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Abstract—Combinations of Gramian-based centrality mea-
sures are used for driver node selection in complex networks
in order to simultaneously take into account conflicting control
energy requirements, like minimizing the average energy needed
to steer the state in any direction and the energy needed for the
worst direction. The selection strategies that we propose are based
on a characterization of the network non-normality, a concept
we show is related to the idea of balanced realization.

I. INTRODUCTION

In recent years, there has been a renewed interest in the
controllability problem, motivated by its application in the
context of complex networks. Depending on the context, many
are the possible ways to define control inputs on networks,
from drugs in biological networks [2] to dams in irrigation
networks, from traffic lights in intersections to opinion makers
in social networks, etc. Given a network, deciding where to
place the controls is often an integral part of the controllability
problem. In the ideal case, a control can be placed on any node
of the network, hence it is of interest to provide criteria for
driver node placement that guarantee controllability.

The notion of structural controllability [3] has proven to be
very useful to determine where to place a minimal number of
driver nodes that achieve controllability ([4], [5] and others).
However, a network may be controllable in theory but not in
practice if for instance unreasonable amounts of control energy
are required to steer it in some direction. For linear dynamics,
the measures of control energy are normally formulated in
terms of the controllability Gramian [6]. Several of the papers
that have appeared in recent years on the subject in fact rely
on properties of the Gramian. For instance [7], [8] quantify
the importance of the different nodes for controllability using
Gramian-based network centrality measures. Optimization-
based approaches are instead used in [9], [10]. None of
these approaches has proven valid in all situations, especially
because different measures of control energy correspond to
different centrality measures and hence to different driver node
selections criteria.

In [11], we showed numerically that the energy required
to control a network is influenced by a connectivity property
expressed as a ratio between the weighted outdegree and
indegree of the nodes. In this paper, the empirical results of
[11] are put into a more solid formal basis, and interpreted
in terms of the algebraic properties of the adjacency matrix
of the network. Our main result is to propose two strategies
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for driver node placement, based on a novel characterization
of network non-normality as imbalance in the distribution of
energy in the network. We establish an equivalence between
a network with normal adjacency matrix and a system with
balanced realization [12]. Our formulation allows to quantify
network non-normality at a node level as combinations of two
different centrality metrics. The first measure (node-to-network
centrality) quantifies the influence that each node has on the
rest of the network. It corresponds to the energy with which
the node excites the network. The second measure (network-to-
node centrality) describes instead the ability to control a node
indirectly from the other nodes, and corresponds to the energy
that reaches the node from the other nodes. Suggestively, this
centrality is formulated in terms of the observability Gramian,
and it is somewhat related to structural controllability, as it
identifies the nodes that cannot be controlled indirectly and
hence must be driver nodes.

We show that the two centralities can be expressed as special
cases of the H2 system norm, and can be formally related
to performance bounds on some of the most commonly used
control energy metrics. These results suggest that nodes with
a high node-to-network centrality (i.e., with a high network
influence) and nodes with a low network-to-node centrality
(i.e., nodes that are difficult to control indirectly) should be
driver nodes, and the strategies for driver node placement
that we propose combine the centralities in such a direction.
Practically, the strategies consist in selecting the nodes that
maximize the network non-normality. In this way we achieve
good performances both in terms of the average energy that
is required to steer the network and in terms of the energy
required to steer it in the most difficult direction.

The rest of the paper is organized as follows: In Section
II, definitions are given, results on controllability are revised
and different energy-related metrics are discussed. In Section
III, the network centralities are presented and their formal
relations to the control energy metrics are derived. Section IV
is about network non-normality and balanced systems, while in
Section V the driver node placement strategies are presented.

A preliminary version of this paper was presented at
ECC’19 [1]. This conference paper discusses the network
centralities for discrete-time systems. Results such as Theorem
III.3 and, most importantly, the material of Section IV are
however presented here for the first time.

