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Leader-follower synchronization and ISS analysis for a network of

boundary-controlled wave PDEs

Luis Aguilar, Yury Orlov, Alessandro Pisano

This document is an enhanced version of a companion paper, currently under review for journal

publication, containing more detailed proofs of the main Theorems 1 and 2.

Abstract

A network of agents, modeled by a class of wave PDEs, is under investigation. One agent in the network plays the role

of a leader, and all the remaining “follower” agents are required to asymptotically track the state of the leader. Only boundary

sensing of the agent’s state is assumed, and each agent is controlled through the boundary by Neumann-type actuation. A linear

interaction protocol is proposed and analyzed by means of a Lyapunov-based approach. A simple set of tuning rules, guaranteeing

the exponential achievement of synchronization, is obtained. In addition, an exponential ISS relation, characterizing the effects

on the tracking accuracy of boundary and in-domain disturbances, is derived for the closed loop system.

I. INTRODUCTION

The consensus problem seeks to enforce agreement amongst the states of networked dynamical systems by penalizing their

local disagreement with the neighboring nodes in a dynamic manner. A particular class of consensus problems is the leader-

follower decentralized tracking, where a specific agent in the network plays the role of a leader and all remaining follower

agents aim to synchronize their state evolutions with that of the leader (see e.g. [1]).

It is worth noting that the consensus problem for networks of distributed parameter systems has not received yet the same

level of attention as its finite-dimensional counterpart.

In [10], [11], exact synchronization for a set of coupled wave processes, part of which equipped by a boundary control input,

was provided in the two cases of Dirichlet and Neumann actuation. In [6], the leaderless consensus problem was addressed

with reference to multi agent systems where agents dynamics are governed by heat and wave dynamics with distributed control.

In [7], leader follower consensus for perturbed parabolic PDEs with distributed control was achieved by means of an adaptive

unit-vector sliding mode controller. In [4], the consensus problem for a network of agents modeled by a class of parabolic

PDEs, and communicating through undirected communication topologies, has been studied. In [15], [13] the leaderless and

leader-following consensus problems for perturbed diffusion PDEs were solved through sliding-mode based boundary control.

In [2], the leader-less consensus problem was dealt with for a multi agent system where agents dynamics are governed by a class

of perturbed boundary controlled wave processes. Motivated by the above state-of-art analysis, and with the aim of developing

a leader-following consensus controller for networked wave PDEs, a ”pointwise-in-space” agreement between the follower and
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leader profiles, is established in the present paper via Lyapunov analysis by using a linear PD-like local interaction rule. In

contrast to the related investigation [2] where the leader-less consensus was studied within the same wave PDEs framework,

we focus on the leader-following consensus case. An ISS analysis is also made to investigate the effect of boundary and

in-domain disturbances on the closed-loop system accuracy. Certain tuning inequalities, which are more restrictive, compared

to those derived in the unperturbed scenario, are to be imposed on the controller parameters in order to ensure an exponential

ISS inequality. The contribution to the existing literature is thus as follows.

i. The leader-following consensus problem is addressed and solved with reference to multi agent systems with agents’ and

leader dynamics, governed by the wave equation with Neumann-type boundary control.

ii. The proposed local interaction rule ensures the pointwise convergence to zero of the deviation between the leader and

follower trajectories.

iii. The effects of boundary and in-domain disturbances on the consensus accuracy are constructively analyzed from the ISS

standpoint.

The rest of the paper is outlined as follows. In Section II some mathematical preliminaries on graph theory and useful norm

properties and definitions are recalled. The communication protocol providing consensus-tracking is studied in Section III. The

ISS analysis of the closed loop system in the presence of boundary and distributed in-domain disturbances is made in Section

IV. Simulation results are presented in Section V, and conclusions and perspectives for next investigations are collected in

Section VI.

II. MATHEMATICAL PRELIMINARIES AND NOTATIONS

A. Useful definitions and properties

The Euclidean norm of the real-valued n-dimensional vector x= [x1, . . . ,xn]
T ∈R

n is defined as ‖x‖2 =
(
Σn

i=1|xi|2
)1/2 ≡

√
xT x.

The next well-known inequalities to hold true for all x,y ∈ R
n and for arbitrary ξ > 0, are recalled:

∣
∣xT y

∣
∣≤ ‖x‖2‖y‖2 ≤

ξ

2
‖x‖2

2 +
1

2ξ
‖y‖2

2, ξ > 0. (1)

Given a symmetric positive definite matrix M ∈R
n×n, let λm(M) and λM(M) denote the minimum and maximum eigenvalues

of M. The symbols 1n = [1,1, . . . ,1]T ∈ R
n and 0n = [0,0, . . . ,0]T ∈ R

n stand for the all-ones and all-zeros vectors. Let

x(t) : R+∪{0}→ ℜ be a scalar function. Then the notation

Es (x(t)), ess sup
τ∈[0,t]

x(τ) (2)

is used for brevity. L2 stands for the Hilbert space of square integrable scalar functions z(ς) on the domain (0,1) with the

corresponding L2-norm

‖z(·)‖L2
=

√
∫ 1

0
z2(ς)dς . (3)

The symbol L∞(0,T ;L2) is reserved for the set of functions f (ς , t) such that f (·, t)∈L2 for almost all t ∈ (0,T ),
∫ 1

0 f (ς , t)φ(ς)dς

is Lebesgue measurable in t for all φ(·) ∈ L2, and Es

(
∫ 1

0 f 2(ς , t)dς
)

< ∞. It is said that f (·) ∈ Lloc
∞ (L2(a,b)) iff f (·) ∈

L∞(0,T ;L2(a,b)) for all T > 0.

