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Controller Design via Experimental Exploration

with Robustness Guarantees
Tobias Holicki, Carsten W. Scherer and Sebastian Trimpe

Abstract—For a partially unknown linear systems, we present
a systematic control design approach based on generated data
from measurements of closed-loop experiments with suitable test
controllers. These experiments are used to improve the achieved
performance and to reduce the uncertainty about the unknown
parts of the system. This is achieved through a parametrization
of auspicious controllers with convex relaxation techniques from
robust control, which guarantees that their implementation on the
unknown plant is safe. This approach permits to systematically
incorporate available prior knowledge about the system by
employing the framework of linear fractional representations.

Index Terms—Experimental exploration, robust controller de-
sign, linear matrix inequalities.

I. INTRODUCTION

R
ECENTLY, learning and data-based control design ap-

proaches have received a lot of attention even for linear

systems [1]–[6]. These approaches can often be subsumed

under the broad framework of reinforcement learning [7], but

are still rather diverse [8]. In [1] robust control is combined

with a dual design strategy that is used for exploring the

closed-loop behavior, while [2] employs the system level

synthesis framework with an identification step followed by

a robust design and an end-to-end analysis. The approaches

in [3], [4] are based on policy gradient methods, while

[5], [6] rely on Bayesian optimization strategies involving

Gaussian processes for tuning the controller parameters. The

latter strategies turned out to be very efficient for various

applications, in particular, in robotics [9]–[11].

Bayesian optimization and other direct sampling methods

aim to synthesize optimal controllers based on measurements

of a closed-loop cost function involving an unknown system

P0 to which suitable test controllers are applied [5], [6], [9]–

[11]. While these methods have successfully been used in

practice, several aspects are subject to current research:

• A critical issue is safety which means here (and in con-

trast to the many other interpretations as, e.g., in [12])

that the implemented controllers are guaranteed to stabilize

the unknown plant P0 [5], [13]. Such guarantees are not

often provided in learning control, which might lead to
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catastrophic outcomes due to closed-loop instability during

the tuning process. To this end, a safe threshold on the

cost is introduced in [5] as an indicator for stability, while

[13] incorporates a robustness objective in terms of classical

delay and gain margins.

• The choice of a suitable parametrization of test controllers is

another important issue which aims to keep the evaluations

of the cost small even if the set of admissible controllers is

large [14]–[16]. In [15], several naive parametrizations are

illustrated and one based on the Youla parametrization is

studied. In [14], the controller candidates are parametrized

in terms of the weights in an LQ design for a given nominal

system.

• Different ways to incorporate prior knowledge is another

topic of tremendous importance in these approaches [2],

[6], [7], [11], [14], [17]. A linearization of the underlying

nonlinear system is used in [14] for the construction of

a parametrization. In [6], prior knowledge is used for the

design of specialized kernels that outperform standard ones,

while [11] discusses how to choose hyperparameters from

some simulation model.
In this paper, we propose a systematic parametrization

of controllers based on modeling, analysis and design tech-

niques from robust control that can be used for controller

tuning/sampling and addresses all of the above concerns at

the same time.

We assume that P0 is only partially unknown and employ

the linear fractional representation (LFR) framework in order

to separate known from unknown (or difficult) components.

Such representations are well-established and flexible mod-

eling tools in robust control [18], [19], but they are not

often used in learning control. In particular, LFRs allow for

expressing P0 as feedback interconnection of a known linear

system P and some unknown or uncertain component ∆ ∈ ∆;

the set ∆ captures, e.g., crude guesses on parameter ranges.

Prior knowledge is thus encoded in the choices of P and ∆.

Dedicated robust design techniques then allow the synthesis

of controllers that stabilize the uncertain interconnection and,

hence, are guaranteed to stabilize the unknown P0; these

techniques ensure safety. In this initial work, we assume

that the uncertain component is parametric and construct a

parametrization based on a partition of the set ∆ =
⋃

∆k.

