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Incremental Affine Abstraction of Nonlinear Systems

Syed M. Hassaan, Mohammad Khajenejad, Spencer Jensen, Qiang Shen and Sze Zheng Yong

Abstract— In this paper, we propose an incremental ab-
straction method for dynamically over-approximating nonlinear
systems in a bounded domain by solving a sequence of linear
programs, resulting in a sequence of affine upper and lower
hyperplanes with expanding operating regions. Although the
affine abstraction problem can be solved offline using a single
linear program, existing approaches suffer from a computation
space complexity that grows exponentially with the state di-
mension. Hence, the motivation for incremental abstraction is
to reduce the space complexity for high-dimensional systems,
but at the cost of yielding potentially worse abstractions/over-
approximations. Specifically, we start with an operating region
that is a subregion of the state space and compute two affine
hyperplanes that bracket the nonlinear function locally. Then,
by incrementally expanding the operating region, we dynami-
cally update the two affine hyperplanes such that we eventually
yield hyperplanes that are guaranteed to over-approximate
the nonlinear system over the entire domain. Finally, the
effectiveness of the proposed approach is demonstrated using
numerical examples of high-dimensional nonlinear systems.

I. INTRODUCTION

One of the main challenges in the area of formal

verification and synthesis of complex control systems is

the exponential complexity of the algorithms, thus various

abstraction-based methods have been proposed for complex-

ity reduction, e.g., [1], [2]. The abstraction procedure com-

putes a simpler but over-approximated system that includes

all possible behaviors of the original system while preserving

properties of interest. For instance, to verify that a given

complex system satisfies certain properties, we can test for

the desired property on the abstracted simple system, and

the test result is equivalent to or sufficient for testing for the

property on the original complex system.

Literature Review. In general, abstraction is a systematic

approximation method that partitions the state space/vector

field of a complex system into finite subregions, and then

approximates its dynamics in each subregion by a simpler

one, resulting in a hybrid system [3], [4]. Multiple abstrac-

tion approaches have been developed for several classes of

systems in the literature, including nonlinear systems [5]–[7],

hybrid systems [8], and uncertain affine and nonlinear sys-

tems [9], [10]. A common abstraction method uses symbolic
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approaches, e.g., [11]–[14], based on discretization of the

state and input spaces to obtain dynamical abstraction sys-

tems with finitely many number of states and inputs, which

symbolizes sets of states and inputs of the original system.

However, the number of symbolic states and inputs typically

grows exponentially with state and input dimensions.

On the other hand, the work in [5] considers the over-

approximation of nonlinear vector fields with affine systems,

where the approximation error is accounted for with an

additive disturbance. Further, based on a partition technique

using Lebesgue integrals and sampling, a piecewise affine

abstraction and its corresponding approximation error bounds

are obtained in [15] to approximate a class of nonlinear sys-

tems with specified accuracy and relatively few subregions.

In contrast to [5], [15], where a single simpler function

with a bounded error term is used to abstract the original

system dynamics, recent works in [6], [8]–[10] employ

upper and lower affine functions to sandwich/bracket the

original system dynamics, in the sense of inclusion of all

possible behaviors for each subregion. In particular, the

authors of [8] proposed an affine abstraction approach for

nonlinear Lipschitz continuous functions, resulting in two

affine hyperplanes, as upper and lower bounds to bracket the

original system dynamics, while in [6], two piecewise affine

functions were derived by solving a linear program for each

bounded subregion of the state space to over-approximate

nonlinear systems with different degrees of smoothness.

However, although these abstraction methods can be solved

offline for each subregion using a single linear program,

they have scalability issues when the original system is a

high-dimensional system since the computational complexity

grows exponentially with the state dimension.

Contributions. In this paper, an incremental abstraction

method is proposed to dynamically over-approximate non-

linear systems to overcome the issue of space complexity.

Specifically, we propose a novel method to carry out the

abstraction process sequentially, starting with a small op-

erating region that is a subset of the entire domain and

incrementally expanding to larger domains by adding new

grid points, until all grid points are added. At each increment,

a local abstraction consisting of two affine hyperplanes can

be obtained by solving a linear program. This is in contrast

to the conventional mesh-based abstraction methods, e.g., in

[6], [8], that construct abstractions statically over all grid

points in the interior of the domain of interest and have the

aforementioned space complexity issues.