Hℓ, with ℓ= 1,2, . . . , denotes the Sobolev space of absolutely continuous scalar functions w(ς) on the domain (0,1), with

square integrable derivatives w(k)(ς) up to order ℓ and the Hℓ-norm

‖z(·)‖Hℓ =

√
∫ 1

0 ∑ℓ
k=0

[
w(k)(ς)

]2
dς . (4)
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The first and second order derivatives z(1)(ς) and z(2)(ς) will also be denoted as z(1)(ς) = zς (ς) and z(2)(ς) = zςς (ς). In

addition, the notations

Ln
2 =

L2(0,1)×L2(0,1)× . . .×L2(0,1)
︸ ︷︷ ︸

n times

,

Hℓ,n =
Hℓ(0,1)×Hℓ(0,1)× . . .×Hℓ(0,1)
︸ ︷︷ ︸

n times

are utilized and

‖z(·)‖Ln
2
=

√
n

∑
i=1

‖zi(·)‖2
L2
, ‖w(·)‖Hℓ,n =

√
n

∑
i=1

‖wi(·)‖2
Hℓ (5)

stand, respectively, for the L2-norm of a vector function z(ς) = [z1(ς),z2(ς), ....,zn(ς)] ∈ Ln
2 and for the Hℓ-norm of a vector

function w(ς) = [w1(ς),w2(ς), ....,wn(ς)] ∈ Hℓ,n.

The following well-known Lemma constitutes a vector counterpart of the Poincare inequality

Lemma 1: Let b(ς) ∈ H1,n. Then, the following inequality holds:

‖b(·)‖2
Ln

2
≤ 2

(

‖b(i)‖2
2 +‖bς (·)‖2

Ln
2

)

, i = 0,1. (6)

The specific formulation (6) of the Poincare inequality can be found in [15].

B. Algebraic Graph Theory definitions and properties

Consider a group of n dynamical agents along with the undirected graph G(V,E,A) modeling the communication topology

among these systems, where V = {1, . . . ,n} is the node set and E ⊆ {V×V} is the edge set. An edge (i, j) ∈ E if agents i and

j can exchange information. The adjacency matrix A= [ai j] associated with G is such that aii = 0, ai j = 1 if ( j, i) ∈ E , and

ai j = 0 otherwise. A path in an undirected graph G is a sequence of edges joining two nodes of the graph. An undirected graph

is said to be connected if there is a path between every pair of nodes. Throughout, the Laplacian Matrix L = [ℓi j] ∈ R
n×n,

associated with the graph G, is defined as ℓii = Σn
j=1,i6= jai j and ℓi j =−ai j, i 6= j.

III. DISTRIBUTED COORDINATED TRACKING FOR NETWORKED WAVE PROCESSES

Consider a set of n dynamical agents V f = {1,2, . . . ,n}, identified as followers, which are governed by the wave equation,

expressed in the vector form

utt(ς , t) = uςς (ς , t) (7)

u(ς ,0) = u0(ς), ut(ς ,0) = u0
t (ς), (8)

uς (0, t) = c0ut(0, t) (9)

uς (1, t) = q(t). (10)

Hereinafter, u(ς , t) = [u1(ς , t),u2(ς , t), . . . ,un(ς , t)]
T is the vector, collecting the states of all followers (ui(ς , t) denotes the

transverse displacement of the i-th agent at position ς ∈ (0,1) and time t ≥ 0), q(t) = [q1(t),q2(t), . . . ,qn(t)]
T is the vector,

collecting the agents’ Neumann-type boundary control inputs and c0 a positive constant. Follower agents are supposed to be

communicating each other through a static, undirected topology described by G f (V f ,E,A f ).
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Remark 1: By using the Lyapunov functional W (t) = 1
2
‖ũς(·, t)‖2

Ln
2
+ 1

2
‖ũt(·, t)‖2

Ln
2
, whose time derivative along the solutions

of the open-loop system (7)-(10) with q(t) = 0 is Ẇ (t) = −c0‖ũt(0, t)‖2
2, it is concluded that system (7)-(10) is stable in the

open-loop but not asymptotically stable, thus motivating the need for consensus-based control to achieve synchronization

between agents. �

Suppose that in addition to the n followers there exists a leader agent, labeled with the index number 0 and governed by

the unforced boundary-value problem

u0,tt(ς , t) = u0,ςς(ς , t), (11)

u0(ς ,0) = u0
0(ς), u0,t(ς ,0) = u0

0,t(ς), (12)

u0,ς (0, t) = c0u0,t(0, t), (13)

u0,ς (1, t) = 0. (14)

It is assumed that the leader’s boundary information (u0(1, t),u0,t(1, t)) is available to a nonempty subset of followers. Let

ai0 = 1 if the leader communicates with the i-th follower (i = 1,2, . . . ,n), and ai0 = 0 otherwise.

Assumption 1: Follower agents exchange information according to the static and undirected topology G f (V f ,E,A f ) that

is assumed to be connected, and the leader communicates with at least one follower.

The following regularity and compatibility conditions are in force to deal with classical solutions of the boundary value

problem in question (see [3] for details).

Assumption 2: The ICs in (8) and (12) are such that

u0(ς), u0
t (ς) ∈ H2,n, u0

0(ς), u0
0,t(ς) ∈ H2 (15)

and the following compatibility conditions hold

u0
ς (0) = c0u0

t (0), u0
ς (1) = q(t)

u0
0,ς (0) = c0u0

0,t(0), u0
0,ς (1) = 0n

(16)

With the assumption above, the stability of the collective networks dynamics of the leader (u0(·, t),u0,t(·, t)) and followers

(u(·, t),ut(·, t)) is studied in a proper Sobolev space being specified to H1,n+1 ×Ln+1
2 .

A. Problem Statement

In the sequel, we design the agents’ control inputs qi(t) such that all followers states ui(ς , t) (i = 1,2, ...,n) asymptotically

track the leader’s state u0(ς , t). Each agent communicates continuously to its neighbours by accessing to their local boundary

measurements ui(1, t) and ui,t(1, t). Note that the leader agent is a source node of the overall directed graph including both

leader and followers, and thus it does not receive any data and only sends its own boundary measurements to its neighbours.

