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Deceptive Labeling: Hypergames on Graphs for Stealthy Deception

Abhishek N. Kulkarni, Huan Luo, Nandi O. Leslie, Charles A. Kamhoua, and Jie Fu

Abstract— With the increasing sophistication of attacks on
cyber-physical systems, deception has emerged as an effective
tool to improve system security and safety by obfuscating the
attacker’s perception. In this paper, we present a solution to the
deceptive game in which a control agent is to satisfy a Boolean
objective specified by a co-safe temporal logic formula in the
presence of an adversary. The agent intentionally introduces
asymmetric information to create payoff misperception, which
manifests as the misperception of the labeling function in
the game model. Thus, the adversary is unable to accurately
determine which logical formula is satisfied by a given outcome
of the game. We introduce a model called hypergame on
graph to capture the asymmetrical information with one-sided
payoff misperception. Based on this model, we present the
solution of such a hypergame and use the solution to synthesize
stealthy deceptive strategies. Specifically, deceptive sure winning
and deceptive almost-sure winning strategies are developed by
reducing the hypergame to a two-player game and one-player
stochastic game with reachability objectives. A running example
is introduced to demonstrate the game model and the solution
concept used for strategy synthesis.

Index Terms— Formal methods-based control; Linear Tem-
poral logic; games on graphs; hypergame theory.

I. INTRODUCTION

With the increasing sophistication of the attacks on cyber-

physical systems, deception has emerged as a tool to mitigate

the strategic and informational disadvantages of the defender.

In this paper, we consider a class of games where a control

agent (P1, pronoun ‘he’) plays against its adversary (P2,

pronoun ‘she’) to satisfy a temporal logic formula, which

describes high-level constraints such as safety, reachability,

liveness, and reactivity [1]. However, the task cannot be

achieved if the adversary knows the exact game. Thus,

the agent needs to falsify or obfuscate information to the

adversary in order to satisfy its temporal logic specification.

The question arises, how to synthesize provably correct and

deceptive strategies that exploits the information advantages?

The class of games where players’ payoffs are Boolean

valued (1 for satisfying the formula and 0 otherwise) is

known as games on graphs (or ω-regular games). The so-

lution concepts of the games on graphs have been studied in

formal synthesis of reactive systems [2]–[4] and supervisory

control [5]. However, existing work [3], [4] assumes both

players have access to the correct model of the game. This is
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not the case when one player (deceiver, P1) can provide mis-

leading information or intentionally hide information to the

other for strategic advantages. In this paper, we study a class

of asymmetric information games in which P1 has complete

information about the game, but he intentionally falsifies

or obfuscates P2’s perception of one game component–the

labeling function, which maps an outcome (sequence of

game states) to a Boolean payoff of one if the temporal

logic formula was satisfied or zero otherwise. Such deception

techniques are commonly used in decoy-based cybersecurity

(such as honey-X) and defense (such as camouflage) [6], [7].

To synthesize deceptive strategies for P1, we model the

interaction between the two players as a hypergame [8].

A hypergame models the situation where the players have

different perceptions of their interaction given their infor-

mation, and higher-order information (information about

other’s information). We extend the normal-form hypergame

model to define the hypergame on graph model to capture

the perceptual games of the players and their knowledge

about the opponent’s perceptual game. To solve for P1’s

deceptive strategies, we adopt the solution concept of subjec-

tive rationalizability [9] from incomplete information game

theory. A subjective rationalizable player behaves rationally

and assumes the other player to act rationally in his/her

subjective view of the game. Thus, whenever P1 deviates

from his rational strategy in P2’s subjective view, we expect

P2 to become aware of the information asymmetry. Using

this observation, we establish the necessary and sufficient

conditions for the deceptive strategies to be (a) stealthy sure

winning, and (b) stealthy almost-sure winning (i.e., winning

with probability one). A stealthy strategy ensures that P2

does not become aware of the information asymmetry until

P1 can ensure to satisfy the temporal logic specification

irrespective of P2’s actions. These solution concepts for

hypergames on graphs not only provide the provably-correct

deceptive strategies for P1 but also provide a way to assess

the effectiveness of deception and its potential limitations.