Moreover, by design, our proposed incremental abstraction

approach has reduced space complexity when compared to

[6], [8]. The reason is that our approach only considers
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the boundary points of the previous region and the newly

added grid points for computing the local abstraction at

each increment. More importantly, our approach provides

us control over the amount of memory that is allocated to

solve each linear program, and we have a rigorous proof

that guarantees that the incremental abstraction is indeed

an over-approximation/abstraction of the original system,

which is an important feature when used for reachability

analysis and robust control synthesis. The simulation results

demonstrate that the proposed incremental approach is able

to abstract high-dimensional nonlinear systems with limited

space resources, but at the cost of obtaining a worse over-

approximation and a longer total computation time due to

the sequence of linear programs that need to be solved. Note,

however, that the time complexity is less of a concern, since

the resulting linear programs are solved offline.

II. PRELIMINARIES

For a vector v ∈ R
n and a matrix M ∈ R

p×q , ‖v‖i and

‖M‖i denote their (induced) i-norm with i = {1, 2,∞}.

A. Modeling Framework and Definitions

Consider the nonlinear system:

x+ = f(x, u), (1)

where x ∈ X = [x, x]n ⊆ R
n is the system state with a

bounded and closed interval domain X , u ∈ U = [u, u]m ⊆
R

m is the known control input with a bounded and closed

interval domain U and vector field f : X × U → R
n is a

continuous function. For discrete-time systems, x+ denotes

the state at the next time instant while for continuous-time

systems, x+ = ẋ is the time derivative of the state. We

denote (x, u) ∈ R
n+m a sample point throughout the paper.

To incrementally abstract the nonlinear system (1), we

introduce the following definitions for each increment k ∈ N.

Definition 1 (Uniform Mesh and Grid Points). A uniform

mesh of each domain X ×U is a collection of smax number

of points, called grid points, uniformly distributed along all

directions and dimensions. The set of grid points is denoted

as M and by construction, the convex hull of M is the entire

domain X × U , i.e., X × U = Conv(M).

Definition 2 (Diameter). The diameter δ of each mesh

element in a uniform mesh is the greatest distance between

two vertices of the mesh element.

Definition 3 (Sample Set and Operating Region). At any

increment k, a set Sk is called a sample set if it is a subset

of all the existing grid points. Moreover, all grid points in the

convex hull of the sample set is called the operating region

and is denoted by Rk , i.e., Rk , Conv(Sk) ∩M.

Definition 4 (Expanding Operation Region). At each incre-

ment k, the operation region Rk is expanding if Rk−1 ⊂ Rk,

i.e., the new operating region at the current increment is a

strict superset of the previous operating region.

Definition 5 (Vertex Set). Given an operating region Rk at

increment k, the set of all vertices of the convex hull of Rk is

called the vertex set, and denoted as Vk , V er(Conv(Rk)).
Note that the convex hull of the operating region is a polytope

and has a well-defined vertex set.

The process of over-approximating a nonlinear function as

given in (1) can be defined as follows, similar to [6]:

Definition 6 (Affine Abstraction Model). Given a bounded-

domain function f(x, u), the affine functions f(x, u) = Ax+
Bu+ h and f(x, u) = Ax+Bu+ h, are called upper and

lower affine functions of f(x, u), respectively, if ∀(x, u) ∈
X × U , f(x, u) ≤ f(x, u) ≤ f(x, u). The pair of functions

F , {f(x, u), f(x, u)} forms an affine abstraction model

that over-approximates the given function f(x, u).

One major goal when finding affine abstractions is to get

them as tight as possible with a low abstraction error, i.e.,

with a small distance between the affine hyperplanes:

Definition 7 (Abstraction Error [6]). The abstraction error

of an affine abstraction model F of a nonlinear function

f(x, u) over its domain X × U , at increment k, is defined

as θ = max(x,u)∈X×U ||f(x, u)− f(x, u)||1.

Next, we reproduce a lemma from [16] that we will rely on

to find linear interpolation error bounds over mesh elements:

Lemma 1 ([16, Theorem 4.1 & Lemma 4.3]). Let S be an

(n + m)-dimensional mesh element such that S ⊆ M ⊆
R

n+m with diameter δ (see Definition 2). Let f : S → R be

a nonlinear function and let fl be the linear interpolation of

f(.) evaluated at the vertices of the mesh element S. Then,

the approximation error bound σ defined as the maximum

error between f and fl on S, i.e., σ = maxs∈S(|f(s) −
fl(s)|), is upper-bounded by

(i) σ ≤ 2λδs, if f ∈ C0 on S,

(ii) σ ≤ λδs, if f is Lipschitz continuous on S,

(iii) σ ≤ δs maxs∈S ‖f ′(s)‖2, if f ∈ C1 on S,

(iv) σ ≤ 1
2δ

2
s maxs∈S ‖f ′′(s)‖2, if f ∈ C2 on S,

where λ is the Lipschitz constant, f ′(s) is the Jacobian of

f(s), f ′′(s) is the Hessian of f(s) and δs satisfies

δs ≤

√

n+m

2(n+m+ 1)
δ.

