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Gradient Methods With Dynamic
Inexact Oracles

Shuo Han , Member, IEEE

Abstract—We present a framework for generalizing the
primal-dual gradient method, also known as the gradient
descent ascent method, for solving convex-concave mini-
max problems. The framework is based on the observation
that the primal-dual gradient method can be viewed as
an inexact gradient method applied to the primal problem.
Unlike the setting of traditional inexact gradient methods,
the inexact gradient is computed by a dynamic inexact
oracle, which is a discrete-time dynamical system whose
output asymptotically approaches the exact gradient. For
minimax problems, dynamic inexact oracles are capable
of modeling a range of first-order methods for computing
the gradient of the primal objective, which relies on solv-
ing the inner maximization problem. We provide a unified
convergence analysis of gradient methods with dynamic
inexact oracles and demonstrate its use in creating new
accelerated primal-dual algorithms.

Index Terms—Optimization algorithms, stability of non-
linear systems.

I. INTRODUCTION

WE CONSIDER algorithms for solving the uncon-
strained minimax problem

min.
x∈Rn

max
y∈Rm

L(x, y) := f (x) + yTAx − g(y). (1)

We assume that f is smooth and convex (but not necessar-
ily strongly convex), g is smooth and strongly convex, and
A ∈ R

m×n has full column rank. For convenience, we define
p(x) := maxy L(x, y) and write problem (1) as

min.
x

p(x), (2)

which we refer to as the primal problem. We also define
d(y) := minx L(x, y) and refer to the problem

max.
y

d(y) (3)

as the dual problem. Under the given assumptions, it follows
from standard results (see, [13, Ch. 10]) in convex analysis that
both p and −d are strictly convex (in fact, strongly convex).
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Therefore, the primal-dual optimal solution of problems (2)
and (3) is unique, which we denote by (x�, y�).

The minimax problem (1) has a number of applications.
For example, when f (x) = −bTx for some b ∈ R

n, the dual
problem (3) becomes equivalent to the equality-constrained
convex optimization problem given by

max.
y

−g(y), s.t. ATy = b.

Other applications include image processing [6] and empir-
ical risk minimization [23]. More broadly, when the func-
tion L is a general convex-concave function, the minimax
problem formulation also arises in game theory [17] and robust
optimization [2].

One important algorithm for computing the primal-dual
optimal solution (x�, y�) is the primal-dual gradient method
(PDGM):

xk+1 = xk − η1∇1L(xk, yk)

yk+1 = yk + η2∇2L(xk, yk), (4)

where η1 and η2 are step sizes, and ∇1L(xk, yk) = ∇f (xk) +
ATyk and ∇2L(xk, yk) = Axk − ∇g(yk) are the partial deriva-
tives of L with respect to the first and second arguments,
respectively. The PDGM is also known by various other names
such as the Arrow–Hurwicz gradient method [1, p. 155] and
the (simultaneous) gradient descent ascent method (see [8]).
It has also been generalized to the case where L is non-
differentiable [18] and the case where the dynamics in (4)
are in continuous time [7], [12], [20]. Convergence of the
PDGM has been studied extensively in the literature. Under
the assumption we made on f , g, and A, it has been shown [10]
that the PDGM converges exponentially to the optimal solu-
tion (x�, y�).

Because the update rule (4) of the PDGM performs gradient
descent/ascent on the primal/dual variable, a natural question
arises as to whether these gradient updates can be substi-
tuted by other first-order methods (e.g., Nesterov’s accelerated
gradient method) to create new primal-dual algorithms. This
letter attempts to address this question based on an alternative
view of the PDGM: We show that the PDGM is equiva-
lent to applying an inexact gradient method to the primal
problem (2), where the gradient ∇p is computed approxi-
mately by a dynamic inexact oracle (Definition 1), whose
output approaches the exact gradient asymptotically. For the
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PDGM, the inexact oracle is realized by running one iteration
of gradient descent with warm starts (see Section III-A).