Related Work: Game theory for deception has been

investigated extensively using the two models of incomplete

information games: hypergames [8], [10], [11] and Bayesian

games [12], [13]. Hypergames were initially proposed and

studied for the normal-form one-shot games [8], [10] and

later studied by Gharesifard and Cortés [14], [15] for re-

peated games. Gharesifard and Cortés developed an H-

digraph model to monitor how a player’s perception evolves

during repeated interactions and to design stealthy deceptive

strategy in which the deceiver’s action does not contradict

the perception of the mark. Bayesian games [16] are used

to design deceptive strategies in cybersecurity applications

http://arxiv.org/abs/2004.05213v2


[12], [13], [17]. Dynamic Bayesian games are used in [13]

for active deception in cybernetwork, where the defender

has incomplete information about the type of the attacker

(legitimate user or adversary) and the attacker also is uncer-

tain about the type of the defender (high-security awareness

or low-security awareness). Ornkar et al. [17] formulate a

security game (Stackelberg game) to allocate limited decoy

resources in a cybernetwork to mask network configurations

from the attacker. Existing deception in games describes

players’ payoffs using rewards/costs. We choose to adopt

the hypergame model over Bayesian games because the

hypergame model facilitates the analysis of higher-order

information. We also employ the subjective rationalizability

solution concepts in hypergames [18].

II. PRELIMINARIES

We begin with a brief overview of ω-regular games [2].

An ω-regular game, hereafter referred to as a game, is a tuple

G = 〈G,ϕ〉 which consists of a game arena G, representing

the dynamics of the interaction between P1 and P2, and a

Linear Temporal Logic (LTL) specification ϕ for P1. In this

work, we consider turn-based, deterministic game arenas and

syntactically co-safe LTL specifications. We formalize these

concepts below.

Game Arena: A turn-based, deterministic game arena

is a tuple G = 〈S,A, T, s0,AP , L〉 where S = S1 ∪ S2 is a

finite set of states partitioned into P1’s states, S1, and P2’s

states, S2; A = A1 ∪ A2 is the set of actions where A1

and A2 are the sets of actions for P1 and P2, respectively;

T : (S1 ×A1)∪ (S2×A2)→ S is a deterministic transition

function that maps a state-action pair to a next state. If there

exists a state s′ ∈ S such that T (s, a) = s′, then we say that

action a is enabled at s; s0 ∈ S is called the initial state

of G; AP is the set of atomic propositions; L : S → 2AP

is the labeling function that maps a state s ∈ S to a subset

L(s) ⊆ AP of propositions which evaluate ‘true’ at s.

A path ρ = s0s1 . . . in G is a sequence of states such that

for any i ≥ 0, there exists a ∈ A for which T (si, a) = si+1.

A path ρ can be mapped to a word over 2AP by using a

labeling function w = L(ρ) = L(s0)L(s1) . . ., which can be

evaluated against logical formulas.

Payoffs in Linear Temporal Logic: Given the set of

atomic propositions, AP , an LTL formula is inductively

defined as:

ϕ := ⊤ | ⊥ | p | ϕ | ¬ϕ | ϕ ∧ ϕ | ©ϕ | ϕUϕ,

where ⊤,⊥ are universally true and false, respectively, p ∈
AP is an atomic proposition,© is a temporal operator called

the “next” operator. U is a temporal operator called the

“until” operator. For details about the syntax and semantics

of LTL, readers are referred to [1].

In this work, we restrict the objectives of P1 to a subclass

of LTL called syntactically co-safe LTL (scLTL) [19]. An

scLTL formula ϕ is equivalently expressed as a Deterministic

Finite-State Automaton (DFA), defined by a tuple A =
〈Q,Σ, δ, ι, F 〉 which consists of a finite set Q of states; a

finite set of symbols Σ = 2AP ; a deterministic transition

function δ : Q×Σ→ Q; an unique initial state ι ∈ Q; and a

set F of final states. We extend the transition function over

words u ∈ Σω to write δ(q, uw) = δ(δ(q, u), w). A word w
is accepted by A if and only if there exists a finite prefix u
such that w = uv for some v ∈ Σω, and δ(q, u) ∈ F . Given

a path ρ in G, we say ρ satisfies ϕ over G, if and only if

L(ρ) is accepted by the DFA A.

