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Distributed Spatial Filtering Over
Networked Systems
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Abstract—This letter concerns distributed spatial fil-
tering over networked systems, i.e., transforming signal
values given for nodes to those with a desired spatial
frequency characteristic via a distributed computation. An
existing filtering algorithm can achieve only low-pass fil-
ter characteristics, which limits its range of applications.
To address this limitation, we extend the aforementioned
filtering algorithm using an additional design parameter.
We then present a characterization of all the realizable fil-
ter characteristics as a necessary and sufficient condition
for achieving distributed spatial filtering. As a result, it is
shown that the extended algorithm increases the range of
the realizable filter characteristics. The proposed method is
verified not only by simulation but also by denoising exper-
iments for a real sensor network. The results show that
the proposed method effectively reduces spatial noise and
achieves higher performance than an average consensus
algorithm and an average filter.

Index Terms—Control of networks, distributed control,
filtering, sensor networks.

I. INTRODUCTION

NETWORKED systems, in which subsystems (i.e., nodes)
are interconnected through networks, are of great interest

in the field of systems and control. The reason for this is that
this type of system appears widely in modern applications,
such as sensor networks and intelligent transportation systems.

For the networked systems, typical tasks, e.g., consensus [1],
[2] and formation [3], [4], have been well studied, whereas
here, we consider a different task, namely distributed spatial
filtering (DSF). In this task, the nodes obtain signal values
with a desired spatial frequency characteristic from given ones
only through local communications. An example of low-pass
filtering is illustrated in Fig. 1, where xi is the signal value
for node i and we assume that the nodes with close indices
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Fig. 1. Example of spatial low-pass filtering.

are located near each other. The nodes obtain the signal values
with a low spatial frequency (right) from those with a high spa-
tial frequency (left), in a distributed manner. The main reason
for considering this filtering is that the spatial frequencies of
some physical quantities have useful properties. For example,
temperature generally has similar values at locations within
close proximity to each other (i.e., the spatial frequency is
low). Thus, when measuring temperature at different locations
using a sensor network, spatial low-pass filtering is useful
for reducing the measurement noise. Moreover, spatial high-
pass filtering can be applied to the detection of the sensor
malfunction [5], as the malfunction of a certain sensor will
cause unusual differences between the measurements, which
increases the high-frequency components.

So far, DSF has never been studied in the field of systems
and control because researchers have been mainly interested in
control in the time domain (see [1]–[4]), and hence, they have
not considered the spatial frequencies. Nevertheless, there are
related studies of signal processing on graphs and its applica-
tions. For example, Shuman et al. [6] gave a distributed graph
filtering method using the Chebyshev polynomial approxima-
tion. This method may require a large memory for each node,
thereby increasing costs. Segarra et al. [7] and Yi et al. [8]
examined the linear transformation between two signals on
a graph and average consensus, respectively, but these are
different from DSF.

Motivated by this, Izumi et al. [9] proposed a method of
DSF based on a consensus algorithm. However, the following
two issues remain unsolved. First, the achievable filter charac-
teristics are limited to low-pass ones. Overcoming this issue
broadens the application range of DSF. Second, the method
proposed in [9] was not verified through experiments. DSF
requires wireless communications between nodes, but they are
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unreliable in practice, which leads to gaps between theory
and practice. Thus, examining the magnitude of theses gaps
through experiments is crucial for the practical use of DSF.

This letter addresses the above two issues and makes the
following two contributions.

1) We extend the theoretical framework developed in [9].
By introducing a new design parameter, we extend the
filtering algorithm given in [9]. We then characterize
all the achievable filter characteristics for the extended
algorithm, unlike in [9], where all the achievable filter
characteristics were not guaranteed to be characterized.
The result shows that the extended algorithm provides
a wide range of filter characteristics compared to the
original algorithm, and further reveals its performance
limit as the spatial filter.

2) We demonstrate the effectiveness of our DSF method
through experiments, using a real sensor network. We
investigate denoising via DSF, and perform experiments
to verify its performance. The experimental results indi-
cate that our DSF method effectively reduces spatial
noise. This demonstrates that the gap between our the-
ory and practice is small and that our DSF method is
relevant for real applications.