While the notion of inexact oracles has long existed in
the study of optimization algorithms, including approximat-
ing the gradient mapping (see [4, Ch. 3.3]) and the proximal
operator [21], these inexact oracles are memoryless mappings
and hence less general than our proposed notion of dynamic
inexact oracles, which are permitted to have internal states nec-
essary for modeling warm starts used in iterative algorithms.
The introduction of dynamics also demands a new analysis
for capturing the dynamical interaction between the gradient
method and the inexact oracle. By modeling the dynamical
interaction as a feedback interconnection of two dynamical
systems and using the small-gain principle, we derive a uni-
fied convergence analysis (Theorem 2) that does not rely on
the detailed realization of the oracle. The convergence analysis
also enables us to build new primal-dual algorithms by simply
changing the realization of the inexact oracle used in PDGM
to other first-order methods in a “plug-and-play” manner.

II. MATHEMATICAL PRELIMINARIES

For a vector x, we denote by ‖x‖ its �2-norm and ‖x‖P :=
(xTPx)1/2 its P-quadratic norm, where P is a positive def-
inite matrix (written as P � 0). For a bivariate function
f (·, ·), we denote by ∇if (i = 1, 2) the partial derivative of
f with respect to the ith argument. Unless noted otherwise,
we reserve the use of superscripts for indexing an infinite
sequence {xk}∞k=0.

For a real-valued function f , we denote by f ∗ its convex
conjugate, defined by f ∗(s) := supx{sTx−f (x)}. We denote by
S(μ, β) the set of μ-strongly convex and β-smooth functions.
By convention, we use S(0, β) to denote the set of β-smooth
and convex functions. The assumptions on f , g, and A in the
beginning of Section I can be stated as follows.

Assumption 1: Let f , g, and A in the minimax problem (1)
be such that f ∈ S(0, βf ), g ∈ S(μg, βg), and A has full
column rank.

Functions in S(μ, β) are known to have the following basic
properties.

Proposition 1 (Basic Properties): If f ∈ S(μ, β), then
1) (x−y,∇f (x)−∇f (y)) ∈ sec(μ, β) for all x and y, where

sec(μ, β) :=
{
(v, w) :

[
v
w

]T

[ −2μβI (μ + β)I
(μ + β)I − 2I

][
v
w

]}
≥ 0

is called the sector constraint.
Furthermore, if μ > 0, then
2) f ∗ ∈ S(1/β, 1/μ);
3) ∇f is invertible and (∇f )−1 = ∇f ∗, where ∇f ∗ is the

gradient of f ∗.
A proof of item 1 can be found in [19, Th. 2.1.12]. Proofs

of items 2 and 3 can be found in [13, Ch. 10]. Let σmax
and σmin be the maximum and minimum singular values of
A, respectively. From Proposition 1, we have p ∈ S(μp, βp),
where μp = σ 2

min/βg and βp = σ 2
max/μg + βf .

III. DYNAMIC INEXACT ORACLES

We begin by considering another way to solve the pri-
mal problem (2) by directly applying the gradient method,
which reveals that the PDGM can be viewed alternatively as
an inexact gradient method applied to the primal problem.
An abstraction of the inexact gradient computation leads to
the definition of dynamic inexact oracles, the central topic of
study in this letter.

A. The PDGM as Inexact Gradient Descent

Consider solving the primal problem (2) using the gradient
method:

xk+1
ex = xk

ex − η1∇p(xk
ex), (5)

where η1 is the step size. (The subscript “ex” stands for exact,
to distinguish from the inexact gradient method to be presented
shortly.) Using Danskin’s theorem (see [5, p. 245]), we obtain

∇p(xk
ex) = ∇f (xk

ex) + ATyk
ex,

where yk
ex = arg miny{g(y) − yTAxk

ex} and is unique because g
is strongly convex. Define

g̃(y, x) := g(y) − yTAx.

The gradient method (5) can be rewritten as1

yk
ex = arg min

y
g̃(y, xk

ex) (6a)

xk+1
ex = xk

ex − η1(∇f (xk
ex) + ATyk

ex). (6b)

The PDGM can be derived from (6) by allowing the
minimization problem in (6a) to be solved approximately. To
avoid confusion, we will use (xk, yk) in place of (xk

ex, yk
ex)

in (6) when approximation occurs. Let the approximate solu-
tion {yk} be generated from applying one iteration of gradient
descent with step size η2 to the minimization problem in (6a):

yk+1 = yk − η2∇1g̃(yk, xk)

= yk + η2(Axk − ∇g(yk)). (7)

Note that the update rule (7) uses a warm start: It uses the
approximate solution yk at iteration k to initialize iteration
k + 1. Replacing yk

ex in (6b) with the approximate solution
yk yields

xk+1 = xk − η1(∇f (xk) + ATyk). (8)

It can be seen that (7) and (8) recover the update rule (4) of
PDGM. Because ∇f (xk) + ATyk in (8) no longer equals the
exact gradient ∇p(xk), the PDGM can be viewed as an inexact
gradient method applied to the primal problem.