Zero-sum Game on a Graph: Given a game arena G
and the scLTL specification ϕ of P1, a zero-sum game on a

graph is a tuple, G = (G,ϕ). For a path ρ ∈ Sω in G, if the

labeling L(ρ) satisfies ϕ, then the path is winning for P1.

Otherwise, it is winning for P2.

Next, we construct a product game for solving the zero-

sum game G–that is, determining from the initial state s0,

whether a player can enforce a path winning for him,

regardless of the actions of the other player.

Definition 1 (Product game). Given an arena G =
〈S,A, T, s0,AP , L〉 and a DFA A = 〈Q,Σ, δ, ι, F 〉 equiva-

lent to the LTL specification of P1 ϕ, the product game is a

tuple G⊗A = 〈S×Q,A,∆, (s0, q0), S×F 〉, where S×Q
is a set of states partitioned into P1’s states S1×Q and P2’s

states S2×Q; ∆ : (S1×Q×A1)∪(S2×Q×A2)→ S×Q is a

deterministic transition function that maps a game state (s, q)
and an action a to a next state (s′, q′) where s′ = T (s, a) and

q′ = δ(q, L(s′)); (s0, q0) ∈ S × Q where q0 = δ(ι, L(s0))
is the initial state of the product game; S ×F ⊆ S ×Q is a

set of final states.

We slightly abuse the notation to denote the product game

graph as G := G⊗A. A path ρ = (s0, q0), (s1, q1), . . . in the

product game G is a sequence of states in G. By definition of

this product game, the project of ρ onto S, s0s1 . . ., is a path

in G and satisfies ϕ if and only if there exists (si, qi) ∈ ρ
for some i ≥ 0 such that (si, qi) ∈ S × F .

Thus, P1 can win (or ensure a run to satisfy ϕ) by reaching

the set S × F in the product game. P2 can win by always

avoiding S × F . Thus, the product game is a reachability

game for P1 and a safety game for P2.

In the product game, a randomized, memoryless1 strategy

for player i, for i ∈ {1, 2}, is a function πi : Si ×
Q→ D(Ai), where D(Ai) is the set of discrete probability

distributions over Ai. A deterministic strategy πi : S×Q→
Ai maps a state (s, q) to an action. We say that player i
commits to a strategy πi if and only if for a given state

(s, q), if πi(s, q) is defined, then an action is sampled from

the distribution πi(s, q) (or the action πi(s, q) is taken if

πi is deterministic), otherwise, player i selects an action at

random. Let Πi be the set of strategies of player i. A strategy

π1 ∈ Π1 is said to sure winning at a state (s, q) ∈ S × Q
if, for any π2 ∈ Π2, P1 is guaranteed to satisfy ϕ within

0 ≤ k < ∞ steps for a determined upper bound k on the

number of steps. A strategy π1 ∈ Π1 is said to almost-sure

winning at a state (s, q) ∈ S × Q if, for any π2 ∈ Π2,

P1 is guaranteed to satisfy ϕ with probability one, i.e., P1

1A memoryless strategy in G is a finite memory strategy in G, where the
memory is represented by states in DFA A.



might require unbounded number of steps to satisfy ϕ. A

pair 〈π1, π2〉 of strategies is a strategy profile.

The games in Def. 1 are determined [20], [21]: From

any state (s, q) ∈ S × Q exactly one of P1 and P2 has a

memoryless sure winning strategy. This result allows us to

partition the game state space as S × Q = Win1 ∪ Win2.

Here, Win1 includes all the states from which P1 has a sure

winning strategy and Win2 includes all the states from which

P2 has a sure winning strategy. Readers are referred to [21]

and Chapter 2 of [2] for the details of the game solution.

III. GAME ON GRAPH WITH LABELING MISPERCEPTION

In security and defense applications, players often have

incomplete asymmetric information about the game. For

instance, in a decoy-based deceptive defense approach, only

the defender knows which hosts are decoys but the attacker

does not. Such situations can be understood as the attacker

‘misperceives’ the labels of states in the game. We introduce

a hypergame model to analyze the effect of P2 misperceiving

the true labeling function and how P1 can leverage P2’s

misperception to synthesize deceptive strategies.