Notation: Let R and R+ be the real number field and the set
of positive real numbers, respectively. We use I to represent
the identity matrix. For the numbers x1, x2, . . . , xn ∈ R, let
diag(x1, x2, . . . , xn) be the diagonal matrix whose i-th diagonal
entry is xi, and let [xi]i∈I := [xi1 xi2 · · · xim ]� ∈ R

m, where
I := {i1, i2, . . . , im} ⊆ {1, 2, . . . , n}. We denote the cardinality
of the set S as |S|.

II. SIGNAL PROCESSING ON GRAPHS

To explain the problem addressed in this letter, we briefly
introduce signal processing on graphs [5], [10].

Signals on graphs (or graph signals) consist of graphs and
signal values on their vertices, where the graphs represent the
relation among the signal values. Graph signals are mathe-
matically described as follows. Consider the undirected graph
G = (V,E) with n vertices, where V := {1, 2, . . . , n} and E

are the vertex and edge sets, respectively. Then, the pair (G, s)
defines a graph signal, where s ∈ R

n is the vector consisting
of the signal values on the n vertices.

Next, the Fourier transform of graph signals (or the graph
Fourier transform) is introduced. Consider the graph signal
(G, s). Let L ∈ R

n×n denote the Laplacian matrix of the graph
G and λp (p ∈ {1, 2, . . . , n}) denote the eigenvalue of L with
the p-th smallest modulus. Then, the graph Fourier transform
f ∈ R

n is given by

f (λ1, λ2, . . . , λn) := V�s, (1)

where V ∈ R
n×n is an orthogonal matrix (i.e., V� = V−1)

satisfying

V�LV = � (2)

for � := diag(λ1, λ2, . . . , λn). There always exists such a V
because L is a symmetric matrix when G is an undirected
graph. From (1) and (2), the graph Fourier transform f is

Fig. 2. Networked system �.

defined as the expansion of s in terms of the eigenvectors of L.
This parallels the classical Fourier transform known to be the
expansion of a signal in terms of the complex exponentials
that are the eigenfunctions of the one-dimensional Laplace
operator [5], [10]. The graph Fourier transform f is a spa-
tial frequency-based representation of the graph signal (G, s).
More concretely, f indicates the magnitude of the signal value
differences among connected vertices on G. The eigenvalue λp

(p ∈ {1, 2, . . . , n}) in (1) corresponds to the spatial frequency,
and the p-th entry of f represents the component of λp, where
λ1, λ2, . . . , λn are nonnegative real numbers because G is an
undirected graph. Besides, the relation V� = V−1 implies that
the inverse graph Fourier transform is given by

s = Vf (λ1, λ2, . . . , λn). (3)

Finally, we define the spatial filtering of graph signals as

s̃ = Vdiag(h(λ1), h(λ2), . . . , h(λn))V
�s, (4)

where s̃ ∈ R
n is the collective signal value of a filtered graph

signal and h : R+∪{0} → R is a function determining the filter
characteristic. As an example of h, if |h(λp)| decreases as p
increases, the resulting filter is a low-pass one which reduces
the amplitudes of high-frequency components. Choosing an
appropriate h and using (4), we can obtain s̃ with a desired
spatial frequency characteristic.

III. DSF OVER NETWORKED SYSTEMS

A. Problem Formulation

Consider the networked system � with n nodes, depicted
in Fig. 2.

The behavior of node i (i ∈ V) is described by

xi(t + 1) = g([xj(t)]j∈Ni, t), (5)

where xi(t) ∈ R is the state (corresponding to a memory),
[xj(t)]j∈Ni ∈ R

|Ni| is the input, and Ni ⊂ {1, 2, . . . , n} is the
index set of the nodes whose information can be used by node
i. The function g : R|Ni| × {0, 1, . . .} → R characterizes the
system � and is handled as a design parameter later. We note
that g does not have the subscript i. This imposes the constraint
that g is common to all the nodes, ensuring the scalability of
the entire system.

The network structure of the system � is described by
the undirected graph G = (V,E), which is composed of
the vertex set V representing the node indices and the edge
set E describing the relation among the nodes. Then, the set
Ni is defined as the index set of node i and its neighbors
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on G. In addition, the collective state of � is denoted by
x(t) := [x1(t) x2(t) · · · xn(t)]�. Using this notation, we can
consider (G, x(t)) as one of the graph signals explained in
Section II, where G and x(t) correspond to the graph and the
signal values, respectively.