B. Definition of Dynamic Inexact Oracles

It is conceivable that the gradient method (7) is not the only
iterative algorithm for approximating the minimizer in (6a),
which is needed for computing the gradient ∇p. To simplify
analysis, we introduce the notion of dynamic inexact oracles as
a high-level abstraction of the iterative algorithms that replace
the exact minimization in (6a).

1Equivalent to the augmented Lagrangian method (see [4, p. 262]).
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Definition 1 (Dynamic Inexact Oracles): A (discrete-time)
dynamical system G is called a dynamic inexact oracle for
approximating a mapping φ (called the exact oracle) if for
any input sequence u = {uk}∞k=0 converging to u�, the output
Gu converges to φ(u�).

The condition in Definition 1 is rather mild: It only requires
that a dynamic inexact oracle G produces the same output as
the exact oracle φ in a steady state; no condition is imposed
on the transient, where approximation errors may occur. In the
context of (6a), the exact oracle corresponds to

φ(·) = arg min
y

g̃(y, ·), (9)

which provides gradient information due to the following
lemma. A proof of Lemma 1 can be found in Appendix A.

Lemma 1: Let φ be given by (9). Then we have φ(xk
ex) =

∇g∗(Axk
ex) for any xk

ex.

C. An Oracle Based on Gradient Descent

The following shows that the recursion (7) based on gradient
descent, if viewed as a dynamical system Ggd with input x
and output y, is indeed an inexact oracle for approximating φ

in (9).
Proposition 2: Let Ggd be a dynamical system whose input

x = {xk} and output y = {yk} are described by (7), where
η2 ∈ (0, 2/(μg+βg)]. Then Ggd is a dynamic inexact oracle for
approximating φ in (9); namely, for any input {xk} converging
to x�, the output {yk} of Ggd converges to φ(x�).

To prove Proposition 2, we need to make use of the fol-
lowing lemma, modified from a standard result (see [19,
Th. 2.1.15]) in convex analysis for establishing the conver-
gence of gradient descent. A proof of Lemma 2 can be found
in Appendix B.

Lemma 2 (Contraction): Let μ and β be constants sat-
isfying 0 < μ ≤ β, and α = μβ/(μ + β). Suppose
(ξ, w) ∈ sec(μ, β). Then for any η ∈ (0, 2/(μ + β)], we
have ‖ξ − ηw‖ ≤ ρ‖ξ‖, where ρ = 1 − αη ∈ [0, 1).

Proof (Proposition 2): Define the desired steady-state output
of Ggd as y� := φ(x�) = ∇g∗(Ax�). Rewrite (7) as

yk+1 − y� = (yk − y�) − η2(∇g(yk) − Ax�) + η2A(xk − x�).

Because g ∈ S(μg, βg) and Ax� = ∇g(∇g∗(Ax�)) = ∇g(y�),
we have (yk −y�,∇g(yk)−Ax�) ∈ sec(μg, βg). By Lemma 2,
there exists ρ ∈ [0, 1) such that

‖yk+1 − y�‖ ≤ ρ‖yk − y�‖ + η2‖A(xk − x�)‖.

The result then follows as a consequence of input-to-state
stability [14, p. 192].

D. Oracles Based on General First-Order Algorithms

Other than gradient descent, a dynamical inexact oracle Gio
for approximating the minimizer in (6a) can be constructed
from a range of first-order optimization algorithms that use
∇1g̃. Inspired by the work in [22], we consider Gio expressed

in the following state-space form:

ξ k+1 = Aioξ
k + Bio∇1g̃(vk, xk)

= Aioξ
k + Bio

[
∇g(vk) − Axk

]
vk = Cioξ

k, yk = Eioξ
k, (10)

where Aio, Bio, Cio, and Eio are given by

Aio =
[

(1 + c1)I −c1I
I 0

]
, Bio =

[−η2I
0

]

Cio = [
(1 + c2)I −c2I

]
, Eio = [

(1 + c3)I −c3I
]
.