A. Hypergame Model

Definition 2 (Hypergame [8]). A level-1 two-player hyper-

game is a pair HG1 = 〈G1,G2〉, where G1,G2 are games

perceived by players P1 and P2, respectively. A level-2 two-

player hypergame is a pair HG2 = 〈HG1,G2〉, where P1

perceives the interaction as a level-1 hypergame and P2

perceives the interaction as game G2. The first component

of a hypergame is called perceptual game of P1; and the

second component is called perceptual game of P2.

While it is possible to define a level-k hypergame (see

[10]), we note that a level-2 hypergame is sufficient to model

the game with asymmetric information, since P1 knowsHG1

and P2 is only aware of G2.

Information Structure In this paper, we are interested in

games with asymmetric information of labeling function.

Specifically, both P1 and P2 know the following components

S, A, s0, T of the arena G, and P1’s objective ϕ. However,

P1 has complete information about the labeling function,

L1(s) = L(s) for all s ∈ S, and P2 has misperception: There

exists at least one state s ∈ S, L2(s) 6= L(s). Moreover, P1

is aware of P2’s perceived labeling function L2.

This information structure captures decoy-based deception

and camouflage. For example, the attacker misperceives a

honeypot to be a regular host and the defender is aware of

the attacker’s misperception.

Definition 3 (Level-2 Hypergame with Labeling Mispercep-

tion). Given the information structure and the perceptual

games, G1 = 〈G1, ϕ〉 with G1 = 〈S,A, T, s0,AP , L1〉
and G2 = 〈G2, ϕ〉 with G2 = 〈S,A, T, s0,AP , L2〉, the

interaction between P1 and P2 is a level-2 hypergameHG2 =
〈HG1,G2〉, where HG1 = 〈G1,G2〉 is the level-1 hypergame.

Given two games, G1 and G2, we can use their product

games to obtain the solutions, which yield different partitions

of the product state space S × Q. Let Win
k
1 (resp,. Win

k
2)

represent the winning region of P1 (resp., P2) in Gk. From the

winning regions, the winning strategies can be extracted by

construction (See Chapter 2 of [2] for details). To illustrate

the solution, we introduce a running example.

Example 1. In the game arena, G, (see Fig. 1), we have two

players: P1 (circle) and P2 (square). P1 chooses an action

at a circle state, and P2 selects an action at a square state.

Given the transitions are deterministic, we omit the action set

and use the edges of the graph to refer to players’ actions.

0start 1 2

3

4 5 6 7

Fig. 1. A game arena, G. The red (resp. blue) nodes are P1’s winning
region Win

2

1
in G2 (resp. Win

1

1
in G1).

Let L be defined such that L(5) = {A} and L(s) = ∅
for s 6= 5. And L2 is defined such that L2(2) = {A}
and L2(s) = ∅ for s 6= 2. The objective of P1 is ϕ =
♦A, i.e., eventually reaching a state labeled A. The DFA

equivalent to ϕ is shown in Fig. 2.

0start 1
A

∅

∅

Fig. 2. The DFA for ϕ = ♦A.

Due to the simplicity of DFA, we can directly solve G1
and G2 by marking the final set F for P1 to reach in the

arena. In G1, the set to reach is {5}. The solution of G1
yields Win

1

1 = {5, 6, 7} and Win
1

2 = {0, 1, 2, 3, 4}. Whereas,

In G2, the set to reach is {2}. The solution of G2 yields

Win
2

1 = {2, 3} and Win
2

2 = {0, 1, 4, 5, 6, 7}. In the true game

G1, P2 can win the game by choosing the edge (4, 3), but in

her perceptual game G2, P2 considers the action (4, 5) to be

winning or, in other words, rational.

We now introduce the solution concept of subjective

rationality to hypergames on graphs. Let S+ be paths of

length ≥ 1. Let u1 : S+ × Π1 × Π2 → [0, 1] be the utility

function of P1 such that u1(ρ, π1, π2) is the probability of

satisfying the specification ϕ given that players commit to

the strategy profile 〈π1, π2〉 for a given history ρ ∈ S+. The

utility function for P2 is u2(ρ, π1, π2) = 1 − u1(ρ, π1, π2).
We denote uj

i the utility function of player i perceived by

player j.