III. PROBLEM FORMULATION

For the nonlinear function defined in (1), previous works

in [6], [8] have proposed several different methods to find its

affine abstraction. One major problem with these approaches

is that they do not scale well with the number of grids.

For systems where there are a very large number of grid

points, which is usually the case with higher dimensional

systems, the amount of memory required to store and process

these points increases exponentially. Although reducing the

number of grid points could solve the problem of memory

consumption, it also results in poor/conservative abstractions

or over-approximations. The following formalizes our notion

of limited memory resources in this case.

Definition 8 (Maximum Number Of Points). Limited mem-

ory resources can be expressed in terms of the limit on



maximum number of points, denoted as s, that can be

processed at any time. Thus, for a user-specified s, the total

number of increments, denoted as κ, required to process all

the grid points smax, can then be computed as:

κ =
smax − s

s− δ
+ 1, (2)

where δ is the number of points carried over to Rk from

Rk−1. In Section IV, we will remark on the choice of δ.

Given a user specified s (i.e., when memory resources are

scarce), one way to obtain a sufficiently tight affine abstrac-

tion is by incrementally obtaining over-approximations over

smaller subregions of the domain X × U of f(x, u) over κ

total increments. The final abstraction can then be obtained

combining the incremental results to get the abstraction over

the entire domain of f(x, u). With this in mind, we now

define the notion of incremental abstraction at increment k:

Definition 9 (Incremental Abstraction). At each increment k,

for a function f(x, u) as defined in (1) with an operating re-

gion Rk, the incremental abstraction is the affine abstraction

of f(x, u) over the operating region Rk. The resulting affine

hyperplanes that over-approximate f(x, u)∀(x, u) ∈ Sk are

denoted as Fk = {fk(x, u), fk
(x, u)}.

Moreover, the abstraction error at each increment as well

as the overall abstraction error is defined as follows:

Definition 10 (Incremental Abstraction Error). At each

increment k, the abstraction error of Fk is θk =
max(x,u)∈Vk

||fk(x, u)−f
k
(x, u)||1. The overall abstraction

error after all κ increments is then θ = max({θi}κi=1).

Using the concept of incremental abstraction, the problem

of affine abstraction of the system in (1) can be recast as:

Problem 1 (Affine Abstraction of a High-Dimensional Sys-

tem). Given a high-dimensional nonlinear function in (1),

along with the requirement that at most s samples can be

taken into consideration at each increment, find the affine

abstraction F of f over X ×U using {Fk}, ∀k ∈ {1, . . . , κ}
obtained from incremental abstractions over κ increments,

each with at most s samples, such that:

minimize: θk

s.t.: fk(x, u) ≥ f(x, u) ≥ f
k
(x, u), ∀(x, u) ∈ Rk,

(3)

∀k ∈ {1, . . . , κ}, and Rk is expanding from R0 = ∅ to

Rκ = M, i.e., ∅ = R0 ⊂ R1 ⊂ . . . ⊂ Rκ. Then, using these

incremental abstractions, find an affine abstraction over the

entire domain X × U = Conv(Rκ) = Conv(M).

Note that throughout this paper, we consider affine ab-

straction models with only a single region. The results in

this paper also applies in a straightforward manner when the

total domain X × U is partitioned into p subdomains, as

was done in the literature, e.g., [6]–[8], to further decrease

abstraction errors, resulting in piecewise affine abstractions.

IV. MAIN RESULTS

To overcome the limitations on space complexity, we

propose an incremental abstraction approach, in which at

each increment, at most s number of sample points are

processed to obtain an affine abstraction.