The main idea is to use controllers as obtained from a robust

multi-objective design problem with guaranteed stability and

performance on ∆ and ∆k, respectively.

Outline. The remainder of the paper is organized as follows.

After a short paragraph on notation, we specify the considered

learning control problem and discuss its essential ingredients.
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Next we propose a systematic parametrization of robust con-

trollers for safely and exploratively evaluating the underlying

closed-loop cost function. We elaborate on the properties of

this parametrization and demonstrate its benefits on some

numerical examples.

Notation. We use the star product “⋆” and all rules for

linear fractional transformations (LFTs) as in [18, Chapter 10].

Objects that can be inferred by symmetry or are not relevant

are indicated by “•”.

II. SETTING

A. Problem Formulation

We assume that we are given an unknown real system P0

described as
(

e
y

)

= P0

(

d
u

)

. (1)

Here e is the controlled output and d is a generalized dis-

turbance (both used to formulate performance specifications),

while y is the measurement output and u the control input.

The underlying control problem is to find a controller

u = Fy (2)

such that the corresponding closed-loop system, which is

referred to as P0 ⋆ F , is stable and such that a closed-loop

cost function J , which encodes the performance specifications,

is minimized. Since P0 is unknown, we aim to find such a

controller based on evaluations of the cost function J . This

amounts to the selection of suitable test controllers, their

implementation on the real system P0 and the evaluation of

their achieved closed-loop performance.

This is the setting in [5], [6], [9]–[11], where the individual

approaches differ, e.g., in the choice of cost, the available

measurements from the plant, the assumed prior knowledge

about the plant and the employed controller parametrization.

We confine the discussion to continuous-time linear time-

invariant (LTI) systems P0 and the design of state-feedback

controller gains F which motivates to choose y as the state x
of P0. Moreover, we choose the H∞-norm cost function

J : F 7→ J(F ) := ‖P0 ⋆ F‖∞, (3)

for which ample motivations are found in the robust control

literature. Data-based techniques for estimating H∞-norms

have been proposed, e.g., in [20]. To simplify the exposition,

we assume that the measurements of the cost are exact,

although it is possible to extend our framework to noisy ones.

B. Encoding Prior Knowledge

We consider the case that P0 is partially unknown. To this

end, we adopt the framework of LFRs [18] and describe P0

as the interconnection of some known system P given by








ẋ(t)
z(t)
e(t)
y(t)









=









A B1 B2 B3

C1 D11 D12 D13

C2 D21 D22 D23

I 0 0 0

















x(t)
w(t)
d(t)
u(t)









(4)

in feedback with some unknown part or uncertainty

w(t) = ∆0z(t). (5)

Here ∆0 is a real matrix of suitable dimension and w, z are

the interconnection variables. Then (1) admits a state-space

representation with the matrix




A B2 B3

C2 D22 D23

I 0 0



+





B1

D21

0



∆0(I −D11∆0)
−1

(

C1 D12 D13

)

.

By slightly abusing the notation, the latter matrix and the

system (1) are denoted as ∆0 ⋆ P . Note that the controlled

unknown system, the interconnection of (4), (5) and (2), is

then given by P0 ⋆ F = (∆0 ⋆ P ) ⋆ F = ∆0 ⋆ P ⋆ F . Such

representations are known to be highly flexible since they

permit to effectively capture structural dependencies of models

on uncertain scalar parameters or matrix sub-blocks, which

are typically collected on the diagonal of the (structured)

uncertainty ∆0. As an extra advantage, LFRs allow a seamless

generalization to multiple heterogeneous (i.e., a mixture of

time-varying, non-linear or infinite dimensional) uncertainties

collected in a nonlinear feedback operator w(t) = ∆0(t, z)(t),
but this is not pursued here.