Definition 4 (Subjective Rationalizability). Given a level-2

hypergameHG2 = 〈HG1,G2〉 and the path ρ ∈ S+, strategy

π∗
i : S+ → D(Ai) (resp.,π∗

j ) is subjective rationalizable for

P2 if and only if for all πi ∈ Πi, we have u2
i (ρ, π

∗
i , π

∗
j ) ≥

u2
i (ρ, πi, π

∗
j ), where (i, j) ∈ {(1, 2), (2, 1)}. The strategy π∗

1

is subjective rationalizable for P1 if and only for all π1 ∈
Π1, u1

1(ρ, π
∗
1 , π

∗
2) ≥ u1

1(ρ, π1, π
∗
2), where π∗

2 is subjective

rationalizable for player 2.

In words, a strategy is called subjectively rationalizable for

player i if it is the best response in that player’s perceptual

game to some strategy of player j, which, for player j, is



the best response to player i in player j’s subjective view of

player i’s perceptual game.

We now formally define the subjective rationalizable ac-

tions in G2.

Definition 5 (Subjective rationalizable actions in G2). For

a given state (s, q) in G2, an action of player i, for i =
1, 2, is subjective rationalizable for P2 if it has a non-zero

probability to be selected by a subjectively rationalizable

strategy of player i in P2’s perceptual game G2.

Assumption 1. Subjective rationalizability is a common

knowledge between P1 and P2.

Assumption 1 means that both players know that their

opponent is subjectively rational and that the opponent is

aware of this fact. Thus, we can say that P2 would become

aware of her misperception, i.e., G2 6= G1, whenever P1

uses an action which is not subjectively rationalizable in

P2’s perceptual game, G2. Thus, we define the notion of a

stealthy deceptive winning strategy over a graphical model—

a hypergame transition system—that effectively allows P1 to

track histories in both G1 and G2.

Definition 6. Given games G1 = 〈G1, ϕ〉 and G2 = 〈G2, ϕ〉,
a hypergame transition system (HTS) is a tuple,

HTS = 〈S ×Q×Q,A,∆, (s0, q0, p0),Win
1

1 ×Q〉,

where 1) the transition function ∆ is defined as follows:

given (s, q, p), (s′, q′, p′) ∈ S × Q × Q, ∆((s, q, p), a) =
(s′, q′, p′) for some a ∈ A if and only if s′ = T (s, a) and

q′ = δ(q, L1(s
′)) and p′ = δ(p, L2(s

′)); and 2) the initial

state is (s0, q0, p0) where s0 is the initial state in the game

arena, q0 = δ(ι, L1(s0)), and p0 = δ(ι, L2(s0)). 3) Win
1
1 ×

Q = {(s, q, p) | (s, q) ∈Win
1

1}.

Definition 7 (Stealthy deceptive winning strategy). A strat-

egy π1 : S×Q×Q→ D(A1) defined on the HTS is stealthy

deceptive (sure/almost-sure) winning in the hypergame HG2

(in Def. 3) if the following two conditions are satisfied:

1) Stealthy: For any (s, q, p) ∈ S1 × Q × Q \Win
1

1 × Q,

then π1((s, q, p), a) > 0 only if action a is subjective

rationalizable for P1 in G2; 2) Winning: By committing to

π1, P1 ensures to visit a state in Win
1

1×Q, no matter which

subjective rationalizable strategy that P2 commits to.

A state (s, q, p) ∈ S × Q × Q is stealthy deceptive

(sure/almost-sure) winning if P1 has a stealthy deceptive

(sure/almost-sure) winning strategy at that state.

We now formally state our problem:

Problem 1. Given a hypergame on graph HG2 in Def. 3

and Assumption 1, how to synthesize a stealthy deceptive

sure/almost-sure winning strategy for P1?

B. Synthesis of a stealthy deceptive sure winning strategy

For P1’s deceptive strategy to be stealthy, he must choose

actions that are subjective rationalizable in P2’s perceptual

game until reaching the winning region Win
1
1. At the same

time, a rational P2 takes subjective rationalizable actions in

G2 unless she becomes aware of the misperception.

Lemma 1. In a turn-based deterministic perceptual game

G2, for a state (s, q) ∈ S × Q, an action a is subjective

rationalizable for player i if and only if it satisfies either

condition: 1) (s, q) ∈ Win
2
i and ∆((s, q), a) ∈ Win

2
i ; 2)

(s, q) /∈ Win
2

i and a is enabled from s.