The control task is specifically to enforce the exponential point-wise consensus relation

max
x∈[0,1]

|ui(ς , t)− u0(ς , t)|2 ≤ δe−αt , ∀ i ∈ V f (17)

for some nonnegative constants δ and α . Inspired by the natural consensus algorithm for a network of double integrators (see

e.g. [17]), we propose the local interaction protocol

q(t) =−k1Mũ(1, t)− k2Mũt(1, t), (18)
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where k1,k2 are nonnegative tuning constants,

ũ(ς , t) =u(ς , t)− 1nu0(ς , t) (19)

represents the deviation vector of the followers’ states with respect to the leader profile, and

M=L f + diag{a10,a20, . . . ,an0} ∈ R
n×n

. Notice that under Assumption 1 matrix M turns out to be symmetric and positive definite, see e.g. [1] for details.

Remark 2: By using the Lyapunov functional W0(t) =
1
2
‖u0,ς (·, t)‖2

L2
+ 1

2
‖u0,t(·, t)‖2

L2
, whose time derivative along the

solutions of (11)-(14) is Ẇ0(t) =−c0ũ2
0,t(0, t), one concludes that leader’s dynamics are stable but not asymptotically stable. It

is seen, in particular, that system (11)-(14) possesses a multitude of constant stable equilibria of the type u0(ς , t) =U0 = const,

from which it derives that the system possesses a zero eigenvalue, associated with a constant (in space) eigenfunction. All

follower agents will thus eventually synchronize to a constant profile determined by the leader’s initial conditions. It is

worth noticing that autonomous leader’s dynamics are often considered in the literature, see e.g. [8], [12]. Considering non-

autonomous leader’s dynamics generally requires that all follower agents must know the leader’s input signal, as in [18], [20],

thereby compromising the distributed nature of the local interaction protocol. Only more recently (see, e.g., [1]) this restriction

has been successfully removed by means of nonlinear discontinuous local interaction laws capable of ”rejecting” the matching

disturbance represented by the exogenous leader’s driving signal. This challenging task however remains beyond the scope of

the paper which is the first research work, addressing the leader-following consensus problem for agents’ dynamics, governed

by the wave PDE. The above challenge will be pursued in our future research. �

B. Convergence analysis

The performance of the collective agents’ dynamics under the local interaction protocol (18) is going to be investigated and

simple tuning rules are constructively derived such that condition (17) is guaranteed. The boundary value problem governing

the deviation variable ũ(ς , t) then reads as

ũtt(ς , t) = ũςς(ς , t), (20)

ũ(ς ,0) = u(ς ,0)− 1nu0(ς ,0), (21)

ũt(ς ,0) = ut(ς ,0)− 1nu0,t(ς ,0), (22)

ũς (0, t) = c0ũt(0, t), (23)

ũς (1, t) = q(t) =−k1Mũ(1, t)− k2Mũt(1, t). (24)

The properties of the closed-loop agent’s dynamics are investigated in Theorem 1 by Lyapunov analysis considering the

candidate functional

V (t) =E(t)+G1(t)+G2(t), (25)

E(t) =
1

2

∫ 1

0
ũς (ζ , t)

T ũς (ζ , t)dζ +
1

2

∫ 1

0
ũt(ζ , t)

T ũt(ζ , t)dζ +
1

2
k1ũT (1, t)Mũ(1, t), (26)

G1(t) =
1

2
ρ1k2ũT (1, t)Mũ(1, t)+ρ1

∫ 1

0
ũ(1, t)T ũt(ζ , t)dζ , (27)

G2(t) =ρ2

∫ 1

0
(ζ − 1)ũt(ζ , t)

T ũς (ζ , t)dζ , (28)
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with ρ1, ρ2, positive constants to be defined. The quadratic functional

V0(t) = ‖ũς (·, t)‖2
Ln

2
+ ‖ũt(·, t)‖2

Ln
2
+ ‖ũ(1, t)‖2

2, (29)

relying on appropriate norms, and the constants

τ1 = min

{(
1−ρ2 −ρ1

2

)

,k1λm(M)+ρ1k2λm(M)−ρ1

}

, (30)

τ2 = max
{

1+ρ2+ρ1

2 ,k1λM(M)+ρ1,k2λM(M)+ρ1

}

(31)

µ = min
{

1
2 ρ2,

1
2 (ρ2 −ρ1),ρ1

[
k1λm(M)− 1

2 c0

]}
, (32)

will also be used throughout. Provided that

k1 >
c0

2λm(M)
, k2 > 0, (33)

where the positive constant c0 is the same as in the boundary conditions (9), (13), and

0 < ρ1 < min

(

k1λm(M),2k2λm(M),1−ρ2,ρ2,2−
c0

ρ2(1+c2
0)

)

(34)

0 < ρ2 < min

(

1,
2c0

1+c2
0

)

, (35)

the next result is in force.

Theorem 1: Consider the followers’ and leader’s dynamics (7)-(10) and (11)-(14) along with the local interaction rule (18),

(33). Let Assumptions 1 and 2 hold true. Then, the over-all closed-loop system globally possesses a unique classical solution

and the point-wise consensus condition (17) is satisfied with δ =
(1+

√
2)

τ1
V (0) and α = µ

τ2
, where constant V (0) is computed

by (25)-(28) whereas µ ,τ1 and τ2 are given in (30)-(31) with arbitrary coefficients ρ1 and ρ2 subject to (34)-(35).

Proof: First let us note that there locally exists a unique classical solution of the closed-loop system (7)-(10), (11)-(14),

(18), (33). To reproduce this conclusion it suffices to follow the same line of reasoning used the proof of [14, Theorem 1].