Instead, we adopt the point-of-view that ∆0 describes

unknown parts of the system P0, while the known parts (as,

e.g., resulting from first-principle modeling) are captured by

P . Moreover, we assume that ∆0 is contained in some known

set ∆ of matrices that is compact and typically given by

{diag(δ1I, . . . , δmr
I,∆1, . . . ,∆mf

) : |δj | ≤ 1, ‖∆j‖ ≤ 1}

with (repeated) diagonal and full unstructured blocks on the

diagonal, all bounded in norm by one. As an extreme case, this

description does capture the models in [2], [6], [17] and the

ones in [1], [3], [4], [8], in which it is assumed that nothing

aside from linearity is known about P0 and where ∆0 is just

one large unstructured uncertain matrix.

Note that the development of modern robust control has

been substantially motivated by the fact that facing completely

unknown systems is often not realistic. By now LFRs are used

in tandem with dedicated analysis and design tools from robust

control, such as structural singular values or integral quadratic

constraints (IQCs) [21], which permit to accurately exploit the

fine structure of the unknown ∆0.

Therefore, in view of their modeling power, LFRs provide

an ideal setting to incorporate prior structural knowledge about

a system (through P ) with unknown to-be-learnt components

(through the elements of ∆0).

C. Safety

Clearly, guaranteeing stability is a critical issue in learning

based approaches since probing the system with gains that are

not stabilizing can lead to catastrophes. In contrast to many

other approaches as, e.g., in [9]–[11] and aligned with [6], we

propose to only select controllers that are guaranteed to be

robustly stabilizing, i.e., that are taken from the set

F(∆) := {F : F stabilizies ∆ ⋆ P for all ∆ ∈ ∆}. (6)



This set is typically much smaller than the set of controllers

that are merely required to stabilize ∆0 ⋆ P . However, since

∆0 ∈ ∆ is unknown and since we can only rely on the prior

knowledge about ∆, there is no other choice than to pick gains

from F(∆) in order to ensure a safe operation of the system

in closed-loop. The minimal value of J(F ) over the set F(∆)
is related to the cost of interest as

inf
F stabilizes P0

J(F ) ≤ inf
F∈F(∆)

J(F ), (S)

in which the gap reflects the price to-be-paid for safety.

D. Motivation for Controller Parametrizations

For optimizing the cost J it is highly beneficial and an often

seen strategy to parameterize a family of test controllers by

a few parameters before applying an optimization algorithm,

especially if the ambient space of controller gains has a large

dimension [14]–[16]. Formally, such a parametrization is a

mapping F with a domain dom(F) that is contained in a low

dimensional ambient space and chosen in order to render the

gap in the inequality

inf
F stabilizes P0

J(F ) ≤ inf
θ∈dom(F)

J(F(θ)) (P ′)

as small as possible. Then, the idea is to minimize the

surrogate cost J ◦F over dom(F) instead of determining the

minimum of the original cost J . Since the former minimization

problem is formulated in a low dimensional space, it is

expected to require substantially fewer evaluations of the

cost function for its (approximate) solution. The gap in (P ′)

constitutes the price to-be-paid for this reduction of complexity

and is rarely analyzed in the literature. We stress that it is

instrumental to choose a parametrization F such that its values

are contained in F(∆) for reasons of safety. Then the gap in

(P ′) can even be more precisely identified as the sum of that

in (S) and the one in

inf
F∈F(∆)

J(F ) ≤ inf
θ∈dom(F)

J(F(θ)). (P)

E. Main Contributions

For some index set I, we propose a novel parametrization

F : I → F(∆) of auspicious robustly stabilizing controllers

based on a partition of ∆. It features an a priori safety

guarantee without the need to ensure this property through

the employed optimization algorithm as proposed, e.g., in [4].

For its construction, we use advanced robust control techniques

that explicitly take the available prior knowledge into account.

Based on this parametrization, we show how experimental

controller probing allows for controlling the size of the gap in

(P) by varying the coarseness of the partition of ∆, and how

to even reduce the gap in (S) by systematically decreasing the

size of ∆ without endangering safety.