For the system �, we assume that signal values to be filtered
are given as the initial state x(0), as shown in Fig. 2. Then, by
regarding the final state x(∞) as the filtered signal values, we
can consider � as a (spatial) filter, whose filter characteristic
is determined by the function g. Based on this, we address the
following problem.

Problem 1: For the networked system �, design the func-
tion g (i.e., a common distributed algorithm for all the nodes)
such that x(∞) has a desired spatial frequency characteristic
in the sense of the graph signal (G, x(∞)).

B. Main Result

To solve Problem 1, we use an approach similar to that
proposed in [9]. More concretely, we focus on the relation
between the behavior of the system � and the spatial filter-
ing (4) of graph signals when considering x(0) and x(∞) as
s and s̃, respectively. If the transformation from x(0) to x(∞)

determined by the function g is equivalent to (4) for a filter
function h, we say that � achieves DSF of the graph signal
(G, x(0)) for h, and design g to achieve DSF.

However, it is difficult to directly obtain such a g from a
given h because � is a dynamical system, whereas (4) does
not include dynamics. Moreover, g must satisfy the constraint
that one of its inputs is [xj(t)]j∈Ni (i.e., local information), as
shown in (5). Thus, inspired by the results in [9], we assume
that g provides a finite-time consensus-type algorithm, i.e.,

g([xj(t)]j∈Ni, t) := k(t)xi(t) + �(t)
∑

j∈Ni

(xj(t) − xi(t)), (6)

where k(t) ∈ R \ {0} and �(t) ∈ R are time-varying gains
such that k(t) = 1 and �(t) = 0 for t ≥ m and a positive
integer m. Then, the algorithm for each node converges in m
timesteps from (5), (6), and k(t) = 1 and �(t) = 0 for t ≥ m.
In addition, the algorithm is guaranteed to be common and
distributed, where the former follows because k(t) and �(t) are
the same for all the nodes. We now examine if the resulting
� achieves DSF for some types of h, and if so, what filter
characteristics can be obtained.

The result is summarized as the following theorem.
Theorem 1: Consider the networked system � incorporat-

ing the consensus-type algorithm in m timesteps given by (5)
and (6). Suppose that the filter function h(λ) of the frequency
variable λ ∈ R+ ∪ {0} is given. Then, the system � achieves
DSF of the graph signal (G, x(0)) for h(λ) if and only if h(λ)

is a real polynomial with non-zero real roots, i.e.,

h(λ) := amλm + am−1λ
m−1 + · · · + a1λ + a0 (7)

for some a0, a1, . . . , am ∈ R, whose roots r1, r2, . . . , rm are
non-zero real numbers.

Proof: See the Appendix.
Theorem 1 presents a necessary and sufficient condition for

achieving DSF using (5) and (6), which gives rise to the fol-
lowing two facts. First, if the filter function h is given as the

Algorithm 1 Design of Distributed Spatial Filter
Step 1 Design the filter function h with a desired spatial
frequency characteristic.
Step 2 Approximate the designed h by the polynomial in
(7) with non-zero real roots.
Step 3 Construct the algorithm for the nodes using (5), (6),
(11), (12), and the coefficient a0 and roots of the resulting
polynomial h.

polynomial in (7), the system � given by (5) and (6) achieves
DSF, where a choice of the gains k(t) and �(t) is (11) and (12),
as shown in the proof given in the Appendix. Second, the fil-
ter characteristics obtained using (5) and (6) are only the ones
that can be described by the polynomial in (7), which reveals
the performance limit of our algorithm as the spatial filter.

Based on the above results, we present a method to solve
Problem 1 in Algorithm 1. In Step 2, we obtain a polynomial
h satisfying the condition in Theorem 1. In Step 3, we obtain
the algorithm for the nodes from the coefficient a0 and roots
of h in addition to (5), (6), (11), and (12).

Remark 1: Theorem 1 does not require the connectivity of
the graph G. Meanwhile, potential applications we have in
mind, e.g., sensor networks explained in Section I, assume that
the spatial frequency on graphs corresponds to that in physical
space. Thus, in such applications, G should be a connected
graph and its spatially neighboring nodes should be connected.