II. BACKGROUND

A. Notation

We denote Rn×m the set of n×m matrices with real valued
entries. The k-th vector of the canonical basis of Rn is denoted
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ek, k ∈ 1, . . . , n. For the vector z ∈ Rn, ‖z‖ =
√
z>z is

its Euclidean norm. Given a matrix M ∈ Rn×m, let M [k] =
Mek, k ∈ 1, . . . ,m, denote the k-th column of M and Mij =
e>i Mej , i ∈ 1, . . . , n, j ∈ 1, . . . ,m, the element on row i
and column j. For M ∈ Rn×n, diag(M) ∈ Rn is the vector
of its diagonal entries. Given two matrices M,N ∈ Rn×n,
[M,N ] = MN −NM is their matrix commutator. A matrix
A is said normal if [A,A>] = 0, non-normal otherwise. Given
a vector z ∈ Rn, the nonincreasing rearrangement of z is the
vector z↓ ∈ Rn whose entries are the same as those of z
(including multiplicities) but rearranged in nonincreasing order
z↓1 ≥ · · · ≥ z↓n.

A (directed) graph G is indicated by the pair of its nodes and
edges, V = {v1, . . . , vn} and E = {(vi, vj), i, j ∈ 1, . . . , n},
or, if it is necessary to specify the edge weights, by the adja-
cency matrix A, i.e., G = G(A). Then the weight associated
with the edge from vi to vj , (vi, vj), is Aji. The node vi ∈ V
is a root if it has no incoming edge and a leaf if it has no
outgoing edge.

B. Controllability

We consider the following continuous-time linear time-
invariant model for the network

ẋ(t) = Ax(t) +BKu(t), (1)

where x(t) ∈ Rn is the state at time t ≥ 0, A ∈ Rn×n,
BK = [ek1

. . . ekm
] ∈ Rn×m and u(t) ∈ Rm. We represent

the network with the directed graph G(A) = (V, E). Each
control input is assumed to act on only one node which is
then called a driver node. The set of driver nodes is K =
{vk1 , . . . , vkm} ⊆ V . The system (1) is controllable if and
only if the controllability Gramian

W (tf ) =

∫ tf

0

eAtBKB
>
Ke

A>tdt, (2)

is positive definite. For A stable, the controllability Gramian
converges as tf → ∞. We omit the dependency on tf in
the following. The minimal energy that is needed to steer
the network in a specific direction of the state space can be
exactly computed from the controllability Gramian. When all
directions are considered, the following metrics for the control
energy are commonly used:

i) The minimal eigenvalue of W , λmin(W ): The energy
required to steer the system in the worst case direction is
1/λmin(W ).

ii) Tr(W−1): The trace of the inverse Gramian is propor-
tional to the average energy required to control a system
over all directions of the state space.

iii) Tr(W ): The trace of the Gramian is inversely related to
the average energy required to control a system.

See e.g. [6], [9] for more details about the different control
energy metrics.

For a stable linear input-output system H with system
matrices (A,B,C), the H2 norm can be computed from the
(infinite horizon) controllability Gramian,

‖H‖22 = Tr(CWCT ). (3)

III. CENTRALITY MEASURES FOR THE CONTROL ENERGY

We begin this section by defining a quantity we call walk
energy, which we use to derive the proposed centrality mea-
sures. Following that, we relate them to the considered control
energy metrics.

A. Centrality measures

We define the walk energy from vi to vj as

εi→j =

∫ tf

0

(
(eAt)ji

)2
dt. (4)

This is in fact the squared H2 norm of the system A, B = ei,
C = e>j , and can be thought of as the excitation energy of
node vj when a unit impulse is applied to node vi. Let

W (i) =

∫ tf

0

eAteie
>
i e

A>tdt, i = 1, . . . , n, (5)

i.e. the Gramian when vi is the only driver node. For the diag-
onal elements in (5) we have

(
W (i)

)
jj

= εi→j , j = 1, . . . , n.
With the driver nodes K = {vk1

, . . . , vkm
} the controllability

Gramian (2) can be written

W =
∑

i=k1,...,km

W (i), (6)

see e.g. [7] for a derivation. In particular, the diagonal elements

Wjj =
∑

i=k1,...,km

εi→j , j = 1, . . . , n. (7)

For A stable the walk energies converge as tf →∞.