Here, ξ = (ξ1, ξ2) is the state, x is the input, y is the out-
put, v is the feedback output, η2 is the step size, and c1, c2,
and c3 are constants. When the system (10) is not a minimal
realization, the matrices Aio, Bio, Cio, and Eio need to be fur-
ther simplified by removing redundant states. The form (10)
captures a number of important first-order optimization algo-
rithms. For example, setting c1 = c2 = c3 = 0 recovers the
gradient method, and setting c1 = c2 
= 0 and c3 = 0 recov-
ers Nesterov’s accelerated gradient method. Interested readers
can refer to [22, Table I] for more examples. By constructing
the inexact oracle from different first-order algorithms, we can
create new primal-dual first-order methods beyond the PDGM.

To ensure that Gio is a dynamic inexact oracle for approxi-
mating φ in (9), we shall make the following assumption on
the coefficient matrices in (10), which generalizes the condi-
tions in Lemma 2. The proof that Gio is a dynamic inexact
oracle is similar to that of Proposition 2.

Assumption 2 (Generalized Contraction): Let μ and β be
constants satisfying 0 < μ ≤ β. Then there exist P � 0,
η2 > 0, and ρ2 ∈ [0, 1) such that

‖Aioξ + Biow‖P ≤ ρ2‖ξ‖P

for all w satisfying (v, w) ∈ sec(μ, β), where v = Cioξ .
Assumption 2 can often be verified for a given first-order

algorithm. For instance, when Gio is realized by gradient
descent, i.e., when c1 = c2 = c3 = 0 in (10), the second
component ξ2 of ξ becomes irrelevant and can be dropped,
from which we obtain (with an abuse of notion) Aio = I,
Bio = −η2I, and Cio = I. In other words, the inexact ora-
cle Gio becomes equivalent to Ggd. Therefore, by Lemma 2,
Assumption 2 is satisfied for P = I. For other first-order
algorithms, verifying Assumption 2 is equivalent to checking
absolute stability under a sector-bounded uncertainty. While
it is generally difficult to obtain closed-form expressions of
P, η2, and ρ2 that satisfy Assumption 2, a numerical method
[16, Figs. 3 and 5] has been used to find P, η2, and ρ2 that
certify that both Nesterov’s accelerated gradient method and
the heavy-ball method satisfy the assumption, at least when
the condition number β/μ is small.

E. Other Inexact Oracles in the Literature

The notion of dynamic inexact oracles is more general than
the inexact oracles studied in the existing literature, which
are memoryless inexact oracles. In particular, the dynamic
oracles considered herein should not be confused with the
time-varying memoryless oracles studied in time-varying
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optimization [3]. For a memoryless oracle, the output of the
oracle only depends on the instantaneous input. Incorporating
dynamics into inexact oracles is necessary because a mem-
oryless oracle is not able to model iterative optimization
algorithms with warm starts, in which the solution during the
current iteration needs to be memorized to initialize the next
iteration such as in (7).

One example of memoryless inexact oracles is approximate
gradient mappings used in first-order methods, such as in the
ε-(sub)gradient method (see [4, Ch. 3.3]). Other examples
include approximate proximal operators used in the proximal
point algorithm [21, p. 880] and in the Douglas–Rachford
splitting method [11, Th. 8]. A general treatment of mem-
oryless inexact oracles in first-order methods can be found
in [9].

IV. CONVERGENCE ANALYSIS

We observe that gradient methods with dynamic inexact
oracles can be viewed as a feedback interconnection of two
dynamical systems. By applying the small-gain principle,
we develop a unified convergence analysis that is applica-
ble to inexact oracles constructed from a range of first-order
optimization algorithms.

A. The Oracle Based on Gradient Descent

For the purpose of illustration, we begin by analyzing the
convergence of the gradient method (8) with the dynamic
inexact oracle Ggd constructed from gradient descent as given
in (7). We define the error e between the inexact and the exact
oracles as ek := yk − ∇g∗(Axk) and rewrite (7) and (8) as

xk+1 = xk − η1∇p(xk) − η1ATek (11a)

ek+1 = ek − η2∇1g̃(yk, xk) − [∇g∗(Axk+1) − ∇g∗(Axk)].