Remark 2: We now clarify the differences between this let-
ter and [9]. In [9], the case of k(t) ≡ 1 was considered. As a
result, the constraint a0 = 1 was imposed on the filter function
h in (7). This makes controlling low-frequency components
more difficult because h(0) = 1 always holds. In contrast,
we remove that constraint by introducing k(t) and using it
appropriately. Besides, we show that the polynomial h is both
necessary and sufficient, whereas [9] only showed that the
polynomial h is sufficient. Thus, our results not only provide
a design method for distributed spatial filters, but they also
guarantee that the designed filters use the full performance of
the algorithm given by (5) and (6).

C. Example

Consider the case of n := 8. The network structure G and
the initial state x(0) are shown in Fig. 3. In the figure, the
circles and the lines connecting them represent the vertices
and edges of G, respectively, and the vertical lines represent
x1(0), x2(0), . . . , x8(0). Here, we design a distributed spatial
high-pass filter. One application of spatial high-pass filters
is malfunction detection in sensor networks, as explained in
Section I. However, from Remark 2, it is difficult to obtain
high-pass filters using the method given in [9].

We choose the desired filter function as h(λ) := 1/(1 +
e−3(λ−3.1)). This is shown by the thick blue line in Fig. 4,
where the green circles show the eigenvalues λ1, λ2, . . . , λ8,
indicating the spatial frequencies of the components of the
graph signal (G, x(0)). A high-pass characteristic is obtained.
Using a least square fitting, we approximate this h(λ) by a
polynomial of the form (7) with non-zero real roots, which
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Fig. 3. Initial state x(0).

Fig. 4. Filter function h(λ) := 1/(1 + e−3(λ−3.1)) (thick blue line) and its
polynomial approximation (thin red line), where the green circles denote
the eigenvalues λ1, λ2, . . . , λ8.

yields h(λ) := −0.00124λ4 −0.00877λ3 +0.161λ2 −0.239λ+
0.0628 with m := 4. This approximation is depicted by the
thin red line in Fig. 4, which indicates that the approxi-
mation is close to the original h(λ). The above polynomial
has the coefficient a0 = 0.0628 and the roots r1 = −15.9,
r2 = 7.26, r3 = 1.29, and r4 = 0.339. Hence, these val-
ues and (5), (6), (11), and (12) give the algorithm for each
node i.

The thick red lines in Fig. 5 show the resulting final state
x(∞) (which is the same as x(t) for t ≥ m). The high-
frequency components, where the state differences among
neighboring nodes are large, are extracted. Moreover, the thin
green lines show the collective signal value s̃ of the graph sig-
nal filtered using (4) for s := x(0). Even though our filter is
distributed and (4) is not, the same result is obtained in either
case. This demonstrates the validity of Theorem 1.

Remark 3: In the proposed design method, the choice of the
degree m of the polynomial in (7) is important. The detailed
discussion on that choice was given in [9].

Remark 4: Although this letter examines the consensus-
type algorithm given by (5) and (6), we can consider a more
generalized algorithm, in order to broaden the range of the
achievable filter characteristics. This will be an important
direction for future research. Meanwhile, our purpose in this
letter is to develop a filtering algorithm providing a wide range
of filter characteristics compared to that given in [9]. The
proposed algorithm can handle various filter characteristics
described as polynomials, which includes high-pass ones that
could not be achieved in [9]. Hence, the proposed algorithm
provides sufficient performance to achieve our purpose.

Fig. 5. Final state x(∞) obtained using our DSF method and the
collective signal value s̃ of the graph signal filtered using (4).

Fig. 6. Sensor node.

IV. EXPERIMENTAL VERIFICATION

To verify the performance of our DSF method in a real
setting, we developed a sensor network with seven sensor
nodes. One sensor node is depicted in Fig. 6. This consists
of a sensor, a microcomputer, and a wireless communication
module. The sensor is the DHT11 humidity and temperature
sensor [11], which has an accuracy of ±5 %RH for humidity
and ±2 ◦C for temperature. The microcomputer is the Arduino
Uno, in which the designed filter is installed. The wireless
communication module is XBee S2C, which allows the sensor
nodes to communicate with each other.