Definition III.1. The node-to-network centrality pi is the total
walk energy from vi to all nodes,

pi =

n∑
j=1

εi→j = Tr(W (i)). (8)

Equation (8) is the same as the squared H2 norm (3) with
C = I and W = W (i), hence we can interpret it as the energy
injected into the system ( C = I means all nodes) by vi. We
use the centrality pi for quantifying the network impact of vi
as a driver node. Equation (6) and the linearity of the trace
operator gives

Tr(W ) =
∑

i=k1,...,km

pi. (9)

The centrality p = {p1, . . . , pn} appears also in [9] where
the driver node placement problem is investigated using opti-
mization techniques. From (9), for m a given number of driver
nodes, the control energy metric Tr(W ) is maximized when K
is the set of the m nodes with highest pi. However, driver node
placement based on p alone does not even guarantee control-
lability, as worst-case directions requiring infinite energy may
still exist. For instance, the p centrality does not favour roots
over other nodes, although controllability is never achieved
unless all roots are driver nodes.



Introduce the fictitious output equation y(t) = Cx(t), where
y(t) ∈ Rd is the output at time t and C ∈ Rd×n. The
observability Gramian

M(tf ) =

∫ tf

0

eA
>tC>CeAtdt

is positive semidefinite and converges as tf →∞ for A stable.
The dependency on tf is omitted in the following. In analogy
with W (i), i = 1, . . . n, introduce

M (j) =

∫ tf

0

eA
>teje

>
j e

Atdt, j = 1, . . . , n,

i.e. the observability Gramian with the state of vj as the only
output. The diagonal elements are M (j)

ii = εi→j , vi, vj ∈ V .
We use the sum of the walk energies to vj from all the other

nodes as a metric for the ability to control vj indirectly,

q̃j =
∑
∀i6=j

εi→j . (10)

From the definition of walk energy we obtain q̃j ≥ 0, j ∈
1, . . . , n. The metric attains its least value q̃j = 0 if and only if
vj is a root. Furthermore, it is close to its minimum for nodes
with only few and weak incoming edges, i.e. “almost” root
nodes. Besides q̃j , we will also use the following centrality
metric.

Definition III.2. The network-to-node centrality qi is the total
walk energy from all nodes to vj ,

qj =

n∑
i=1

εi→j = Tr(M (j)). (11)

The centrality qj is the squared H2 norm of the system
(A,B = I, C = e>j ), hence interpretable as the system energy
that a impulse input at each node injects into node vj . Since
qj = q̃j + εj→j with εj→j > 0, it is qj > 0.

B. Control energy bounds
Lemma III.1 below follows directly from (7) and the defi-

nitions of q and q̃. The result is later used to derive theoretical
bounds relating the control energy metrics λmin(W ) and
Tr(W−1) to the centrality measures (Theorems III.2 and III.3
respectively).

Lemma III.1. The diagonal elements Wjj , j = 1, . . . , n, are
bounded by

(i) Wjj = qj if K = V (the network is fully actuated),
(ii) 0 ≤Wjj ≤ q̃j if vj ∈ V \ K, and

(iii) εj→j ≤Wjj ≤ qj if vj ∈ K.

Theorem III.2. With K a set of driver nodes, it holds
λmin(W ) ≤ min{qi, q̃j}, i = 1, . . . , n, and j s.t. vj ∈ V \K.

Proof. Since W is symmetric,

λmin(W ) = min
‖x‖=1

x>Wx ≤ e>j Wej = Wjj , j = 1, . . . , n.

The result of the theorem is obtained when this is used with
properties (ii) and (iii) of Lemma III.1. Notice that λmin(W ) ≤
qi, i = 1, . . . , n, holds for any K ⊆ V .