The first condition means that P2 thinks that a rational

player should stay within his/her winning region; the second

condition means that P2 thinks that it is rational for a player

to take arbitrary actions if he/she has already lost the game

from that state.

We introduce two functions π2
i , for i ∈ {1, 2}, that maps

a state (s, q) ∈ Win
2

i into a set of subjective rationalizable

actions for player i in the game G2. Formally, for each i, the

function π2
i : Win

2
2 ∩ (Si ×Q)→ 2Ai is defined such that,

π2
i (s, q) = {a | ∆2((s, q), a) ∈Win

2

i }. (1)

Theorem 1. Given HTS = 〈S × Q ×
Q,A,∆, (s0, q0, p0),Win

1

1×Q〉, functions π2
2 : S×Q→ 2A2

and π2
1 : S × Q → 2A1 defined by (1), P1 has a stealthy

deceptive sure winning strategy if and only if he has a sure

winning strategy in the following reachability game:

H̃G = (S ×Q×Q,A, ∆̃, (s0, q0, p0),Win
1
1 ×Q)

where ∆̃ is obtained from ∆ by restricting both players’

actions as follows: For a given state (s, q, p) ∈ S × Q ×
Q and action a ∈ A, if (s, q) ∈ Win

1
1, ∆̃((s, q, p), a) =

∆((s, q, p), a), otherwise,

Case I : (s, p) ∈ Win
2

2 and (s, q) /∈Win
1

1,

∆̃((s, q, p), a) =




∆((s, q, p), a) if s ∈ S1,
∆((s, q, p), a) if s ∈ S2 and a ∈ π2

2(s, p),
↑ if s ∈ S2 and a /∈ π2

2(s, p).

where ↑ means that the transition is undefined.

Case II : (s, p) ∈Win
2

1 and (s, q) /∈ Win
1

1,

∆̃((s, q, p), a) =




∆((s, q, p), a) if s ∈ S1 and a ∈ π2
1(s, p) ,

↑ if s ∈ S1 and a /∈ π2
1(s, p),

∆((s, q, p), a) if s ∈ S2.

The winning condition is defined by Win
1
1 × Q–that is, P1

wins if he reaches the set Win
1

1 ×Q.

Proof. Before reaching the set Win
1

1 × Q, at any state

(s, q, p) where s ∈ S2, if (s, p) is perceived winning by

P2 (i.e.,, (s, p) ∈ Win
2

2), then P2 will select a subjectively

rationalizable action a ∈ π2
2(s, p). If (s, p) is not in Win

2

2,

then any action from P2 is subjective rationzalizable. At a

state (s, q, p) where s ∈ S1, if (s, p) ∈ Win
2

1 but (s, q) /∈
Win

1

1, then P1 will select a subjectively rationalizable action

a ∈ π2
1(s, p) so as not to contradict P2’s perception. If

(s, p) /∈ Win
2

1 and (s, q) /∈ Win
1

1, then any action of P1

is deemed subjectively rationalizable by P2. The solution of

reachability game H̃G, is a policy π∗
1 : S×Q×Q→ A1 that

ensures starting from a state where π∗
1 is defined, no matter

which action P2 selects in H̃G, P1 can ensure to reach a state

(s, q, p) with (s, q) ∈ Win
1

1 by following π∗
1 , in finitely many



steps. By construction, P2 will not know that a misperception

exists as P1 takes only subjective rationalizable actions, until

P1 reaches Win
1

1. After reaching the set, P1 can follow the

true winning strategy defined for Win
1
1.

Example 2. Given the DFA shown in Fig. 2, we construct

HTS and H̃G shown in Fig. 3. In this figure, the red,

dashed edges correspond to actions that are not subjective

rationalizable in P2’s perceptual game and thus removed to

obtain H̃G. For example, at state (3, 0, 0), P2 thinks that it

is irrational for P1 to reach (4, 0, 0) instead of (2, 0, 1) given

P2 misperceives the labels of states and thinks that P1 needs

to reach state 2.