Lemma 2. Given the affine abstraction model Fk−1 =
{f

k−1
(x, u), fk+1(x, u)} for the nonlinear function f(x, u)

over an operating region Rk−1, at increment k, solving

the following minimization problem over the sample set

Sk = (Rk\Rk−1)∪Vk−1, where Vk−1,V er(Conv(Rk−1)),
obtains a functional over-approximation of f(x, u) over Rk:

min
θk,Ak,Ak

,Bk,Bk
,hk,hk

θk (4)

subject to:

∀(x, u) ∈ Rk \ Rk−1 :

Ak x+Bk u+ hk ≥ f(x, u),

Ak x+Bk u+ hk ≤ f(x, u),
(4a)

∀(x, u) ∈ Vk−1 :

Ak x+Bk u+ hk ≥ Ak−1 x+Bk−1 u+ hk−1,

Ak x+Bk u+ hk ≤ Ak−1 x+Bk−1 u+ hk−1,
(4b)

∀(x, u) ∈ Vk = V er(Conv(Sk)) :

(Ak −Ak)x+ (Bk −Bk)u+ hk − hk ≤ θk1n. (4c)

Proof. In the optimization problem given in (4), the con-

straints (4a) and (4b) make sure that the two hyperplanes

at increment k bracket the nonlinear function for all newly

added grid points and the vertices of operating region Rk−1,

respectively. Moreover, in light of [6, Lemma 1], it is

obtained from (4b) that ∀(x, u) ∈ Rk−1,

fk(x, u) ≥ fk−1(x, u), fk
(x, u) ≤ f

k−1
(x, u). (5)

Since the given two affine hyperplanes Fk−1 =
{f

k−1
(x, u), fk−1(x, u)} over-approximate the nonlinear

function over operating region Rk−1, i.e, f
k−1

(x, u) ≤

f(x, u) ≤ fk−1(x, u), ∀(x, u) ∈ Rk−1, we further have

f
k
(x, u) ≤ f(x, u) ≤ fk(x, u), ∀(x, u) ∈ Rk−1. (6)

As a result, it follows from (4a) and (6) that

f
k
(x, u) ≤ f(x, u) ≤ fk(x, u), ∀(x, u) ∈ Rk, (7)

which implies that the affine hyperplanes obtained at in-

crement k over-approximate the nonlinear function f(x, u)
overall the current operating region Rk .

Finally, the constraint in (4c) ensures that the two affine

hyperplanes obtained at the increment k are as close to each

other as possible, i.e., the abstraction error is minimized.

Using the above lemma, we prove in the following theo-

rem that incremental affine abstraction also yields an affine

abstraction model of the system in (1), solving Problem 1.

Theorem 1. Consider the nonlinear system (1) with (x, u) ∈
X × U . Let s indicate the maximum number of sample

points allowed to be taken at each iteration k. Algorithm

1 incrementally solves the abstraction problem formulated

in Problem 1, i.e., ∀(x, u) ∈ X × U , it returns up-

per and lower affine functions f(x, u)= fk(x, u) + σ1 and

f(x, u)= f
k
(x, u)− σ1 that over-approximate the nonlin-



Algorithm 1 Procedures of Incremental Abstraction

1) Initialize k = 1, R0 = ∅ =⇒ V0 = ∅.

2) At increment k, consider a new sample set Sk = (Rk \
Rk−1)∪Vk−1 of size s, where the set (Rk \Rk−1) 6= ∅
denotes the newly added grid points such that Rk is

expanding with k.

3) For the sample set Sk, use Lemma 2 to obtain hy-

perplanes Fk = {fk, fk
} that over-approximate the

nonlinear function (1) over Sk .

4) Go to step 2 with k = k + 1 if k < κ.

5) After obtaining the final hyperplanes Fκ =
{f

κ
(x, u), fκ(x, u)}, the affine abstraction over

the domain X × U for the system (1) is:

f(x, u) = Aκx+Bκu+ hκ + σ,

f(x, u) = Aκx+Bκu+ hκ − σ,

where σ is the approximation error in Lemma 1.

ear system (1), with the corresponding interpolation error σ

in Lemma 1 and 1 is a vector of ones.

Proof. Using mathematical induction, we will prove that

Theorem 1 solves the Problem 1 incrementally.

In the first increment k = 1, we have the operating

region R1. Since R0 = ∅, we have V0 = ∅. Therefore,

we further have S1 = (R1 \ R0) ∪ V0 = R1. Based on

Algorithm 1, solving the optimization problem defined in

Lemma 2 over S1 will yield the affine hyperplanes F1 =
{f

1
(x, u), f1(x, u)} with:

f
1
(x, u) = A1x+B1u+ h1, f1(x, u) = A1x+B1u+ h1.