In comparison to a standard robust design, which does not

utilize data from closed-loop experiments, our approach natu-

rally generates safe controllers with improved performance on

the real plant P0.

III. PARAMETRIZATION OF TEST CONTROLLERS

A. Construction of the Controller Parametrization

Let us choose the index set I := {1, . . . , N} and subsets

∆1, . . . ,∆N of the uncertainty set ∆ that form the partition

∆ =
⋃

k∈I

∆k with int∆k ∩ int∆l = ∅ for all k, l ∈ I.

With this partition, we construct F : I → F(∆) based on

the rationale to render J(F(k)) for at least one index k ∈ I

as small as possible, since this leads to the best possible

reduction of the gap in (P). The proposed parametrization

assigns to k ∈ I a controller F ∈ F(∆) which reduces

sup∆∈∆k
‖∆ ⋆ P ⋆ F‖∞ as much as possible. This means

that we are facing a robust multi-objective synthesis problem

involving robust stability w.r.t. ∆ ∈ ∆ and worst-case H∞

performance w.r.t. ∆ ∈ ∆k. Such problems are usually

nonconvex as well as nonsmooth and thus hard to solve

systematically. Still, it is possible to compute good upper

bounds on the corresponding optimal value by solving a

linear SDP if relying on so-called multiplier relaxations in

robust control. One such relaxation is given in Theorem 1 and

requires to specify a set P(∆) of real symmetric matrices with

an LMI description such that
(

−∆T

I

)T

P

(

−∆T

I

)

≺ 0 for all ∆ ∈ ∆, P ∈ P(∆).

We also assume that such multiplier classes P(∆k) are avail-

able for the partition members ∆k and for k = 1, . . . , N .

A more detailed discussion with concrete choices for such

multiplier sets can be found in [22], [23].

Theorem 1: For fixed k ∈ I consider the system of LMIs

Y ≻ 0, (•)T





0 I
I 0

P













I 0
−A

T −C
T
1

0 I
−BT

1 −DT
11









≻ 0, (7a)

(•)T













0 I
I 0

Pk

−γ2I 0
0 I





























I 0 0
−A

T −C
T
1 −C

T
2

0 I 0
−BT

1 −DT
11 −DT

21

0 0 I
−BT

2 −DT
12 −DT

22

















≻ 0

(7b)

in the variables Y = Y T , P ∈ P(∆), Pk ∈ P(∆k), M , γ and

with the abbreviations

(A,C1,C2) :=(AY +B3M,C1Y +D13M,C2Y +D23M).

If these LMIs are feasible, the controller gain F := MY −1

satisfies F ∈ F(∆) and sup∆∈∆k
‖∆ ⋆ P ⋆ F‖∞ < γ.

The proof of this result is found in [23]. It shows that

inf
F∈F(∆)

sup
∆∈∆k

‖∆ ⋆ P ⋆ F‖∞ ≤ γ∗(k) (8)

is satisfied for γ∗(k) :=inf{γ ∈ R : LMIs (7) are feasible}.

All this leads us to the construction of the parametrization

F as follows: For some fixed small ε > 0 and γε
∗(k) :=

(1 + ε)γ∗(k), we assign to k ∈ I some gain F(k) with

F(k) ∈ F(∆) and sup
∆∈∆k

‖∆ ⋆ P ⋆ F(k)‖∞ ≤ γε
∗(k). (9)



We emphasize that both γ∗(k) and F(k) can be computed by

solving a standard semi-definite program. Still note that, in

general, γ∗(k) is not attained (no optimal controller exists),

which motivates the introduction of ε.

In the sequel, we abbreviate the surrogate cost function

resulting from the parametrization F as

L(k) := J(F(k)) = ‖∆0 ⋆ P ⋆ F(k)‖∞ for k ∈ I.