Next let us derive under which conditions on the ρ1, ρ2 constants functional (25)-(28) is positive definite. By means of (1)

one derives the following estimations
∣
∣
∣
∣
ρ1

∫ 1

0
ũ(1, t)T ũt(ζ , t)dζ

∣
∣
∣
∣
≤ 1

2
ρ1‖ũ(1, t)‖2

2 +
1

2
ρ1‖ũt(·, t)‖2

Ln
2

(36)

|G2(t)| ≤
1

2
ρ2‖ũt(·, t)‖2

Ln
2
+

1

2
ρ2‖ũς (·, t)‖2

Ln
2
. (37)

By substituting (36)-(37) into (25)-(28) this yields that

V (t)≥1

2
(1−ρ2)‖ũς (·, t)‖2

Ln
2
+

1

2
(1−ρ2−ρ1)‖ũt(·, t)‖2

Ln
2
+

1

2
(k1λm(M)+ρ1k2λm(M)−ρ1)‖ũ(1, t)‖2

2. (38)

Provided that the next inequalities hold

0 < ρ1 < min(k1λm(M),1−ρ2) , 0 < ρ2 < 1, (39)

it is straightforwardly concluded by (38) and (25)-(28) that

τ1V0(t)≤V (t)≤ τ2V0(t), (40)

where V0(t) is defined in (29), and the positive constants τ1 and τ2 are defined in (30)-(31).
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Let us now compute the time derivative of V (t) along the solutions of (20)-(24). Differentiating (26), substituting (20) and

(23)-(24) in the resulting expression, performing integration by parts and finally rearranging yield the chain of equalities

Ė(t) =
∫ 1

0
ũς (ζ , t)

T ũςt(ζ , t)dζ +
∫ 1

0
ũt(ζ , t)

T ũtt(ζ , t)dζ + k1ũT (1, t)Mũt(1, t)

=

∫ 1

0
ũς (ζ , t)

T ũςt(ζ , t)dζ +

∫ 1

0
ũt(ζ , t)

T ũςς (ζ , t)dζ + k1ũT (1, t)Mũt(1, t)

=

∫ 1

0
ũς (ζ , t)

T ũςt(ζ , t)dζ + ũt(x, t)
T ũς (x, t)

∣
∣
x=1

x=0
−
∫ 1

0
ũς (ζ , t)

T ũςt(ζ , t)dζ + k1ũT
t (1, t)Mũ(1, t)

= ũt(1, t)
T ũς (1, t)− ũt(0, t)

T ũς (0, t)+ k1ũT
t (1, t)Mũ(1, t)

=− k2ũT
t (1, t)Mũt(1, t)− c0‖ũt(0, t)‖2

2. (41)

Differentiating (27) along (20), (23)-(24) one obtains

Ġ1(t) = ρ1k2ũt(1, t)
TMũ(1, t)+ρ1

∫ 1

0
ũt(1, t)

T ũt(ζ , t)dζ +ρ1

∫ 1

0
ũ(1, t)T ũtt(ζ , t)dζ

= ρ1k2ũt(1, t)
TMũ(1, t)+ρ1

∫ 1

0
ũt(1, t)

T ũt(ζ , t)dζ +ρ1

∫ 1

0
ũ(1, t)T ũςς (ζ , t)dζ . (42)

Straightforward integration and the BCs (23)-(24) yield

ρ1

∫ 1

0
ũ(1, t)T ũςς (ζ , t)dζ = ρ1ũ(1, t)T ũς (x, t)

∣
∣
x=1

x=0

= ρ1ũ(1, t)T ũς (1, t)−ρ1ũ(1, t)T ũς (0, t)

=−ρ1k1ũ(1, t)TMũ(1, t)−ρ1k2ũ(1, t)TMũt(1, t)−ρ1c0ũ(1, t)T ũt(0, t). (43)

Substituting (43) into (42) yields

Ġ1(t) =ρ1

∫ 1

0
ũt(1, t)

T ũt(ζ , t)dζ −ρ1k1ũ(1, t)TMũ(1, t)−ρ1c0ũ(1, t)T ũt(0, t). (44)

Differentiating (28) yields

Ġ2(t) =ρ2

∫ 1

0
(ζ − 1)ũςς(ζ , t)

T ũς (ζ , t)dζ +ρ2

∫ 1

0
(ζ − 1)ũt(ζ , t)

T ũςt(ζ , t)dζ . (45)

Integrating by parts and substituting (20), (23)-(24) one derives

Ġ2(t) =
ρ2

2
(x− 1)ũς(x, t)

T ũς (x, t)
∣
∣
∣

x=1

x=0
− 1

2
ρ2‖ũς (·, t)‖2

Ln
2

+
ρ2

2
(x− 1)ũt(x, t)

T ũt(x, t)
∣
∣
∣

x=1

x=0
− 1

2
ρ2‖ũt(·, t)‖2

Ln
2

=
ρ2

2
ũς (0, t)

T ũς (0, t)−
1

2
ρ2‖ũς(·, t)‖2

Ln
2
+

ρ2

2
ũt(0, t)

T ũt(0, t)−
1

2
ρ2‖ũt(·, t)‖2

Ln
2

=− 1

2
ρ2 ‖ũς(·, t)‖2

Ln
2
− 1

2
ρ2 ‖ũt(·, t)‖2

Ln
2
+

1

2
ρ2(1+ c2

0)ũt(0, t)
T ũt(0, t). (46)

Differentiating (25) and combining (41), (44) and (46) one obtains

V̇ (t) =Ė(t)+ Ġ1(t)+ Ġ2(t)

=− k2ũT
t (1, t)Mũt(1, t)− c0‖ũt(0, t)‖2

2 +ρ1

∫ 1

0
ũt(1, t)

T ũt(ζ , t)dζ −ρ1k1ũ(1, t)TMũ(1, t)

−ρ1c0ũ(1, t)T ũt(0, t)−
1

2
ρ2 ‖ũς (·, t)‖2

Ln
2
− 1

2
ρ2 ‖ũt(·, t)‖2

Ln
2
+

1

2
ρ2(1+ c2

0)‖ũt(0, t)‖2
2. (47)

Let us estimate the sign-indefinite terms in the right hand side of (47). By means of (1) one derives the next two estimations
∣
∣
∣
∣
ρ1

∫ 1

0
ũt(1, t)

T ũt(ζ , t)dζ

∣
∣
∣
∣
≤ 1

2
ρ1‖ũt(1, t)‖2

2 +
1

2
ρ1‖ũt(·, t)‖2

Ln
2

(48)

∣
∣ρ1c0ũ(1, t)T ũt(0, t)