(11b)

Although the gradient update (11a) converges when the error
e ≡ 0, and the error dynamics in (11b) converge when x ≡ x�

(Proposition 2), the joint recursion (11) is not guaranteed to
converge. Indeed, the joint recursion (11) can be viewed as
a feedback interconnection of two dynamical systems (11a)
and (11b) as illustrated in Fig. 1, and it is well known in
control theory that a feedback connection of two internally
stable systems may be unstable.

A powerful method for analyzing the stability of feedback
interconnections of dynamical systems is the small-gain princi-
ple. The small-gain principle can take various forms depending
on the specific setup. The following is what we will use in this
letter. See Appendix C for a detailed proof.

Lemma 3 (Small-Gain): Let {sk
1} and {sk

2} be two nonneg-
ative real-valued sequences satisfying

sk+1
1 ≤ γ11sk

1 + γ12sk
2

sk+1
2 ≤ γ21sk

1 + γ22sk
2

for some nonnegative constants γij (i, j = 1, 2). Then, both
{sk

1} and {sk
2} converge exponentially to 0 if γ11 < 1, γ22 < 1,

and γ12γ21 < (1 − γ11)(1 − γ22).

Fig. 1. The gradient method with a dynamic inexact oracle. The exact
(gradient) oracle computes φ(xk ):= arg miny g̃(y ,xk ) = ∇g∗(Axk ). The
difference between the inexact and the exact oracles is characterized by
the additive error dynamics.

The small-gain lemma shows that, in order for the feedback
interconnection of two (nonnegative) systems to be stable,
aside from the stability of individual systems (γ11 < 1
and γ22 < 1), the coupling coefficients γ12 and γ21 must be
small enough. We can apply the small-gain lemma to establish
the convergence of the PDGM, viewed as an inexact gradient
method (8) with the oracle Ggd given by (7).

Theorem 1: Consider the gradient method given by (8),
where {yk} is given by the dynamic inexact oracle Ggd defined
by (7) with η2 ∈ (0, 2/(μg +βg)]. Suppose f , g, and A satisfy
Assumption 1, and let βφ = σmax/μg, αp = μpβp/(μp + βp),
and αg = μgβg/(μg + βg). Then, for any η1 satisfying

0 < η1 < min

{
αpαgη2

σmaxβφ(αp + βp)
,

2

μp + βp

}
, (12)

the sequences {xk} and {yk} converge exponentially to the
primal and dual optimal solutions x� and y�, respectively.

Proof: Denote by e� the steady-state value of e. Then, we
have e� = y� − ∇g∗(Ax�) = 0. Define x̂k := xk − x� and
êk := ek − e�. We can rewrite (11) as

x̂k+1 = x̂k − η1∇p(xk) − η1ATêk

êk+1 = êk − η2∇1g̃(yk, xk) − [∇g∗(Axk+1) − ∇g∗(Axk)].

Because p ∈ S(μp, βp) and g ∈ S(μg, βg), from Proposition 1,
we have (x̂k,∇p(xk)) = (xk − x�,∇p(xk) − ∇p(x�)) ∈
sec(μp, βp) and (êk,∇1g̃(yk, xk)) = (yk −∇g∗(Axk),∇g(yk)−
Axk) ∈ sec(μg, βg), where we have used the fact Axk =
∇g(∇g∗(Axk)). Applying Lemma 2, since 0 < η1 ≤ 2/(μp +
βp), we have

‖x̂k+1‖ ≤ ‖x̂k − η1∇p(xk)‖ + ‖η1ATêk‖
≤ ρ1‖x̂k‖ + η1σmax‖êk‖, (13)

where ρ1 = 1 − αpη1; similarly, we also obtain

‖êk+1‖ ≤ ρ2‖êk‖ + βφ‖xk+1 − xk‖
= ρ2‖êk‖ + βφ‖−η1∇p(xk) − η1ATêk‖
≤ η1βφβp‖x̂k‖ + (ρ2 + η1βφσmax)‖êk‖, (14)
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where ρ2 = 1 − αgη2, and βφ = σmax/μg is the Lipschitz
constant of the mapping φ : xk �→ ∇g∗(Axk) in (9). The
relationship given by (13) and (14) allows us to apply the
small-gain lemma (Lemma 3) and derive the condition (12)
ensuring that both x̂ and ê converge exponentially to 0, i.e.,
xk → x� and yk → ∇g∗(Ax�) = y� as required.