0, 0, 0start 1, 0, 0 2, 0, 1 1, 0, 1 0, 0, 1

4, 0, 13, 0, 1 5, 1, 1

4, 1, 1

6, 1, 1

7, 1, 1

3, 1, 1

4, 0, 0 3, 0, 0

5, 1, 0 4, 1, 0 3, 1, 0 2, 1, 1

6, 1, 0 7, 1, 0

Fig. 3. A graph representing HTS and H̃G. The blue and dash dot edges

are deterministic choices in two-player reachability game H̃G. The red and
dashed edges are not subjectively rationalizable for P2 and thus removed in

H̃G. Unreachable states in H̃G and HGM are drawn dashed.

In the reachability game H̃G, we calculate the stealthy

deceptive sure winning region for P1, which includes

{(5, 1, 0), (6, 1, 0), (7, 1, 0), (4, 1, 0), (4, 0, 0)}. This means

that P1 can satisfy his objective deceptively from states

{4, 5, 6, 7}–that is, one state more than the game where P2

does not have misperception. Due to P2’s misperception, P2

will not select to go to state 3 from state 4–making the state

4 deceptive sure winning for P1.

C. Synthesis of a deceptive almost-sure winning strategy

In synthesizing the deceptive sure winning strategy for

P1, we assumed that P2 actively selects actions in the zero-

sum game H̃G to play against P1’s objective. However, P2

cannot construct this hypergame transition system and thus

may make “mistakes”, exploitable by P1. To see this, let us

consider the winning strategy for P2 in the reachability game

H̃G, π̃∗
2 : S×Q×Q→ 2A2 . For P2 to exercise π̃∗

2 , P2 should

know the value of q in the tuple (s, q, p), which means that

P2 should have a knowledge about L1. This is not the case.

Next, we consider a realistic assumption for P2.

Assumption 2. For a P2 state (s, q, p) in the HTS, any

subjective rationalizable action at (s, p) in G2 will be be

selected by P2 with a non-zero probability.

The assumption on P2’s behavior has the following ratio-

nale: At any given state, the set of subjective rationalizable

actions has the same values (either 1 or 0 depending on

whether (s, p) ∈ Win
2

2). The assumption allows P2 to

select any action in this set at random, instead of the

worst-case scenario (considered by solving stealthy deceptive

sure winning strategy, in Sec. III-B). Besides, if P2 never

selects a subjective rationalizable action in her perceptual

game, then the game is entirely different as we would have

eliminated that action from the arena. This P2’s random

choice of subjective rationalizable actions can be considered

as opportunities for P1 to exploit.

Theorem 2. Given HTS = 〈S × Q ×
Q,A,∆, (s0, q0, p0),Win

1

1×Q〉, P1 has a stealthy deceptive

almost-sure winning strategy if and only if he has an

almost-sure winning strategy in the following one-player

stochastic game:

HGM = (V = V1 ∪ VP , A1, P, v0,F = Win
1
1 ×Q),

where the states are partitioned into two subsets: V1 = S1×
Q×Q are a set of P1’s states and VP = S2 ×Q×Q are a

set of probabilistic states. The transition function is partially

defined as follows. First, any state in F is a sink or absorbing

state. At a state (s, q, p) ∈ V1 \F , we distinguish two cases:

Case I-1: (s, p) ∈ Win
2

2, for any action a ∈ A1 enabled

from s, P ((s′, q′, p′)|(s, q, p), a) = 1 where (s′, q′, p′) =
∆((s, q, p), a). Case I-2: (s, p) ∈ Win

2

1, for any action a ∈
π2
1(s, p), P ((s′, q′, p′)|(s, q, p), a) = 1 where (s′, q′, p′) =

∆((s, q, p), a).
At a state (s, q, p) ∈ VP , we distinguish two cases:

Case II-1: (s, p) ∈ Win
2

2 , then for any action a ∈
π2
2(s, p), P ((s′, q′, p′)|(s, q, p), a) > 0 where (s′, q′, p′) =

∆((s, q, p), a). Case II-2: (s, p) ∈Win
2

1, then for any action

a ∈ A2 enabled from s, P ((s′, q′, p′)|(s, q, p), a) > 0 where

(s′, q′, p′) = ∆((s, q, p), a).
The almost-sure winning condition is defined by Win

1

1 ×
Q–that is, P1 wins if he reaches the set Win

1

1 × Q with

probability one.