We placed these sensor nodes in a room of size 7×13 m, as
shown in Fig. 7 (a), where the numbers in the figure indicate
the positions of the sensor nodes. We then constructed a sensor
network with the structure depicted in Fig. 7 (b) by connecting
sensor nodes at spatially close locations so that the spatial
frequency on graphs corresponds to that in physical space.
The numbers in Fig. 7 (b) correspond to those in the photo of
the setup shown in Fig. 7 (a). Using this sensor network, we
measured the temperature at the locations at which the sensor
nodes were placed. In such a setup, each sensor measurement
was affected by factors such as sensor biases and disturbances.
We call these effects spatial noise, and we attempted to reduce
it using DSF.

Considering that the spatial frequencies of the noise are
higher than those of the true values to be estimated, we
design the filter function as h(λ) := −1/(1 + e−6(λ−1)) + 1
to reduce the amplitudes of the high-frequency components.
This is depicted by the thick blue line in Fig. 8, which indi-
cates that a low-pass characteristic is obtained. A polynomial
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Fig. 7. Experimental setup.

Fig. 8. Filter function h(λ) := −1/(1 + e−6(λ−1)) + 1 (thick blue line)
and its polynomial approximation (thin red line), where the green circles
denote the eigenvalues λ1, λ2, . . . , λ7.

Fig. 9. Temperature measurements from our sensor network (red
triangles) and a high-accuracy meter (blue circles).

approximation of h(λ) with non-zero real roots is given by
h(λ) := −0.0000404λ8 + 0.00163λ7 − 0.0264λ6 + 0.223λ5 −
1.06λ4 + 2.78λ3 − 3.53λ2 + 1.07λ + 1, where m := 8. This
approximation is depicted by the thin red line in Fig. 8, which
indicates that the approximation is close to the original h(λ).
The above polynomial has the coefficient a0 = 1 and the
roots r1 = 13.3, r2 = 6.90, r3 = 6.31, r4 = 5.34, r5 = 4.15,
r6 = 2.90, r7 = 1.85, and r8 = −0.362. Thus, using these
values and (5), (6), (11), and (12), we construct the algorithm
for each node i.

Fig. 9 shows an example of experimental data measured by
the above-mentioned sensor network, where yi ∈ R (i ∈ V)

is the temperature measurement from sensor node i. The
blue circles denote the measurements from the HN-EHSP
temperature/humidity meter [12] which has an accuracy of

Fig. 10. Experimental results of noise reduction using our DSF method
(red triangles), an average consensus algorithm (gray diamonds), and
an average filter (green squares), where the true values are shown as
the blue circles.

±0.5 ◦C for temperature (much higher than that of the sensor
nodes), and we assume that these are the true values to be
estimated. Fig. 9 indicates that the measurements from the
sensor network were different from the true values, which
demonstrates the presence of the spatial noise.

For the measurements in Fig. 9, we performed an experi-
ment to reduce the noise by applying our distributed spatial
filter to xi(0) := yi for every i ∈ V. The result is shown in
Fig. 10, where ŷi ∈ R (i ∈ V) is the temperature estimated
by sensor node i. Figs. 9 and 10 indicate that the estimates
obtained using our distributed spatial filter are closer to the true
values than the original measurements. Therefore, we conclude
that our DSF method is applicable to a real sensor network
with some constraints and uncertainties caused by hardware
and wireless communications.

Moreover, in Fig. 10, we compare our DSF method with
two other distributed algorithms. One is a standard average
consensus algorithm [1], where the noise effects are miti-
gated by using the average of the measurements computed
in a distributed manner. The other is an average filter [13],
which is a typical technique for spatial low-pass filtering in
the field of image processing. The estimate ŷi via the average
filter is defined as ŷi := (yi +∑

j∈Ni
yj)/(|Ni| + 1) for every

i ∈ V. For the vector y∗ composed of the true values and
ŷ := [ŷ1 ŷ2 · · · ŷ7]�, the estimation error ‖y∗ − ŷ‖∞ [◦C]
is 0.30 for our method, 1.20 for the average consensus algo-
rithm, and 0.60 for the average filter. Based on this result, we
conclude that our DSF method achieves higher accuracy than
the other two methods.