Since S1 = R1, these two hyperplanes also bracket the

function f(x) at all sample points in R1, i.e.

f
1
(x, u) ≤ f(x, u) ≤ f1(x, u), ∀(x, u) ∈ R1.

At increment k > 1, suppose that the obtained affine

hyperplanes Fk = {f
k
(x, u), fk(x, u)} over (x, u) ∈ Sk =

(Rk \ Rk−1) ∪ Vk−1 satisfy:

f
k
(x, u) ≤ f(x, u) ≤ fk(x, u), ∀(x, u) ∈ Rk.

Then, follow the same lines in the proof of Lemma 2 for

increment k + 1, we have

f
k+1

(x, u) ≤ f(x, u) ≤ fk+1(x, u), ∀(x, u) ∈ Rk+1.

Therefore, the affine hyperplane obtained at any future

increment will also over-approximate the nonlinear func-

tion over all the past operating regions, hence at the last

increment k = κ, the final two affine hyperplanes Fκ =
{f

κ
(x, u), fκ(x, u)} will over-approximate the nonlinear

function over the entire mesh since the operating region

Rκ = Conv(Sκ) ∩ M = M contains all smax samples.

Finally, using a combination of the result in [6, Lemma 2]

and Lemma 1, the desired affine abstraction can be obtained

by accounting for the interpolation errors when extending

from grid points of the mesh to the entire continuous domain

(cf. step 5 of Algorithm 1). This completes the proof.

To reduce space complexity, the proposed incremental

abstraction algorithm only computes affine hyperplanes for

s sample points at each increment k. As shown in step 2 of

the Algorithm 1, at each increment k, we consider a new

sample set Sk = (Rk \ Rk−1) ∪ Vk−1 of size s and discard

the previously processed points from the set Rk−1 \Vk−1 to

accommodate new points. Then, in Lemma 2, we show that

retaining these s grid points at each increment k is enough

to provide conservative over-approximation over all other

discarded points at k − 1.

Bounds on the total number of increments κ of the

incremental abstraction can be calculated if s is given. For

a state-input domain X × U ⊂ R
n+m, in general at least

n + m + 1 grid points are required to define a hyperplane.

Moreover, since we require the operating region to expand

with each increment, so δ, the maximum number of points

that can be carried over future increments cannot exceed

s − 1. Therefore, δ is bounded by δ ∈ [n+m+ 1, s− 1].
Hence, using (2), the following bounds on κ apply:

κ ∈

[

smax − s

s− (n+m+ 1)
+ 1, smax − s+ 1

]

.

V. EXAMPLES AND DISCUSSION

In this section, we demonstrate the capability of the

proposed incremental abstraction approach in the limited re-

source setting using two high-dimensional nonlinear systems.

A. Nonlinear Rastrigin’s function [17]

First, we consider a nonlinear system with dynamics

described by Rastrigin’s function [17]:

ẋi = f(x) = 10d+
∑d

j=1[x
2
j − 10 cos(2πxj)] (8)

where x = [x1, . . . , xd]
T ∈ R

d with d being the dimension

of state x. In addition, we also assume that xi ∈ [−5.1, 5.1]
for all i ∈ {1, . . . , d}. All simulations are performed on

Arizona State University’s Agave Cluster on a single thread

of one of the cores of Intel Xeon E5-2680 v4 CPU pro-

cessor running at 2.40GHz. The script is written and run

on MATLAB® version 2017a, and uses Gurobi [18] as the

linear program solver. The amount of RAM available for

the simulations is also adjusted to cater to the required

environment for the sake of a fair comparison. Moreover, for

incremental abstraction, the maximum number of grid points

s that are considered in each linear program is a controllable

parameter, which we also vary for comparison.

a) Effects of sample size on abstraction error per-

formance with unlimited memory: For our first study, we

emulate a virtually unlimited resource environment by setting

the maximum available system RAM to 64GB, and use

the function (8) with a 2-dimensional domain. In each

dimension, we consider 51 points, resulting in a total of

512 = 2601 grid points. The computational times are

compared for different cases of maximum number of grid

points that can be considered for each linear program. In the

first case, s = 50 is chosen, which takes 57 increments to

find the over-approximation of the 2-dimensional nonlinear

system. For the second case, s = 500 solves the problem in

6 increments. Finally, the last case considers all the points

at once, as in [6], to solve the problem. Figure 1 depicts



(a) Abstraction with s = 50 (b) Abstraction with s = 500 (c) Abstraction with all points (same as [6])

Fig. 1: Comparison of abstractions for varying maximum numbers of grid points s̄ (memory allocation) of (8) with d = 2.