In the following corollary, let the indices j1, . . . , jn be such
that q̃j1 ≤ q̃j2 ≤ · · · ≤ q̃jn .

Corollary III.2.1. For any set K of m driver nodes, the
minimal eigenvalue of the Gramian is bounded by

λmin(W ) ≤ min{qi, q̃jm+1
}, i = 1, . . . , n. (12)

Proof. Taking K in Theorem III.2 as the set of nodes with
lowest q̃j gives the bound (12). For any other K s.t. |K| =
m < n ∃ d ∈ 1, . . . ,m s.t. vjd ∈ V \ K and λmin(W ) ≤
q̃jd ≤ q̃jm+1 .

As a consequence of Corollary III.2.1, the nodes with the
lowest q̃ and q give a direct upper bound on λmin(W ), i.e. a
lower bound on the energy required to control the network in
the most difficult direction.

Theorem III.3. For any set of driver nodes K such that the
network is controllable it holds

Tr(W−1) ≥
∑

j s.t. vj∈K

1

qj
+

∑
j s.t. vj∈V\K

1

q̃j
. (13)

Proof. Since W is symmetric, by the Schur-Horn theorem for
Hermitian matrices [13], the vector of eigenvalues λ(W ) =
[λ1(W ) . . . λn(W )]> majorizes diag(W ), i.e.,

k∑
i=1

λi(W )↓ ≥
k∑

i=1

diagi(W )↓

for each k = 1, 2, . . . , n, with equality for k = n. Applying
Hardy-Littlewood-Pólya’s inequality on majorizing sets and
convex functions [14] to λ(W ) and diag(W ) gives

n∑
i=1

1

λi(W )
≥

n∑
i=1

1

Wii
.

Controllability implies that V\K contains no root nodes (all
root nodes must be driver nodes). Hence, q̃j > 0 ∀j s.t. vj ∈
V \ K and the bound (13) exists. By Lemma III.1, 1/Wjj ≥
1/qj if vj ∈ K and 1/Wjj ≥ 1/q̃j otherwise. Hence,

Tr(W−1) =

n∑
i=1

1

λi(W )
≥

n∑
j=1

1

Wjj
≥
∑
j∈K

1

qj
+
∑

j∈V\K

1

q̃j
.

Since qj ≥ q̃j + εj→j , the second sum in (13) is the most
important. Nodes with low q̃ that are not driver nodes result in
the lower bound (13) being high. As a corollary of Theorem
III.3 we obtain a lower bound on Tr(W−1) for a given number
of driver nodes.

Corollary III.3.1. Assume controllability. With the number of
driver nodes |K| = m it holds

Tr(W−1) ≥
m∑
j=1

1

q↓j
+

n−m∑
j=1

1

q̃↓j
. (14)

A necessary but not sufficient condition for equality in (14) is
that K are the nodes with the lowest q̃j .



Proof. In Theorem III.3, use the fact that

∑
j s.t. vj∈K

1

qj
≥

m∑
j=1

1

q↓j
,

∑
j s.t. vj∈V\K

1

q̃j
≥

(n−m)∑
j=1

1

q̃↓j
,

with equality if and only if K are the nodes with lowest q̃j .

IV. NON-NORMALITY AND BALANCED SYSTEMS

The notion of balanced realization has a central role in
classical control theory and is mainly used for model reduction
[12]. Here, we show that the network non-normality can
be understood as imbalances in the distribution of energy
in the network realization. Moreover, as we quantify these
imbalances, the centralities p and q naturally appear. For
simplicity, in this section we only consider infinite time
horizon controllability and observability Gramians.

A. Characterization of network non-normality

The following definition can be found in e.g. [12].

Definition IV.1. A control system (A,B,C) is balanced if
W = M .

In a balanced system, the states which are difficult to reach
are simultaneously difficult to observe.

If we assume a fully actuated network where the state of
each node is considered an output (i.e. B = C = I), then any
balance/imbalance is entirely due to the weighted adjacency
matrix A. As a matter of fact, in this case the notion of balance
can be linked to the non-normality of the adjacency matrix.
Denote by W (V), M (V) the controllability and observability
Gramians corresponding to B = C = I .