∣
∣≤ 1

2
ρ1c0‖ũ(1, t)‖2

2 +
1

2
ρ1c0‖ũt(0, t)‖2. (49)
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Considering (48) and (49) into (47), estimating the positive-definite quadratic forms ũT
t (1, t)Mũt(1, t) and ũT (1, t)Mũ(1, t)

in the right-hand side of (47), and rearranging, one obtains

V̇ (t)≤− 1

2
ρ2‖ũς (·, t)‖2

Ln
2
− 1

2
(ρ2 −ρ1)‖ũt(·, t)‖2

Ln
2
−ρ1

[

k1λm(M)− 1

2
c0

]

‖ũ(1, t)‖2
2

−
[

k2λm(M)− 1

2
ρ1

]

‖ũt(1, t)‖2
2 −
[

c0 −
1

2
ρ1c0 −

1

2
ρ2(1+ c2

0)

]

‖ũt(0, t)‖2
2. (50)

Provided that the arbitrary coefficients ρ1 and ρ2 meet the inequalities (34)-(35), it is concluded by (50) and (40) that

V̇ (t)≤−µV0(t)≤− µ

τ2

V (t), (51)

where µ is defined in (32), which implies that V (t) escapes exponentially to zero as fast as V (t)≤V (0)e
− µ

τ2
t
. As in the proof

of [14, Theorem 1], it follows that an arbitrary error solution in question remains uniformly bounded in H1,n ×Ln
2, and hence

they are globally extendible to the right for all t > 0.

Furthermore, by (40) one derives the estimation

V0(t)≤
1

τ1

V (t)≤ ρ0e−αt , ρ0 =
1

τ1

V (0), α =
µ

τ2

(52)

of V0(t). From the definition (29) of V0(t) one concludes that the squared norms ‖ũ(1, t)‖2
2 and ‖ũς(·, t)‖2

Ln
are both upper-

estimated by V0(t). Inequality (6), specialized with b(·) = ũ(·, t) and i = 1, reads as

‖ũ(·, t)‖2
Ln

2
≤ 2

(

‖ũ(1, t)‖2
2 + ‖ũς(·, t)‖2

Ln
2

)

. (53)

Definition (29) also implies that

‖ũ(1, t)‖2
2 + ‖ũς(·, t)‖2

Ln
2
≤V0(t)≤ ρ0e−αt

. Substituting this last estimation into (53) one obtains that

‖ũ(·, t)‖2
Ln

2
≤ 2ρ0e−αt . (54)

Agmon’s inequality yields the next uniform estimation

max
x∈[0,1]

|ũi(x, t)|2 ≤ ũ2
i (1, t)+ ‖ũi(·, t)‖L2

‖ũi,ς (·, t)‖L2
(55)

for |ũi(x, t)|. The terms appearing in the right-hand side of (55) are estimated as

ũ2
i (1, t) ≤ ‖ũ(1, t)‖2

2 ≤ ρ0e−αt , (56)

‖ũi(·, t)‖L2
≤ ‖ũ(·, t)‖Ln

2
≤
√

2ρ0e−
α
2 t , (57)

‖ũi,ς (·, t)‖L2
≤ ‖ũς (·, t)‖Ln

2
≤√

ρ0e−
α
2 t . (58)

Substituting (56)-(58) into (55) yields

max
x∈[0,1]

|ũi(x, t)|2 ≤
(

1+
√

2
)

ρ0e−αt (59)

which, due to definition (19) of ũi(x, t), results in the point-wise consensus relation (17) with the parameters δ =
(

1+
√

2
)

ρ0 =

(1+
√

2)
τ1

V (0) and α = µ
τ2

. Since the Lyapunov functional V (t) is radially unbounded, the demonstrated exponential stability

holds globally for the closed-loop system in question. Theorem 1 is proven.
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IV. DISTURBANCE PROPAGATION ISS ANALYSIS

In the sequel, the perturbed version

utt(ς , t) = uςς (ς , t)+ f (ς , t), (60)

u(ς ,0) = u0(ς), ut(ς ,0) = u0
t (ς), (61)

uς (0, t) = c0ut(0, t)+ψ0(t), (62)

uς (1, t) = q(t)+ψ1(t) (63)

of the followers’ dynamics (7)-(10) is considered, where the PDE (60) is corrupted by an in-domain disturbance f (ς , t) of

class Lloc
∞ (L2), and the BCs (62)-(63) are corrupted by boundary perturbation terms ψ0(t) and ψ1(t) of class C2. Since in

the perturbed case the compatibility condition (16) would necessarily be modified to involve the boundary perturbations, and

therefore it would be rather restrictive, Assumption 2 is no longer in force. Instead, the meaning of the perturbed boundary-value

problem (60) –(63) is subsequently viewed in the weak sense as it is done in [16] for a diffusion PDE.

The same local interaction control rule (18) proves to be capable of ensuring the exponential ISS inequality, relating to

suitable norms of the tracking error (19) and admissible perturbations. In the sequel, let the arbitrary parameters ρ1,ρ2 in

(25)-(28) be such that

0 < ρ1 < min

(

k1λm(M),1−ρ2,ρ2 − ξ1,2k2λm(M)− 1,
1

c0

[

2

(

c0 −
1

2
ξ2

)

−ρ2(1+ c0+ c2
0)

])

, (64)

ξ1 < ρ2 < min

(

1,
2
(
c0 − 1

2
ξ2

)

1+ c0+ c2
0

)

. (65)

for some ξ1 > 0 and 0 < ξ2 <
1

2c0
where the positive constant c0 is the same as in the boundary conditions (62), (13). Letting

k1 >
c0+3

2λm(M)
, k2 >

1

2λm(M)
(66)

and setting

q0 =
1

2

[
1

ξ2

+ρ1 +ρ2(c0 + 1)

]

, q f =

(
1

2ξ1

+
1

2
ρ1 +ρ2

)

, (67)

µ2 = min

{
1

4
ρ2,

1

2
(ρ2 −ρ1 −ξ1) ,ρ1

[

k1λm(M)− 1

2
c0−

3

2

]}

. (68)

the next result is in order.

