negative autocorrelation means that the process fluctuates

more; in particular, X0 is most likely to be a tail since X−1

was a head. In this setting, neither the K∗- nor the Kn-bettors

do very well, albeit the latter at least has non-negative ELG,

whereas the K-bettor has significantly improved performance.

To see why this is, consider the n = 2 case where K∗ ≈ 0.071,

Kn = −0.04, and K = (−0.3, 0.22). Thus, the K-bettor

makes use of the fluctuation by betting on tails first and

on heads second but bets less heavily in the second due to

the increased uncertainty; the Kn-bettor averages over these

fluctuations, slightly favouring tails but ultimately betting very

little, whereas the K∗-bettor wrongly favours heads.

Lastly, in Figure 3(c) we briefly consider another interesting

scenario shown which corresponds to X−1 = 1, ω0 = 0.35
and ω1 = 0.33. The important feature in this case is that it

corresponds to a long-run downward trend (with p∞ = 0.058)

but where the positive temporal correlation and the fact that

X−1 = 1 mean that X0 = 1 is most likely. In this case,

the K∗-bettor suboptimally takes a heavy short position (i.e.,

bets on tails) with K∗ ≈ −0.883 leading to large negative

ELG value early on (only becoming positive for n > 10). In

contrast, both Kn- and K-bettors achieve positive growth over

all n. Note that, for all three scenarios, and over all n values,

ELG(K∗) ≤ ELG(Kn) ≤ ELG(K) which is consistent with

our exploitation of temporal correlation to obtain improved

Kelly-type betting strategies which have not been considered

in the existing literature.

VIII. CONCLUSION

In this paper, we formulated a class of Kelly optimal ELG

problems which account for temporal correlation over the

sequence of gambles. In the main theorem, for memory

depth m = 1 and n flips, a closed form solution for the optimal

betting fraction Kn was obtained. The paper also includes

analysis for the case when n → ∞ and solutions for deeper
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Fig. 3: Simulation demonstrating the ELG of account value for the three bettors with X−1 = 1, and different combinations

of ω0 and ω1.

memory m > 1 which can be obtained by either propagation

of the recursive formula for pk or use of the state space

realization for the associated delay system. While our primary

focus has been the development of ELG theory in the pres-

ence of autocorrelation, we have also provided extensions to

multiple-payoffs and time-varying feedback gains. Numerical

simulations which included comparison with classical Kelly

betting results on games with temporal correlation were also

shown in order to demonstrate the potential advantages offered

by our framework.

In future work, we envision our theory to be especially appli-

cable to scenarios in which an investor wishes to incorporate

temporal correlations into algorithmic trading strategies over

the course of time. In particular, the conceptual framework

introduced within this Letter has potential to provide the base

upon which multiple extensions beyond those proposed above

can be built; one such avenue is the so-called portfolio case

with correlation both temporally and across components. In

this case it is felt that concave programming will play an

important role in computation; e.g., see [22]. Finally, a further

direction of research involves a study of ELG performance as

a function of betting frequency in the context of the temporal

correlation framework introduced here; e.g., see [23] for initial

work along these lines and [24] for analysis of the memoryless

case.
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