Theorem IV.1. A stable, fully actuated and observed network
is balanced if and only if the weighted adjacency matrix A is
normal.

Proof. W (V) and M (V) are the solutions to the Lyapunov
equations

A>W (V) +W (V)A+ I = 0,

M (V)A> +A>M (V) + I = 0.

Given that A is Hurwiz stable, according to Theorem 2 of [15]
it holds that W (V) = M (V) if and only if A is normal.

For instance undirected networks correspond to normal
weighted adjacency matrices, hence they are balanced.

It follows from Theorem IV.1 that the matrix

N = M (V) −W (V) =

∫ ∞
0

[eAt, eA
>t]dt

expresses the non-normality of the network. Such quantity is
not invariant to a change of basis. In particular, it is well-
known [12] that for any controllable and observable system
there exists a state transformation matrix Q such that

W̃ = QTWQ = Q−1M(Q−1)> = M̃, (15)

i.e. the system is balanced in the new basis.
When balancing is used for model reduction, it is also

required that the two Gramians are diagonal. However, a

change of basis leading to diagonal Gramians will in general
destroy the correspondence between the elements of the state
vector and the nodes, i.e. between the A matrix and the
network topology. For irreducible A, only a diagonal state
transformation matrix preserves the topological/algebraic cor-
respondence, as it amounts to rescaling the states of the nodes
while not mixing states at different nodes.

B. Non-normality in a node

In case N 6= 0, we say that z>Nz is the non-normality in
direction z ∈ Rn, ||z|| = 1. In particular, we can denote

rdiff,i = e>i Nei = M
(V)
ii −W

(V)
ii ∈ R

the non-normality corresponding to node vi ∈ V . If rdiff,i = 0
then the node vi is “balanced” (in the sense that it is as difficult
to control as to observe).

While balancing (i.e. W̃ = M̃ ) cannot in general be
achieved with Q diagonal, there always exists a unique positive
vector, denote it rquot ∈ Rn such that Q = diag(rquot)
achieves diag(M̃ (V)) = diag(W̃ (V)), i.e. the diagonal part of
Ñ = M̃ (V)−W̃ (V) is canceled. This means that the node non-
normality of vi is canceled by the rescaling x̃i = xi/rquot,i,
i ∈ 1, . . . , n. Also rquot,i provides a relative measure of node
non-normality (with rquot,i = 1 corresponding to vi balanced).
Both rdiff and rquot are related to our network centralities:

Theorem IV.2. The node non-normalities rdiff,i and rquot,i can
be expressed as rdiff,i = pi − qi and rquot,i = (pi/qi)

1/4, i ∈
1, . . . , n.

Proof.
rdiff,i : Using the cyclic property of the trace operator, it can
be shown that M (V)

ii = TrW (i), e.g. the centrality pi, i =

1, . . . , n. In the same way, W (V)
ii = qi. Hence, rdiff,i = pi−qi.

rquot,i : Given the condition M̃
(V)
ii = W̃

(V)
ii ∀i = 1, . . . , n.

With Q = diag(rquot) we obtain

W̃
(V)
ii = qir

2
quot,i and M̃ (V)

ii = pi/r
2
quot,i, hence

M̃
(V)
ii = W̃

(V)
ii ⇔ r4quot,i = pi/qi

with rquot,i = (pi/qi)
1/4 the only positive real root.

Notice that
∑n

i=1 rdiff,i = 0, meaning that if some nodes
have a positive non-normality then others must have a negative
non-normality.

C. Non-normality in a set of nodes

The node non-normalities rdiff,i and rquot,i can be combined
for sets of nodes. For S ⊆ V , let

rdiff,S =
∑

i s.t. vi∈S
e>i Nei =

∑
i s.t. vi∈S

rdiff,i (16)

be the non-normality of the node set S.
Given two sets of nodes S1 ⊆ V and S2 ⊆ V , define the

net walk energy from S1 to S2 as

∆εS1→S2 = εS1→S2 − εS2→S1 =
∑

i s.t. vi∈S1
j s.t. vj∈S2

(εi→j − εj→i).