V. CONCLUSION

In this letter, we developed a DSF method for networked
systems to overcome the problem that an existing method can
handle only limited filter characteristics. By adding a new
design parameter, we improved the filtering algorithm used in
the aforementioned method. For the improved algorithm, we
characterized all the achievable filter characteristics. The char-
acterization shows that our algorithm extends the range of the
available filter characteristics and that its performance can be
fully utilized when considering filters described as polynomi-
als. Moreover, through denoising experiments for a real sensor
network, we demonstrated that our DSF method effectively
reduces spatial noise. These results are useful for efficiently
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performing filtering based on the spatial structures of signals,
using a distributed computation.

APPENDIX

PROOF OF THEOREM 1

First, the “only if” part is proven. We assume that the system
� achieves DSF of the graph signal (G, x(0)) for a filter func-
tion h. Using (5) and (6), we can represent the collective
dynamics of � by

x(t + 1) = (k(t)I − �(t)L)x(t). (8)

This yields

x(m) =
(

m−1∏

t=0

(k(m − 1 − t)I − �(m − 1 − t)L)

)
x(0)

=
(

m−1∏

t=0

(
k(m − 1 − t)VV�− �(m − 1 − t)V�V�)

)
x(0)

=
(

m−1∏

t=0

V(k(m − 1 − t)I − �(m − 1 − t)�)V�
)

x(0)

= V

(
m−1∏

t=0

(k(m−1−t)I−�(m−1−t)�)

)
V�x(0), (9)

where the first equality is obtained from (8), the second one is
given by V� = V−1 and (2), the third one holds because k(t)
and �(t) are scalars, and the last one is given by V�V = I.
Because k(m − 1 − t)I − �(m − 1 − t)� in (9) is a diagonal
matrix for every t ∈ {0, 1, . . . , m − 1}, it follows that

x(m) = Vdiag

(
m−1∏

t=0

(k(m − 1 − t) − �(m − 1 − t)λ1),

m−1∏

t=0

(k(m − 1 − t) − �(m − 1 − t)λ2), . . . ,

m−1∏

t=0

(k(m − 1 − t) − �(m − 1 − t)λn)

)
V�x(0). (10)

In addition, the algorithm for each node i converges in m
timesteps, as mentioned in Section III-B, and thus x(m) =
x(∞) holds. Applying this to (10) and regarding x(0) and
x(∞) as s and s̃ in (4), respectively, we obtain h(λ) =∏m−1

t=0 (k(m − 1 − t) − �(m − 1 − t)λ) because � achieves
DSF of the graph signal (G, x(0)) by our assumption. From
k(t) ∈ R\{0} and �(t) ∈ R for every t ∈ {0, 1, . . . , m−1}, this
h(λ) is a polynomial of the form (7) and its roots are non-zero
real numbers. This proves the “only if” part.

Next, the “if” part is proven. We assume that the filter
function h in (7) with non-zero real roots is given. Let

k(t) :=
{

a0 if t = 0,

1 otherwise,
(11)

�(t) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a0

r1
if t = 0,

1

rt+1
if t ∈ {1, 2, . . . , m − 1},

0 otherwise.

(12)

These gains satisfy the condition for the convergence of the
algorithm given by (5) and (6) in m timesteps, i.e., k(t) = 1 and
�(t) = 0 for t ≥ m. Substituting (11), (12), and x(m) = x(∞)

for (10) yields

x(∞) = Vdiag

((
m−2∏

t=0

(
1 − λ1

rm−t

))(
a0 − a0λ1

r1

)
,

(
m−2∏

t=0

(
1 − λ2

rm−t

))(
a0 − a0λ2

r1

)
, . . . ,

(
m−2∏

t=0

(
1 − λn

rm−t

))(
a0 − a0λn

r1

))
V�x(0)

= Vdiag

(
a0

m−1∏

t=0

(
1 − λ1

rm−t

)
, a0

m−1∏

t=0

(
1 − λ2

rm−t

)
,

. . . , a0

m−1∏

t=0

(
1 − λn

rm−t

))
V�x(0). (13)

Hence, in a way similar to the discussion above, the system
� achieves DSF of the graph signal (G, x(0)) for h in (7) if

h(λp) = a0

m−1∏

t=0

(
1 − λp

rm−t

)
∀p ∈ {1, 2, . . . , n}. (14)

The relation (14) resembles that shown in [9, Appendix A],
and thus the proof is omitted. This completes the proof of the
“if” part, which proves Theorem 1.
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