The proof is similar to that of Thm. 1, with small changes

to consider randomized actions of P2. We omitted the proof

due to the lack of space.

It is noted that only the support of P ((s, q, p), a) is

known but not the exact probability distribution. The partial

knowledge of the transition probability function gives us a

graph of the underlying one-player stochastic game. The

stealthy deceptive almost-sure winning strategy for P1 is to

ensure, with probability one, a state in Win
1
1 × Q can be

reached. Next, we describe Algorithm 1 to solve the almost-

sure stealthy and deceptive winning strategy for P1.

The algorithm uses a function Pre defined as follows.

Pre(v,X) = {v′ ∈ V1 | ∃a ∈ A1, P (v|v′, a) = 1}

∪ {v′ ∈ VP | P (v|v′) > 0 =⇒ v ∈ X} (2)

and Pre(Y,X) = ∪v∈Y Pre(v,X).
Intuitively, the set Pre(Y,X) includes any state starting

from which P1 can ensure to reach the set Y with a positive

probability, while staying in X with probability one. The

following result is readily obtained by construction.

Proposition 1. The fix-point X∗ = Xk = Xk+1 is the

almost-sure winning region for P1 in the one-player stochas-

tic game HGM .

Given the fixed point X∗, let Y0, Y1, . . . , Yk be a sequence

of states computed using X = X∗ in the inner loop, we



Algorithm 1 Computation of the almost-sure winning region

and strategy for P1 in the one-player stochastic game.

Inputs: HGM = (S = V1 ∪ VP , A1, P,F).
Outputs: Xk, {Yi}.

1: X0 = V , Y0 = F , k ← 0,

2: while True do i← 0,

3: while True do

4: Yi+1 = Pre(Yi, Xk) ∪ Yi

5: if Yi = Yi+1 then

6: Break.

7: i← i+ 1.

8: if Yi = Xk then Break.

9: Xk+1 = Yi, k ← k + 1,

can extract P1’s deceptive almost-sure winning strategy π1

as follows. For each v ∈ Yi \ Yi−1, i > 0, π1(v, a) =
1 if P (Yi−1 | v, a) = 1. After reaching F , P1 follows his

sure winning strategy in Win
1
1.

Example 3. The edges (1, 0, 0) → (0, 0, 0) and

(1, 0, 0) → (4, 0, 0) are in Fig. 3 are now probabilis-

tic choices of P2. We compute 1) Y0 = Win
1

1 × Q =
{(5, 1, 0), (6, 1, 0), (7, 1, 0)}. (here we omitted unreachable

states.) 2) Y1 = {(4, 1, 0), (4, 0, 0)} ∪ Y0. 3) Y2 =
{(1, 0, 0)} ∪ Y1, 4) Y3 = {(0, 0, 0)} ∪ Y2. Because Y4 = Y3.

The inner loop of Alg. 1 ends. Because now all reachable

states in X0 are in Y3. We have X0 = Y3 and the outer

loop of Alg. 1 ends. Thus, the deceptive almost-sure winning

region includes all states of the game.

It is noted that the solutions of deceptive strategies are

based on solving multiple games (two-player zero-sum, turn-

based games and one-player stochastic games). The space/-

time complexity is linear in the size of HTS for solving the

deceptive sure winning strategy, and polynomial for solving

the deceptive almost-sure winning strategy.

IV. CONCLUSION AND DISCUSSIONS

This paper presents a theory of hypergame for synthesizing

stealthy deceptive strategies with temporal logic specifica-

tions. We have shown that different from the games with

complete information where the sure winning and almost-

sure winning region overlap, the deceptive sure winning and

almost-sure winning regions are different when one player

has incomplete or incorrect information.

This work lays the foundation for multiple future direc-

tions for both theoretical advances and algorithmic develop-

ment. One extension is to investigate the application of game-

theoretic synthesis to cyber-physical security with decoy-

based deception. This extension requires us to generalize

the Assumption 1 to incorporate other inference mecha-

nisms. For example, if P2 can detect the true labeling after

interacting with the decoy nodes, then P1 could include

safety (prevent P2 from reaching decoys) as part of stealthy

deception objective. In addition, we will extend the theory

of hypergames to concurrent games on graphs [22] and

investigate the solution of this class of hypergames.
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