Proposition 1. For S ⊆ V , the node set non-normality rdiff,S
is the net walk energy from S to V \ S.

The proposition follows from straight-forward manipula-
tions of (16).

In the next section we will use the node set non-normality
for driver node placement, i.e. for determining the set K.
Since rdiff,K is a linear function of the set K (equation (16)),
for a given |K| = m, it is maximal when K is the set of
m nodes with highest rdiff,i. When m is left arbitrary, (16)
implies that the maximal node set non-normality is given in
correspondence of K = {vi, i s.t. rdiff,i ≥ 0}. This case
describes how to partition the nodes into the two sets K and
V \ K that achieve the maximum net walk energy from the
former to the latter.

For the generalization of rquot,i to sets of nodes, we seek a
common rescaling x̃i = xi/rquot,S , ∀i ∈ S, such that∏

i s.t. vi∈S
M̃

(V)
ii =

∏
i s.t. vi∈S

W̃
(V)
ii .

This is achieved for rquot,S the geometric average of rquot,i,
i s.t. vi ∈ S. Hence, for a given |K| = m, rquot,K is maximal
when K is the set of m nodes with highest rquot,i.

V. DRIVER NODE PLACEMENT

We use the node non-normalities rdiff,i and rquot,i to rank
the nodes for driver node placement. For a given |K| = m,
this means to select the set K ⊆ V that maximizes the node
set non-normality rdiff,K or rquot,K. Figure 1 shows a small
network example with pi, qi, rdiff,i and rquot,i presented for
each node.

In our ranking strategies, maximization of pi − qi or pi/qi
corresponds to two different trade-offs between nodes produc-
ing the largest injection of energy in the system (maxi pi) and
those relying on the least injected energy (mini qi). In fact,
maxi(pi) alone corresponds to maximizing Tr(W ) but could
correspond to ellipsoids of W which are “squeezed” to 0 in
certain directions i.e., to infinite energy required along certain
eigenspaces of 1/W (see example in Fig. 1). On the contrary,
maxi(−qi) = mini(qi) alone means focusing on nodes that
have no or little incoming walk energy. According to Theorems
III.2 and III.3 and their corollaries, these nodes should be
driver nodes in order to improve λmin(W ) and Tr(W−1).

Observe that for a balanced network (with normal weighted
adjacency matrix), p = q, rdiff = 0 and rquot = 1 for all nodes,
hence the rankings are degenerate. Put differently, the best
driver nodes considering the p centrality are the worst nodes
considering the q centrality.

A. Simulations

In [11], a variant of rquot was used for driver node placement
in extensive simulation studies. Here, we complement these
studies with an investigation of the amount of energy that
is required to control random networks when rdiff and rquot
are used for driver node placement. For comparison, we also
compute the different control energy metrics for a random
driver node placement and for the placement of driver nodes
that maximize Tr(W ). The results are presented in Figure 2.

1 2 3

4 5

6

0.70.7 0.050.05

0.70.7 0.70.7

0.70.7

0.70.7 0.30.3

0.30.3
Node p q rdiff rquot

1 0.76 0.50 0.26 1.52
2 0.82 0.71 0.11 1.15
3 0.64 0.501 0.14 1.27
4 0.90 0.73 0.17 1.23
5 0.53 0.86 -0.33 0.62
6 0.57 0.91 -0.34 0.63

K Tr(W ) λmin(W ) Tr(W−1)