Theorem 2: Consider the leader and perturbed follower PDEs (11)-(14) and (60)-(63), initialized in H1,n+1 × Ln+1
2 and

governed by the local interaction rule (18), (66). Let Assumption 1 be in force and let f (ς , t) be of class Lloc
∞ (L2) whereas

ψ0(t) and ψ1(t) be of class C2. Then, the over-all closed-loop system globally possesses a unique weak solution and the

following exponential ISS relation

V0(t)≤V0(0)e
− µ2

τ2
t
+

τ2q0

µ2τ1

Es

(
‖ψ0(t)‖2

2

)
+

τ2

µ2τ1

Es

(
‖ψ1(t)‖2

2

)
+

τ2q f

µ2τ1

Es

(

‖ f (·, t)‖2
Ln

2

)

(69)

holds true with V0(0), derived from (29), with τ1 and τ2, given by (30), (31), with constants ρ1 and ρ2, fulfilling (64),(65),

and with q0, q f , µ2, specified by (67), (68).

Proof: By following the line of reasoning used in the proof of [16, Theorem 1], the existence of a unique weak solution

of the closed-loop system (11)-(14), (18), (60)-(63) is established. The same Lyapunov functional (25)-(28), adopted to analyze
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the unperturbed dynamics, is now applied to the ISS analysis. Provided that restrictions (64)-(65) hold, the previously derived

relations

τ1V0(t)≤V (t)≤ τ2V0(t), (70)

are still in force, where V0(t) is defined in (29), and the positive constants τ1 and τ2 are defined in (30)-(31). By (60)-(63) and

(11)-(14), coupled to the local interaction rule (18), the boundary value problem, governing the deviation variable (19), now

reads as

ũtt(ς , t) = ũςς (ς , t)+ f (ς , t), (71)

ũ(ς ,0) = u(ς ,0)− 1nu0(ς ,0), (72)

ũt(ς ,0) = ut(ς ,0)− 1nu0,t(ς ,0), (73)

ũς (0, t) = c0ũt(0, t)+ψ0(t), (74)

ũς (1, t) =−k1Mũ(1, t)− k2Mũt(1, t)+ψ1(t). (75)

Let us now compute the time derivative of V (t) along the weak solutions of (71)-(75). Differentiating (26) and substituting

(71) in the resulting expression yields

Ė(t) =

∫ 1

0
ũς (ζ , t)

T ũςt(ζ , t)dζ +

∫ 1

0
ũt(ζ , t)

T ũtt(ζ , t)dζ + k1ũT (1, t)Mũt(1, t)

=

∫ 1

0
ũς (ζ , t)

T ũςt(ζ , t)dζ +

∫ 1

0
ũt(ζ , t)

T ũςς (ζ , t)dζ +

∫ 1

0
ũt(ζ , t)

T f (ζ , t)dζ + k1ũT (1, t)Mũt(1, t). (76)

Performing integration by parts, considering (74)-(75) into the resulting relation, and finally rearranging, yield the chain of

equalities

Ė(t) =
∫ 1

0
ũς (ζ , t)

T ũςt(ζ , t)dζ + ũt(x, t)
T ũς (x, t)

∣
∣
x=1

x=0

−
∫ 1

0
ũς (ζ , t)

T ũςt(ζ , t)dζ + k1ũT
t (1, t)Mũ(1, t)+

∫ 1

0
ũt(ζ , t)

T f (ζ , t)dζ

= ũt(1, t)
T ũς (1, t)− ũt(0, t)

T ũς (0, t)+ k1ũT
t (1, t)Mũ(1, t)+

∫ 1

0
ũt(ζ , t)

T f (ζ , t)dζ

=− k2ũT
t (1, t)Mũt(1, t)− c0‖ũt(0, t)‖2

2 + ũT
t (1, t)ψ1(t)− ũT

t (0, t)ψ0(t)+

∫ 1

0
ũt(ζ , t) f (ζ , t)dζ , (77)

Differentiating (27) and and substituting (71) in the resulting expression yields

Ġ1(t) = ρ1k2ũt(1, t)
TMũ(1, t)+ρ1

∫ 1

0
ũt(1, t)

T ũt(ζ , t)dζ +ρ1

∫ 1

0
ũ(1, t)T ũtt(ζ , t)dζ

= ρ1k2ũt(1, t)
TMũ(1, t)+ρ1

∫ 1

0
ũt(1, t)

T ũt(ζ , t)dζ +ρ1

∫ 1

0
ũ(1, t)T ũςς (ζ , t)dζ

+ρ1

∫ 1

0
ũ(1, t)T f (ζ , t)dζ . (78)

By direct integration and considering (74)-(75) it yields

ρ1

∫ 1

0
ũ(1, t)T ũςς (ζ , t)dζ =ρ1ũ(1, t)T ũς (x, t)

∣
∣x=1

x=0

=ρ1ũ(1, t)T ũς (1, t)−ρ1ũ(1, t)T ũς (0, t)

=−ρ1k1ũ(1, t)TMũ(1, t)−ρ1k2ũ(1, t)TMũt(1, t)+ρ1ũT (1, t)ψ1(t)

−ρ1c0ũ(1, t)T ũt(0, t)−ρ1ũT (1, t)ψ0(t). (79)
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Substituting (79) into (78) one obtains

Ġ1(t) =ρ1

∫ 1

0
ũt(1, t)

T ũt(ζ , t)dζ −ρ1k1ũ(1, t)TMũ(1, t)−ρ1c0ũ(1, t)T ũt(0, t)

+ρ1

∫ 1

0
ũ(1, t)T f (ζ , t)dζ +ρ1ũT (1, t)ψ1(t)−ρ1ũT (1, t)ψ0(t). (80)

Differentiating (28) and substituting (71) yields

Ġ2(t) =ρ2

∫ 1

0
(ζ − 1)ũtt(ζ , t)

T ũς (ζ , t)dζ +ρ2

∫ 1

0
(ζ − 1)ũt(ζ , t)