Further, let us note at this point that ∆0 ∈ ∆k for some index

k ∈ I clearly implies

L(k) ≤ sup
∆∈∆k

‖∆ ⋆ P ⋆ F(k)‖∞ ≤ γε
∗(k). (10)

Remark 2: It is routine to adapt Theorem 1 to a singleton

∆k = {∆} with any ∆ ∈ ∆. This adaptation no longer

requires to choose a multiplier class for ∆k which promotes a

smaller relaxation gap in (8). It also permits the choice I = ∆

as a highly useful extreme case in our construction and leads

to a parametrization F mapping ∆ into F(∆).
Remark 3: As a key difference between the cost J and

its surrogate J ◦ F , the domain of the former consists of the

only implicitly defined set of (robustly) stabilizing controllers,

while the latter can be evaluated directly. In particular for I =
∆ as in Remark 2, J ◦ F is simply defined on ∆.

B. Application of the Controller Parametrization

After having introduced the controller parametrization, the

conceptual algorithm of this paper reads as follows. For each

k ∈ I, we can implement the controller F(k) on the system,

since it is assured to be stabilizing for P0, and measure the

cost L(k). A mere minimization over k ∈ I then leads to an

optimal controller F(k∗), and inequality (P ′) now reads as

inf
F stabilizes P0

J(F ) ≤ L(k∗) for k∗ ∈ argmin
k∈I

L(k). (11)

Fine partitions of ∆ lead to large index sets I. Instead of

considering all k ∈ I, we can take fewer (random) sam-

ples {k1, . . . , kM} of I and obtain a (rough) approximation

minj=1,...,M L(kj) of L(k∗). In particular for the partition

with I = ∆ as described in Remark 2, one can directly

employ a whole variety of smarter (derivative free) sampling

and optimization strategies, such as Bayesian optimization

involving Gaussian processes discussed in [5], [6].

Instead of considering a single (fine) partition, one can as

well start from a coarse partition of ∆ and propose adaptive

refinement strategies which generate a sequence of controller

parametrizations as follows. Given ∆ =
⋃N

k=1 ∆k, determine

an index k0 ∈ argminj=1,...,N L(j). Then generate a partition

of ∆k0 denoted as
⋃N

j=1 ∆k0

j
in order to obtain a refined

partition of the original set as

∆ =
(

⋃

j=1,...,N

∆k0

j

)

∪
(

⋃

k=1,...,N, k 6=k0

∆k

)

. (12)

This refined partition yields a new parametrization F1 with

corresponding new cost L1 and some next optimal index k1 ∈
argminj=1,...,N L1(k0j ). By construction it is guaranteed that

L1(k1) ≤ L(k0) holds. This step can be iterated in order to

further decrease the value of the surrogate cost. In Section IV

we propose a specific algorithm based on this approach which

involves, in particular, a concrete strategy for refining given

partitions.

C. Reducing the Gap in Inequality (P)

Our setup allows for identifying the sources of the gap in

(P) and permits to generate systematic refinements towards

its reduction. To illustrate this issue, let us suppose that the

relaxation gap in (8) is small. Then we infer (by the definition

of F and for small ε > 0) that

γε
∗(k)≈ inf

F∈F(∆)
sup

∆∈∆k

‖∆⋆P ⋆F‖∞≤ sup
∆∈∆k

‖∆⋆P ⋆F(k)‖∞.

On the other hand, for k ∈ I with ∆0 ∈ ∆k and if this member

∆k of the partition is sufficiently small, we have

sup
∆∈∆k

‖∆ ⋆ P ⋆ F(k)‖∞ ≈ ‖∆0 ⋆ P ⋆ F(k)‖∞ = L(k).