Ktr = {2, 4} 1.72 0 -
Kdiff = {1, 4} 1.66 3.84 · 10−5 2.80 · 104

Kquot = {1, 3} 1.39 1.11 · 10−3 1.04 · 103

Fig. 1. A directed network with 6 nodes. All nodes have self-loops of weight
−1 that are omitted in the figure. With m = 2 the two rankings suggest
different sets of driver nodes, and the solution that maximizes Tr(W ) is also
different. Tr(W ) is maximized with Ktr = {2, 4}. However, this choice of
driver nodes renders the network uncontrollable since the root node v1 is not
a driver node. The two best nodes according to rdiff are Kdiff = {1, 4} (the
root node is included). They render the network controllable and Tr(W ) is
high. Node 3 is “almost” a root, and the rquot ranking places it as number
two in importance. The resulting driver node placement Kquot = {1, 3} gives
the best λmin(W ) and Tr(W−1) but the lowest Tr(W ).

We use random directed scale-free networks in our study.
They have both an indegree distribution and an outdegree
distribution that follows power laws. By choosing these in
a suitable way, we can obtain networks with large variations
in the two network centralities p and q. The model suggested
in [16] is used to generate random networks with 200 nodes,
indegree distribution Pin(kin) ∝ k−3.14in , and outdegree dis-
tribution Pout(kout) ∝ k−2.88out . The edge weights are sampled
from a normal distribution. In order to ensure stability, the
eigenvalues of A are shifted into the complex half plane
Re{λi} ≤ −0.1,∀i through the addition of negative self loops,
A := A−αI . As the focus is on reducing the control energy,
controllability is always ensured for all choices of driver
nodes by adding edges that guarantee strong connectivity when
needed.

In comparison with randomly placed driver nodes, all met-
rics improve significantly when the driver nodes are placed
according to rdiff or rquot; the metrics λmin(W ) and Tr(W−1)
improve several orders of magnitude. These results are coher-
ent with what is obtained in [11]. Note that the driver nodes
that maximize Tr(W ) result in poor values of λmin(W ) and
Tr(W−1), even worse than for a random choice of driver
nodes for this class of networks. Figure 2(b) shows all the
eigenvalues of W (in increasing order) for m = 70 driver
nodes chosen according to the four criteria described above.
Here λmin(W ) is the leftmost eigenvalue of each curve. The
metrics p, q and q̃ are shown in Figure 2(c). In fact, choosing
power laws for the degree distributions means that the amount
of non-normality of the corresponding adjacency matrix is
large, as a significant fraction of overall outgoing edge weights
is concentrated at a few nodes, and similarly for the overall
incoming edge weights, thereby resulting into skewed distri-
bution of pi and qi, see Figure 2(c). Corresponding results for
discrete time Erdős-Rényi and directed scale free networks
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Fig. 2. Simulation results for random directed scale-free networks with 200 nodes. All displayed values are the averages over 1000 network realizations.
(a): Control energy metrics computed for different numbers of driver nodes. Driver nodes are selected based on the proposed strategies. (b): The eigenvalues
of W in increasing order for different ranking criteria in logarithmic and linear scale (inset). The number of driver nodes is here 70. (c): The metrics pi, qi
and q̃i in logarithmic and linear scale (inset). The values are sorted in ascending order along the x-axis.

that are presented in [1] show that the improvements with
rdiff and rquot are smaller for Erdős-Rényi networks since their
adjacency matrices have a lower degree of non-normality.

VI. CONCLUSIONS

The network centrality measures p and q considered in this
paper are based on system energy considerations. They reflect
the fact that what makes a good driver node depends both on
its influence over other nodes in the network, and on its ability
to be controlled indirectly from other nodes. These centralities
are strictly related to the non-normality of the network that
can be associated to the nodes. Network non-normality can be
understood as imbalances in the distribution of energy in the
network. For a single node it can be quantified by the differ-
ence p − q or by the quotient p/q. A driver node placement
strategy that maximize the non-normality results in reduced
energy requirements for controlling the network, i.e. all the
metrics λmin(W ), Tr(W−1) and Tr(W ) are simultaneously
improved w.r.t. random driver node placement, although none
of them is optimized. The improvements are significant for
networks which have skewed in- and out-degree distributions,
for which the amount of non-normality is non-negligible.
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