T ũςt(ζ , t)dζ =

=ρ2

∫ 1

0
(ζ − 1)ũςς(ζ , t)

T ũς (ζ , t)dζ +ρ2

∫ 1

0
(ζ − 1) f (ζ , t)T ũς (ζ , t)dζ +ρ2

∫ 1

0
(ζ − 1)ũt(ζ , t)

T ũςt(ζ , t)dζ (81)

Integrating by parts one derives

Ġ2(t) =
ρ2

2
(x− 1)ũς(x, t)

T ũς (x, t)
∣
∣
∣

x=1

x=0
− 1

2
ρ2‖ũς (·, t)‖2

Ln
2
+ρ2

∫ 1

0
(ζ − 1) f (ζ , t)T ũς (ζ , t)dζ

+
ρ2

2
(x− 1)ũt(x, t)

T ũt(x, t)
∣
∣
∣

x=1

x=0
− 1

2
ρ2‖ũt(·, t)‖2

Ln
2

=
ρ2

2
ũς (0, t)

T ũς (0, t)−
1

2
ρ2‖ũς (·, t)‖2

Ln
2
+ρ2

∫ 1

0
(ζ − 1) f (ζ , t)T ũς (ζ , t)dζ +

ρ2

2
ũt(0, t)

T ũt(0, t)−
1

2
ρ2‖ũt(·, t)‖2

Ln
2
. (82)

Substituting (74) into (82) and rearranging one obtains

Ġ2(t) =− 1

2
ρ2‖ũς (·, t)‖2

Ln
2
− 1

2
ρ2‖ũt(·, t)‖2

Ln
2
+ρ2

∫ 1

0
(ζ − 1) f (ζ , t)T ũς (ζ , t)dζ

+
1

2
ρ2(1+ c2

0)‖ũt(0, t)‖2
2 +ρ2c0ψT

0 (t)ũt(0, t)+
1

2
ρ2‖ψ0(t)‖2

2. (83)

By using relation (1), let us estimate all perturbation-dependent and sign-indefinite terms in the right-hand sides of (77),

(80), and (83).

|ũT
t (1, t)ψ1(t)| ≤

1

2
‖ũt(1, t)‖2

2 +
1

2
‖ψ1(t)‖2

2 (84)

|ũT
t (0, t)ψ0(t)| ≤

ξ2

2
‖ũt(0, t)‖2

2 +
1

2ξ2

‖ψ0(t)‖2
2, ξ2 > 0 (85)

∣
∣
∣
∣

∫ 1

0
ũt(ζ , t) f (ζ , t)dζ

∣
∣
∣
∣
≤ ξ1

2
‖ũt(·, t)‖2

Ln
2
+

1

2ξ1

‖ f (·, t)‖2
Ln

2
, ξ1 > 0 (86)

∣
∣
∣
∣
ρ1

∫ 1

0
ũt(1, t)

T ũt(ζ , t)dζ

∣
∣
∣
∣
≤ ρ1

2
‖ũt(1, t)‖2

2 +
ρ1

2
‖ũt(·, t)‖2

Ln
2

(87)

∣
∣ρ1c0ũ(1, t)T ũt(0, t)

∣
∣≤ ρ1c0

2
‖ũ(1, t)‖2

2 +
ρ1c0

2
‖ũt(0, t)‖2

2 (88)

∣
∣
∣
∣
ρ1

∫ 1

0
ũ(1, t)T f (ζ , t)dζ

∣
∣
∣
∣
≤ ρ1

2
‖ũ(1, t)‖2

2 +
ρ1

2
‖ f (·, t)‖2

Ln
2

(89)

|ρ1ũT (1, t)ψ1(t)| ≤
ρ1

2
‖ũ(1, t)‖2

2 +
ρ1

2
‖ψ1(t)‖2

2 (90)

|ρ1ũT (1, t)ψ0(t)| ≤
ρ1

2
‖ũ(1, t)‖2

2 +
ρ1

2
‖ψ0(t)‖2

2 (91)

∣
∣
∣
∣
ρ2

∫ 1

0
(ζ − 1) f (ζ , t)T ũς (ζ , t)dζ

∣
∣
∣
∣
≤
∣
∣
∣
∣
ρ2

∫ 1

0
f (ζ , t)T ũς (ζ , t)dζ

∣
∣
∣
∣
≤ ρ2‖ f (·, t)‖2

Ln
2
+

ρ2

4
‖ũς(·, t)‖2

Ln
2

(92)

|ρ2c0ψT
0 (t)ũt(0, t)| ≤

ρ2c0

2
‖ũt(0, t)‖2

2 +
ρ2c0

2
‖ψ0(t)‖2

2 (93)
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Substituting (84)-(86) into (77), estimating the quadratic form, and rearranging yields

Ė(t)≤− k2λm(M)‖ũt(1, t)‖2
2 − c0‖ũt(0, t)‖2

2 +
1

2
‖ũt(1, t)‖2

2 +
1

2
‖ψ1(t)‖2

2

+
ξ2

2
‖ũt(0, t)‖2

2 +
1

2ξ2

‖ψ0(t)‖2
2 +

ξ1

2
‖ũt(·, t)‖2

Ln
2
+

1

2ξ1

‖ f (·, t)‖2
Ln

2
. (94)

Substituting (87)-(91) into (80), estimating the quadratic form, and rearranging yields

Ġ1(t)≤
ρ1

2
‖ũt(1, t)‖2

2 +
ρ1

2
‖ũt(·, t)‖2

Ln
2
−ρ1k1λm(M)‖ũ(1, t)‖2

2 +
ρ1c0

2
‖ũ(1, t)‖2

2 +
ρ1c0

2
‖ũt(0, t)‖2

2

+
ρ1

2
‖ũ(1, t)‖2

2 +
ρ1

2
‖ f (·, t)‖2

Ln
2
+

ρ1

2
‖ũ(1, t)‖2

2 +
ρ1

2
‖ψ1(t)‖2

2 +
ρ1

2
‖ũ(1, t)‖2

2 +
ρ1

2
‖ψ0(t)‖2

2. (95)