Hence infk∈I L(k) is close to infF∈F(∆) ‖∆0 ⋆ P ⋆ F‖∞
which shows that the gap in (P) is small. In conclusion, it is

essential that the size of the partition member containing ∆0

and the relaxation gap in (8) are both small. Without going

into details, we emphasize that the latter can be controlled with

the choices of the multiplier sets P(∆) and P(∆k), through

the use of more advanced multi-object control techniques and

by applying further refinements in robust control [24], such

as incorporating S-variables [25] or dynamic instead of static

IQCs [21].

D. Reducing the Gap in Inequality (S)

Our approach offers the opportunity to even reduce the gap

in (S) by identifying a smaller index set Ĩ ⊂ I with

∆0 ∈ ∆̃ :=
⋃

k∈Ĩ
∆k. (13a)

Indeed, this is guaranteed with

Ĩ = {k ∈ I : L(k) ≤ γε
∗(k)} (13b)

since k ∈ I/Ĩ implies ∆0 /∈ ∆k by (10). Note that ∆̃ can

be considerably smaller than the original ∆, which implies

that the related set F(∆̃) of robustly stabilizing controllers is

(much) larger than F(∆). Thus, replacing ∆ with ∆̃ reduces

the cost of safety as expressed by the gap in (S).

This suggests to repeat our design procedure for ∆̃, which

amounts to constructing a new parametrization F̃ giving con-

trollers F̃(k) (via Theorem 1) with which we can perform new

closed-loop experiments to evaluate L̃ = J◦F̃ . The controllers

F̃(k) are expected to achieve (considerably) improved closed-

loop performance with a smaller gap in (P ′), just due to the

reduction of the gap in (S). The algorithm proposed in the

next section is based on this strategy.

Remark 4: The set ∆̃ is not guaranteed to be convex.

Similarly as in [26], in this case one can express it as union

of few convex sets and modify Theorem 1 by using a robust

stabilization objective for each of the individual convex sets;

this purposive design comes along with an increased numerical

burden.

Note that the set I is constructed based on (10) which

provides an upper bound on the cost L(k) at the index k with



∆0 ∈ ∆k. We can also devise a lower bound which can be

exploited similarly in order to further reduce Ĩ and shrink the

gap in (S). To this end, observe that standard H∞ design

permits to numerically determine

γnom(∆):= inf
F stabilizes ∆⋆P

‖∆ ⋆P ⋆F‖∞ for any fixed ∆∈∆.

Then ∆0 ∈ ∆k for k ∈ I indeed yields the lower bound

inf
∆∈∆k

γnom(∆) ≤γnom(∆0) ≤ ‖∆0 ⋆ P ⋆ F(k)‖∞ ≤ L(k).

Note that this lower bound is not cheap to compute as it

involves a numeric minimization of γnom on ∆k for each

considered k ∈ I. In contrast, the upper bound γε
∗(k) is

essentially obtained for free while constructing the map F .

IV. AN ALGORITHM

In this section we propose a concrete algorithm that works

in higher dimensions and aims to exploit (13). It involves the

uncertainty box ∆ = {∆(δ) : δν ∈ Iν , ν = 1, . . . ,M}
where I1, . . . , IM are given intervals and in which we use the

abbreviation ∆(δ) := diag(δ1Iq1 , . . . , δMIqM ). The related

Algorithm 1 is motivated by coordinate descent, which cur-

rently becomes more popular due to its appearance in machine

learning applications.

Algorithm 1: Design via Coordinate-Like Descent

input : Number of partitions N
1 Set ν = 1 and Ip

k = Ik for all k = 1, . . . ,M
2 while (not terminated) do

3 Choose a uniform partition Iν =
⋃N

k=1
Ĩk

4 Set∆k :={∆(δ) :δν∈Ĩk, δj ∈Ij , j 6=ν} to get ∆=
⋃N

k=1
∆k

5 Determine F(k), γ∗(k) and L(k) for all k ∈ I

6 Determine Ĩ as in (13), set Iν =convexhull
(
⋃

k∈Ĩ
Ĩk

)

and
update ∆ accordingly

7 Set Ip
ν := Ĩj where j∈argmink∈Ĩ

L(k)
8 Set ν = ν + 1 if ν < M and ν = 1 otherwise
9 end

10 Set ν = 1
11 while (not terminated) do

12 Choose a uniform partition Ip
ν =

⋃N

k=1
Ĩk

13 Set ∆k := {∆(δ) : δν ∈ Ĩk, δj ∈ Ip
j , j 6= ν} to get

∆ =
(
⋃N

k=1
∆k

)