Although exponential convergence of the PDGM has
already been established [10], the technique used in the proof
of Theorem 1 is different from those in the existing literature.
The proof reveals two attractive features of the small-gain prin-
ciple in the analysis of the inexact gradient method. First, it
is capable of incorporating existing convergence results, i.e.,
internal stability of the gradient dynamics (11a) and (11b)
as manifested in Lemma 2. This simplifies the construction
of a Lyapunov function for proving convergence, which is
often otherwise nontrivial except for the simplest algorithms.
Second, the small-gain analysis only relies on a coarse descrip-
tion of the input-output behavior of the error dynamics such
as what is given in (14). Therefore, when the dynamic inexact
oracle is realized by a different iterative algorithm, the small-
gain analysis can be readily applied as long as a relationship
between x and e similar to (14) can be derived for the error
dynamics. The “plug-and-play” nature of this approach allows
us to easily generalize the analysis to a wide range of dynamic
inexact oracles, which we will discuss shortly in Section IV-B.

B. Oracles Based on General First-Order Algorithms

For a dynamic inexact oracle Gio constructed from more
general first-order algorithms in (10), convergence of the inex-
act gradient method (8) can be established using a small-gain
analysis similar to the proof of Theorem 1. A detailed proof
can be found in Appendix D. The key is deriving (17) for the
error dynamics, which is needed for applying the small-gain
lemma.

Theorem 2: Consider the gradient method given by (8),
where {yk} is given by a dynamic inexact oracle Gio of the
form (10). Suppose f , g, and A satisfy Assumption 1, and Aio,
Bio, and Cio satisfy Assumption 2. Then there exists η1 such
that {xk} and {yk} converge exponentially to the primal and
dual optimal solutions x� and y�, respectively.

As a concrete instance of Theorem 2, we give a conver-
gence result for the case where Gio is realized by Nesterov’s
accelerated gradient method.

Corollary 1 (Accelerated Primal-Dual Method): Let γ =
(
√

βg −√
μg)/(

√
βg +√

μg) and η2 = 1/βg. Consider the gra-
dient method given by (8), where {yk} is given by a dynamic
inexact oracle realized by Nesterov’s accelerated gradient
method:

yk+1 = vk − η2(∇g(vk) − Axk)

vk+1 = (1 + γ )yk+1 − γ yk. (15)

Suppose f , g, and A satisfy Assumption 1. Then there exists
η1 such that {xk} and {yk} converge exponentially to the primal
and dual optimal solutions x� and y�, respectively, when βg/μg

is small enough.
Proof: The recursion (15) can be derived from (10) by set-

ting c1 = c2 = γ and c3 = 0 followed by eliminating ξ .
Under the given choice of γ and η2, it has been shown in

Fig. 2. Convergence rate of the gradient method in (8) with different
inexact oracles: gradient descent (in black, which is equivalent to the
PDGM) and Nesterov’s accelerated method (in blue).

[16, Fig. 3] that Assumption 2 holds when βg/μg is small
enough. The corollary then follows from Theorem 2.

For a numerical comparison between the method in
Corollary 1 and the PDGM, we considered a simple case
where f is linear, and g is convex quadratic. Under the choice
of f and g, the dynamics of both methods become linear, which
implies that the convergence rate can be found by comput-
ing eigenvalues. For both methods, we fixed η2 = 1/βg and
chose η1 via a grid search to achieve the best exponential
convergence rate. Fig. 2 shows the convergence rate under
different condition numbers βg/μg. It can be seen that the
method in Corollary 1 (referred to as “PD-Nesterov”) not only
ensures convergence but also achieves a faster convergence
rate compared to the PDGM.

V. CONCLUSION

We have studied the convergence of inexact gradient meth-
ods in which the gradient is provided by a dynamic inexact
oracle. Dynamic inexact oracles naturally arise when the gra-
dient method is applied to minimax optimization problems,
in which computing the gradient requires solving the inner
optimization problem; a dynamic inexact oracle approximates
the exact solution of the inner optimization problem by the
output from an iterative optimization algorithm. Changing the
realization of the dynamic inexact oracle leads to different
algorithms for solving minimax problems. For instance, when
the inexact oracle is realized by one step of gradient descent
with warm starts, the corresponding inexact gradient method
recovers the PDGM, a common algorithm for solving minimax
problems. Using the small-gain principle, we have derived a
unified convergence analysis applicable to a range of inex-
act oracles that can be used for creating new primal-dual
algorithms.