Substituting (92)-(93) into (83), and rearranging yields

Ġ2(t)≤− 1

2
ρ2‖ũς (·, t)‖2

Ln
2
− 1

2
ρ2‖ũt(·, t)‖2

Ln
2
+ρ2‖ f (·, t)‖2

Ln
2
+

ρ2

4
‖ũς (·, t)‖2

Ln
2

+
1

2
ρ2(1+ c2

0)‖ũt(0, t)‖2
2 +

1

2
ρ2‖ψ0(t)‖2

2 +
ρ2c0

2
‖ũt(0, t)‖2

2 +
ρ2c0

2
‖ψ0(t)‖2

2. (96)

Combining together (94)-(96) one obtains after some straightforward manipulations the estimation

V̇ (t) = Ė(t)+ Ġ1(t)+ Ġ2(t)

≤− 1

4
ρ2‖ũς (·, t)‖2

Ln
2
− 1

2
(ρ2 −ρ1−ξ1)‖ũt (·, t)‖2

Ln
2
−ρ1

[

k1λm(M)− 1

2
c0−

3

2

]

‖ũ(1, t)‖2
2

−
[

k2λm(M)−1

2
− 1

2
ρ1

]

‖ũt (1, t)‖2
2 −
[

c0−
1

2
ξ2 −

1

2
ρ1c0 −

1

2
ρ2(1+c0 +c2

0)

]

‖ũt(0, t)‖2
2

+
1

2

[
1

ξ2
+ρ1 +ρ2(c0 +1)

]

‖ψ0(t)‖2
2 +‖ψ1(t)‖2

2 +

(
1

2
ξ1 +

1

2
ρ1 +ρ2

)

‖ f (·, t)‖2
Ln

2
. (97)

Provided that conditions (66) hold and the arbitrary coefficients ρ1 and ρ2 meet the inequalities (64)-(65), it is therefore

concluded by (97) that

V̇ (t)≤−µ2V0(t)+ q0‖ψ0(t)‖2
2 + ‖ψ0(t)‖2

2 + q f‖ f (·, t)‖2
Ln

2
(98)

where µ2 > 0 is defined in (68) and parameters q0, q f are defined in (67). By virtue of (29) and (70), estimation (98) yields

V̇ (t)≤−µ2

τ2

V (t)+ q0‖ψ0(t)‖2
2 + ‖ψ0(t)‖2

2 + q f‖ f (·, t)‖2
Ln

2
, (99)

where τ2 > 0 is given in (31). Applying the Comparison Lemma 3.4 from [9] to (99) yields the ISS property

V (t)≤V (0)e
− µ2

τ2
t
+

τ2q0

µ2

Es

(
‖ψ0(t)‖2

2

)
+

τ2

µ2

Es

(
‖ψ1(t)‖2

2

)
+

τ2q f

µ2

Es

(

‖ f (·, t)‖2
Ln

2

)

. (100)

It follows that the weak solutions of the error system (71)-(75) do not escape to infinity in finite time. Hence, these solutions

are globally extendible to the right for all t > 0. To complete the proof it remains to note that coupling (100) to (70) it directly

follows (69). Theorem 2 is proven.

Remark 3: By exploiting Lemma 1 and considering definition (29) one derives the inequality ‖ũ(·, t)‖2
Ln

2
≤ 2V0(t), due to

which the ISS inequality (69) straightforwardly yields a similar estimation directly involving the tracking error norm ‖ũ(·, t)‖2
Ln

2
.
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Fig. 1. Considered communication topology.
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Fig. 2. Results of Test 1: (left) L3
2-norm of the tracking error; (right) Spatio-temporal profile of the error variable ũ1(ς ,t).

V. SIMULATION RESULTS

A network including one leader and three followers is considered, with the communication topology displayed in Fig. 1

(where agent 0 represents the leader). Matrix M is

M=








2 −1 0

−1 2 −1

0 −1 1







. (101)

whose minimum and maximum eigenvalues are λm(M) = 0.19 and λM(M) = 3.2. The c0 parameter entering the leader’s and

followers’ boundary condition is set as c0 = 2.5. The initial agents’ transversal displacement is u0(ς)= [5cos(2πς),cos(πς),−5cos(πς)],

for the followers, and u0(x,0) = 10cos(2πς) for the leader, whereas the initial agents’ velocities are u0
t (ς) = [ς ,2ς ,3ς ] for the

followers and u0,t(ς) = 0 for the leader. The boundary control gains were set as k1 = 30 and k2 = 10 in accordance with (33)

and (66). We ran three simulation tests. In Test 1, the case where no perturbations affect agent’s dynamics (ψ0(t) = ψ1(t) = 03

and f (ζ , t) = 03) was considered. Figure 2 reports the results of Test 1 by showing the norm of the tracking error error and the

spatio-temporal profile of the deviation between the state of the leader and that of follower one, which both confirm that the states

of all follower agents will be synchronizing with that of the leader. In the Test 2 and Test 3, two distinct perturbed situations

are studied. Particularly, in Test 2, we consider the perturbations ψ0(t) = ψ1(t) = 10cos(10t)13 and f (ς , t) = 10cos(10t)13

whereas in Test 3 they are set as ψ0(t) = ψ1(t) = 50cos(10t)13 and f (ς , t) = 50cos(10t)13. Figure 3 shows the norm of the

tracking error in the Test 2 and Test 3. As expected, in the steady state the norm shown in Figure 3-right is five times higher

than that of Fig. 3-left.

VI. CONCLUSION

In this paper, the leader follower consensus problem has been addressed with reference to agents’s dynamics modeled by

boundary-controlled wave equations. Among the future problems to be tackled, the (leaderless or leader-following) consensus



14

0 5 10 15
Time [s]

0

0.2

0.4

0.6

0.8

1

0 5 10 15
Time [s]

0

0.2

0.4

0.6

0.8

1

Fig. 3. L3
2-norm of the tracking error in Test 2 (left) and Test 3 (right).

problem for distributed parameter multi-agent systems with directed, and possibly switching, communication topology appears

to be interesting and meaningful.
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