∪ (•) as in (12)

14 Determine F(k), γ∗(k) and L(k) for all k ∈ {1, . . . , N}
15 Set Ip

ν := Ĩj and F∗=F(j) for j∈argmink=1,...,N L(k)
16 Set ν = ν + 1 if ν < M and ν = 1 otherwise
17 end

output: Controller gain F∗

The first loop of the algorithm generates a partition of ∆

by taking a uniform partition only of the interval Iν related to

the parameter δν . In line 6, it exploits (13) in order to shrink
⋃N

k=1 Ĩk to a new interval and to generate a reduced parameter

set that is guaranteed to contain ∆0; moreover, it still has the

structure of a hyperrectangle. In line 7 and as input to the

second loop, we store those intervals Ip
ν for which the best

performance level is observed. Running this loop n1 times

requires to perform Nn1 experiments.

In the second loop, the algorithm adaptively refines those

subsets of ∆ for which the best closed-loop performance was

achieved. This proceeds as in Section III-B, by generating sub-

partitions along each parameter axis. Again, n2 runs of the

loop require Nn2 experimental cost evaluations. In particular,

if we let n1, n2 = O(M), the number of evaluations grows

linearly in the number of unknown parameters M and turns

the algorithm applicable even if M is large.

V. NUMERICAL EXAMPLES

For numerical illustrations, we consider several modified

examples from the library COMPleib [27] which, unfortu-

nately, does not comprise robust control examples. We let
(

A B2 B3

C2 D22 D23

)

be the matrices
(

A B1 B
C1 D11 D12

)

in (1.1) from [27]

and choose the remaining matrices in order to define P in (4)

as D11 = 0, D12 = 0, D21 = 0,

B1=





1 0 1
0 1 0
0•×3



, C1=





1 0
0 1 03×•

0 1



 and D13=





0
0 03×•

1



.

Further, we take ∆ := {diag(δ1, δ2, δ3) : δ1, δ2, δ3 ∈ [−1, 1]}
and suppose that the real system P0 = ∆0 ⋆ P is obtained

for ∆0 = diag(0.7,−0.1, 0.7). Note that all subsequent

algorithms only access the cost J(F ) = ‖P0 ⋆ F‖∞ in (3)

for chosen gains F . In Theorem 1, both sets of multipliers

P(∆) and P(∆k) consist of so-called D/G-scalings [23] and

we take ε := 0.05 in (9). With Theorem 1 for the trivial

partition N = 1, we can as well compute an upper bound γrp
for the robust performance synthesis problem as in

inf
F∈F(∆)

sup
∆∈∆

‖∆ ⋆ P ⋆ F‖ ≤ γrp. (14)

Any learning based design results in a controller with perfor-

mance level in between γrp and the best achievable nominal

performance γnom := infF stabilizes P0
‖P0 ⋆ F‖∞.

Let us now employ Algorithm 1 with N = 6 and by using

n1, n2 iterations in the first and second loop, respectively. The

achieved performance levels γn1,n2 for (n1, n2) = (0, 6) and

(n1, n2) = (3, 3) are depicted in Table I.

We compare these results with a based-line learning ap-

proach which aims to minimize the cost J without employing

a controller parametrization, similarly as done in [3], [4], [6].