APPENDIX A
PROOF OF LEMMA 1

The optimality condition of the minimization problem
in (6a) gives

0 = ∇1g̃(yk
ex, xk

ex) = ∇g(yk
ex) − Axk

ex.

Because g ∈ S(μg, βg), using Proposition 1, we obtain

φ(xk
ex) = yk

ex = (∇g)−1(Axk
ex) = ∇g∗(Axk

ex).
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APPENDIX B
PROOF OF LEMMA 2

From [19, Th. 2.1.15], we have ‖ξ −ηw‖2 ≤ (1−2ηα)‖ξ‖2.
The result follows from the fact (1 − 2ηα)1/2 ≤ 1 − ηα.

APPENDIX C
PROOF OF LEMMA 3

Consider a single-input single-output linear system whose
input u and output y are described by yk+1 = ayk +buk, where
a ∈ [0, 1) and b ≥ 0. It can be shown that the �2-gain of the
system is given by b/(1 − a). The result then follows from
the (usual) small-gain theorem for feedback interconnections
(see [14, Th. 5.6]) and the (discrete-time) comparison lemma
(see [15, Th. 1.9.1]).

APPENDIX D
PROOF THEOREM 2

Define ξ̄ k
i := ξ k

i −∇g∗(Axk) (i = 1, 2), v̄k := vk −∇g∗(Axk),
and ek := yk − ∇g∗(Axk). In the new variables, the dynam-
ics (8) can be rewritten as (11a), and the dynamics (10) of Gio
can be rewritten as

ξ̄ k+1 = Aioξ̄
k + Bio∇1g̃(vk, xk) + Bφ

[
φ(xk+1) − φ(xk)

]
v̄k = Cioξ̄

k, ek = Eioξ̄
k,

where Bφ = −[ I I ]T . We have used the fact φ(xk) =
∇g∗(Axk) from Lemma 1.

Because g ∈ S(μg, βg), using Proposition 1, we have
(v̄k,∇1g̃(vk, xk)) = (vk − ∇g∗(Axk),∇g(vk) − Axk) ∈
sec(μg, βg). Since Assumption 2 holds, we have

‖ξ̄ k+1‖P ≤ ρ2‖ξ̄ k‖P + cφ‖xk+1 − xk‖ (16)

for some P � 0, ρ2 ∈ [0, 1), and cφ > 0. The existence of cφ

is ensured by the Lipschitz continuity of φ and the equivalence
of norms in finite dimensions.

The second term on the right side of (16) can be further
bounded by making use of (11a). Let x̂k := xk − x�, we have

‖xk+1 − xk‖ = η1‖∇p(xk) + ATek‖
= η1‖∇p(xk) + ATEioξ̄

k‖
≤ η1(βp‖x̂k‖ + cξ‖ξ̄ k‖P)

for some cξ > 0, where we have used the equivalence of
norms again. Substituting this into (16), we have

‖ξ̄ k+1‖P ≤ η1cφβp‖x̂k‖ + (ρ2 + η1cξ cφ)‖ξ̄ k‖P. (17)

In the meantime, because the x-update (11a) is given by the
gradient method, when η1 ∈ (0, 2/(μp + βp)], similar to (13),
we have

‖x̂k+1‖ ≤ ρ1‖x̂k‖ + η1cξ‖ξ̄ k‖P, (18)

where ρ1 = 1 − αpη1 for αp defined in Theorem 1.
Apply the small-gain lemma (Lemma 3) to (17) and (18).

In order to ensure convergence, we need

ρ1 = 1 − αpη1 < 1, ρ2 + η1cξ cφ < 1

η1cξ · η1cφβp < (1 − ρ1)(1 − ρ2 − η1cξ cφ). (19)

A straightforward algebraic manipulation shows that the last
condition in (19) is equivalent to η1 < αp(1−ρ2)/(cξ cφ(αp +
βp)). Therefore, when η1 is small enough and strictly pos-
itive, all the conditions in (19) are satisfied, which implies
that the joint recursion consisting of (8) and (10) converges
exponentially.
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