(a) With R1 to the left (b) With R1 at the center (c) With grid point x = 0.5 as warm-start

Fig. 2: Comparison of affine abstractions of (8) with d = 1 for different heuristics. The hyperplanes in Fk for k = 1, 3, 5, 7
show the evolution of the abstraction after respective increments. The lengths of each Fk vary as the domain varies.

TABLE I: Effects of Sample Size on Performance

Performance Incremental 1-Step 1-Step
Parameter Abstraction Abstraction [6] Abstraction [8]

s 50 500 All Points All Points

Time Taken (sec) 15 6.21 0.334 0.348

max(θ) 300.4 112.4 80.23 84.19

the resulting lower and upper affine hyperplanes as well as

the original nonlinear function under these three cases. In

all cases, the nonlinear system is over-approximated by the

affine hyperplanes obtained from the proposed abstraction

method. Table I shows the computational times for each

case and the corresponding maximum distances between the

hyperplanes, which demonstrates that the proposed incre-

mental abstraction is suboptimal when compared to 1-step

abstraction approaches in [6], [8] and its performance in

terms of abstraction error and total time is dependent on

the amount of allocated memory in terms of s̄. Therefore,

taking s as a controllable parameter, the proposed abstraction

method allows the users to decide on the trade-off between

computational time, computational resources required to

solve higher-dimensional nonlinear function abstractions and

the tightness of the resulting abstraction.

b) Effects of sample size on abstraction error perfor-

mance with limited memory: Next, we consider the limited

memory case by setting the maximum available system RAM

to 500MB. Here, in each dimension, 5 grid points are chosen,

so, depending on the dimension d of the domain, the total

number of points will be 5d. For incremental abstraction, the

maximum number of grid points to take in each increment is

set to be s̄ = 105 points. Under these resources limitation, the

comparison between incremental abstraction and the 1-step

abstraction in [6] is summarized in Table II. We observed

that with incremental abstraction, abstractions of higher

dimensional nonlinear systems using only limited resources

can be achieved with more time (which, as above-mentioned,

is less of a concern because the linear programs are solved

TABLE II: Performance Under Limited Resources

Dimension
Time Taken (sec.) Separation

Incremental 1-Step Incremental 1-Step

1 2.091 2.179 55.8 55.8

3 2.216 2.145 167.5 167.5

5 2.26 2.189 279.2 279.2

7 4.927 4.393 390.9 390.9

9 69.286 N/A 867.1 N/A

11 2329.178 N/A 1659.2 N/A

12 10095.77 N/A 1637.8 N/A

offline), whereas the 1-step abstraction methods in [6], [8]

return an error and cannot compute any abstraction for d ≥ 8.

Further, the results suggest that given more time, even higher

dimensional abstraction problems than are depicted in Table

II can be solved by computers with limited memory.

c) Effects of heuristics on abstraction error perfor-

mance with limited memory: Additionally, we observed that

heuristics can improve the performance of our incremental

abstraction in terms of decreased abstraction error. To better

visualize the effects of the heuristics, we consider the exam-

ple with (8) in 1D. The example has smax = 250 grid points

and the maximum number of points s is set to 40.

From our analysis, two major reasons are associated

with increased suboptimality of the incremental procedure:

(i) conservative approximations due to constraints in (4b)