To this end, we use a deterministic direct search method [28]

which is initialized with a robust controller as obtained by

computing γrp in (14). We rely on the Matlab implementation

in patternsearch and denote by γk
ps the achieved per-

formance level after k evaluations of the cost function. Let

us emphasize at this point that, for the considered examples,

all iterates of patternsearch are stabilizing P0 without

any particular precautions; this is in stark contrast to other

direct optimization algorithms such as bayesopt. Moreover,

we also employ patternsearch for minimizing J ◦ F if

making use of our parametrization F for I = ∆ as described

in Remark 2. It is then initialized in ∆ = 0 and γk
psF denotes

the achieved performance level after k cost evaluations.

The results in column 3 and 4 of Table I demonstrate

the benefit of exploiting our controller parametrization over

a direct minimization of the cost for only a few (here k = 36)

iterations, despite the gap in (P ′) and even coming along

with safety guarantees. This can be attributed to the fact that



Table I
Nominal performance and performance achieved by controllers resulting
from minimizing J and L via patternsearch, from Algorithm 1 and
from a standard robust design for several modified examples from [27]

Name γnom γ200
ps γ36

ps γ36
psF

γ0,6 γ3,3 γrp

AC3 3.07 4.82 5.18 3.38 3.45 3.28 5.92

AC6 5.31 5.90 5.90 5.40 5.40 5.55 5.91

AC11 2.72 2.80 5.55 2.73 2.79 2.75 6.57

HE2 1.67 1.93 7.25 4.78 4.82 4.87 7.29

REA2 0.51 0.60 0.62 0.52 0.51 0.51 0.62

DIS2 0.64 0.98 1.05 0.65 0.66 0.67 1.55

TG1 3.52 3.94 4.04 3.60 3.64 3.64 4.35

ROC6 2.40 3.23 3.53 3.36 3.36 3.36 3.84

AC2 0.11 0.18 0.20 0.16 0.16 0.13 0.21

HE4 5.30 9.06 9.17 6.77 6.50 5.32 9.31

DIS1 2.42 2.65 7.40 4.93 4.97 2.67 7.40

MFP 3.47 5.43 5.31 5.99 5.39 4.29 8.03

NN4 1.00 1.14 1.79 1.52 1.53 1.02 2.57

NN16 0.95 1.48 1.48 1.02 1.04 0.97 1.50

the dimension of the ambient controller gain space is larger

than 20 for some examples, since k = 200 iterations lead to

further improvements of performance as shown in column 2,

but without guarantees for stability along the iterations.

The results in columns 5 and 6 for Algorithm 1 show

performance levels mostly similar to γ36
psF and for an identical

number 36 of evaluations of the cost. The comparison of γ3,3

with γ0,6 for the second group of examples reveals the benefit

of exploiting (13) in the first loop of Algorithm 1.

Let us finally point to the first and last column in Table I

in order to illustrate the general benefit of our safe learning

approach over a standard robust design, by finding controllers

with (sometimes even drastically) improved closed-loop H∞

performance for P0, which even comes close to the optimal

level γnom in some cases.

VI. CONCLUSIONS

We consider LTI systems affected by an unknown parameter

∆0 contained in some known set ∆ and propose strategies to

design controllers based on generated data from measurements

of closed-loop experiments with suitable test controllers. For

the systematic selection of auspicious candidates, we propose

a new controller parametrization induced by a partition of ∆

and based on advanced robust control techniques. In particular,

this parametrization ensures that all candidates are robustly

stabilizing which guarantees that their implementation on the

real system is safe. Interestingly, it even offers the possibility

to systematically generate subsets of ∆ which are guaranteed

to contain the unknown ∆0.

The concept admits immediate extensions to output feed-

back control if relying on existing design techniques with

robust stability and performance guarantees. It is as well easily

possible to consider H2-norm cost criteria on an infinite or

finite time-horizon or in discrete-time. While the employed

modeling and design tools from robust control offer much

more flexibility in terms of capturing time-varying, dynamic

or nonlinear unknown components, the systematic construction

of controller parametrization along the presented lines remains

largely open in such situations.
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