for guaranteeing future abstractions, and (ii) when using

expanding operating region, we will start from a closely

located cluster of samples, the abstraction of which, for very

small s, may have higher slope than the Lipschitz constant

of the system in (1). Thus, we conjecture that one of the

ways to tackle the first issue is by choosing the starting

region R1 smartly. In Figures 2a–2b, we show the effects

of selecting different starting points on the final abstraction

for (8) in 1D. By choosing the starting region at the center

of the domain X , the overall abstraction is less conservative

than the one obtained when the starting region is on one

end of the domain as in Figure 2a. Further, we conjecture



TABLE III: Performance of Abstraction of Swarm Dynamics

Agents State
Time Taken (sec.) Separation

Incremental 1-Step Incremental 1-Step

3
fx

i
(x) 5.05 5.5 0.1118 0.1118

f
y

i
(x) 4.73 4.66 0.8798 0.8798

fθ

i
(x) 6.81 5.24 2.9157 2.9157

5
fx

i
(x) 1909.85 N/A 0.1397 N/A

f
y

i
(x) 1780.72 N/A 1.2437 N/A

fθ

i
(x) 2004.61 N/A 25.5508 N/A

that the second issue can be resolved by picking sample

points that are more spread-out in the domain as a warm-

start for the incremental abstraction. This will prevent the

closely clustered region to be formed in R1. In Figure 2c,

providing a random grid point at x = 0.5 as a warm-start also

results in better abstraction than the one obtained without any

warm-starts. Instead of random samples, certain properties of

the nonlinear function f(x, u) also can be used for warm-

starting, e.g., global minima or global maxima of f(x, u).

B. Rendezvous of a Robot Swarm

We consider the dynamics of a swarm of robots described

in [19], in the form of (1), with the following parame-

ters: n = 3N , where N is the number of agents/robots,

m = 0 and x =
[

x⊤
1 . . . x⊤

N

]⊤
∈ R

n, where x is the

augmented state of the whole swarm, consisting of xi’s,

which is the state vector of the agent/robot i. Moreover,

xi =
[

xi yi θi
]⊤

∈ R
3, where xi, yi and θi are

the robot i’s x-coordinate, y-coordinate and heading an-

gle, respectively. Similarly, f =
[

f⊤
1 . . . f⊤

N

]⊤
, where

∀i ∈ {1 . . .N}, fi(.) describes the dynamics of robot i

as follows: fi(.) =
[

fx

i (.) f
y

i (.) fθ
i (.)

]⊤
: R

n → R
3,

with fx

i (x) = u
i
v cos(θi), f

y

i (x) = u
i
v sin(θi), fθ

i (x) =
u
i
w, where u

i
v = bi⊤ṗi and u

i
w = φ(bi, ṗi) are control

inputs forcing each robot to move towards each other,

bi =
[

cos θi sin θi
]⊤

is the “bearing” vector for the robot

i, ṗi = 1
N (i)

∑

j∈N (i)(p
j − pi), pi =

[

xi yi

]⊤
is the

“position” vector of the robot i, the function φ(v1, v2) =

sgn((v1×v2)
⊤êz) cos

−1(
v⊤

1
v2

‖v1‖2‖v2‖2

) finds the smallest angle

required to rotate from vector v1 to vector v2, ∀v1, v2 ∈ R
2

and Ni is the set of agents in the neighborhood of agent i.

In this simulation, we consider swarms with N = 3 and

N = 5 robots1, which correspond to 7-dimensional and 12-

dimensional nonlinear systems, respectively. The maximum

available system RAM is set to be 500MB. As shown in

Table III, both the proposed incremental abstraction and the

the 1-step abstraction in [6] can obtain comparable results

in terms of computational time and abstraction error for the

swarm with 3 robots. However, for more complex swarm

with 5 robots, the 1-step abstraction [6] is not able to generate

an affine abstraction due to the limited memories, while the

proposed incremental approach can still compute it.

1The states are bounded as x1 ∈ [−5, 5], x2 ∈ [−5, 5], x3 ∈ [−7, 7],
x4 ∈ [−7, 7], x5 ∈ [−7, 7], y1 ∈ [0, 0.4], y2 ∈ [0.5, 0.9], y3 ∈ [1, 5],
y4 ∈ [0, 0.876], y5 ∈ [0, 1.67] and θi ∈ [−0.02, 0.02], ∀i ∈ {1, . . . , 5}.

VI. CONCLUSIONS

In this paper, an incremental affine abstraction approach

is proposed to simplify a class of nonlinear systems as

affine systems, in the sense that two affine hyperplanes are

updated dynamically to envelop the nonlinear systems with

expanding operating regions. Initially, we consider a small

operating region and solve a linear programming to obtain

two affine hyperplanes that locally over-approximate the

nonlinear system. Then, expanding the operating region with

new grid points incrementally, we can find the correspond-

ing affine hyperplanes for a larger domain until the entire

domain is covered. The proposed incremental abstraction

approach has the capability of reducing the computational

space complexity, especially when the nonlinear system has

high dimensions. Simulation results are provided to demon-

strate the effectiveness of the proposed abstraction method.

Future work will include the comparison of the proposed

incremental abstraction approach with symbolic approaches

in the context of reachability analysis and control synthesis.
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