
IEEE Control System Letters Cai et al. Presented in ACC 2021

Receding Horizon Control Based Online Motion
Planning with Partially Infeasible LTL

Specifications
Mingyu Cai1, Hao Peng 2, Zhijun Li3, Hongbo Gao3, and Zhen Kan 3

Abstract—This work considers online optimal motion planning
of an autonomous agent subject to linear temporal logic (LTL)
constraints. The environment is dynamic in the sense of con-
taining mobile obstacles and time-varying areas of interest (i.e.,
time-varying reward and workspace properties) to be visited by
the agent. Since user-specified tasks may not be fully realized
(i.e., partially infeasible), this work considers hard and soft LTL
constraints, where hard constraints enforce safety requirements
(e.g. avoid obstacles) while soft constraints represent tasks that
can be relaxed to not strictly follow user specifications. The
motion planning of the agent is to generate policies, in decreasing
order of priority, to 1) guarantee the satisfaction of safety
constraints; 2) mostly satisfy fulfill constraints (i.e., minimize
the violation cost if desired tasks are partially infeasible); and
3) optimize the objective of rewards collection (i.e., visiting
dynamic areas of more interests). To achieve these objectives,
a relaxed product automaton, which allows the agent to not
strictly follow the desired LTL constraints, is constructed. A
utility function is developed to quantify the differences between
the revised and the desired motion plan, and the accumulated
rewards are designed to bias the motion plan towards those areas
of more interests. Receding horizon control is synthesized with
an LTL formula to maximize the accumulated utilities over a
finite horizon, while ensuring that safety constraints are fully
satisfied and soft constraints are mostly satisfied. Simulation and
experiment results are provided to demonstrate the effectiveness
of the developed motion strategy.

Index Terms—Formal Method, Model Predictive Control,
Multi-Objective Optimization, Graph Theory

I. INTRODUCTION

Motion planning of autonomous agents has broad potential
applications ranging from driverless cars navigating urban en-
vironments subject to complex traffic rules [1] to autonomous
vehicles (e.g., an unmanned ground or aerial vehicle) per-
forming search and rescue missions in uncertain environments
after a natural disaster [2], and to robotic systems dynamically
cooperating with human operators in manufacturing and med-
ical care [3]–[6]. While there is a growing demand for these
applications, autonomous agents so far have not been fully
used. One major challenge is that desired missions are often
composed of multiple tasks subject to complex specifications
(e.g., complex traffic rules or sophisticated human-robot in-
teractions), which classical motion planning approaches, such
as the point-to-point navigation [7], the traveling salesman

1Department of Mechanical Engineering, The University of Iowa, Iowa
City, IA, 52246, USA.

2Apex.AI Inc, Palo Alto, CA, 94303, USA.
3Department of Automation, University of Science and Technology of

China, Hefei, Anhui, China.

problem [8], and the orienteering problem [9], are no longer
capable of. Another major challenge is that the operating envi-
ronment is often complex, e.g., dynamic and not fully known a
priori. The user-specified missions can be partially infeasible
if the real environment is found during the runtime to be
prohibitive to the agent. Therefore, a particular motivation for
this work is to consider online optimal motion planning of
an autonomous agent that can handle complex missions and
environments.

A. Related Work
Linear temporal logic (LTL) is a formal language ca-

pable of expressing rich task specifications and providing
intuitive translation from human language to syntactically
correct formulas. Due to its rich expressivity in describing
complex missions, motion planning with LTL specifications
has generated substantial interest (cf. [10]–[17] to name a
few). For instance, in [18], co-safe linear temporal logic was
used for a mobile robot to perform service tasks in an office
environment. In [19], standard LTL tasks were employed for a
noisy differential-drive vehicle to maximize the probability of
completing user-specified tasks in an uncertain environment.
In [20], task allocation and planning for temporal logic goals
were developed for a heterogeneous multi-robot system. Other
representative results on motion planning with LTL specifica-
tions include information-guided persistent monitoring [21],
hybrid control of multi-agent systems with formation con-
straints [22], cooperative control of mobile robots with inter-
mittent connectivity [13], and control synthesis over stochastic
systems considering both feasible and infeasible tasks [15]–
[17].

Despite considerable progress in the literature, new chal-
lenges arise when the operating environment is dynamic and
uncertain. The environment may have time-varying events
of interest and dynamic obstacles that are not fully known
to the agent a priori, which requires the agent to dynam-
ically adapt its motion plan to the changing environment.
To address dynamic environments, model predictive control,
also referred as receding horizon control (RHC), has been
integrated with LTL specifications and successfully applied
in various applications. For instance, the motion planning of a
vehicle in an urban-like environment was considered in [23],
where a provably correct control strategy that combines LTL
specifications and RHC was developed. In [24], LTL-based
receding horizon motion planning was developed for a finite-
state deterministic system to maximize reward collection while

1

ar
X

iv
:2

00
7.

12
12

3v
5

 [
cs

.R
O

]
 1

8
O

ct
 2

02
1

IEEE Control System Letters Cai et al. Presented in ACC 2021

satisfying desired task specifications. Recently, LTL based
RHC was extended to mobile robot networks for cooperative
environmental monitoring [25]. Other results based on RHC
with temporal logical specifications include [26]–[29]. The
work [30] proposed a sampling-based planning algorithm that
reactively and efficiently achieved global temporal logic goals
and satisfied short-term dynamic requirements.

Approaches based on RHC have been proven as effective
tools to handle dynamic environments in the aforementioned
results. However, these results rely on a key assumption that
the operating environment is feasible. That is, there exists a
feasible motion plan in the dynamic environment that satisfies
the desired LTL specifications. However, the assumption of
a feasible dynamic environment can be restrictive, and, in
practice, not all user-specified LTL task specifications can be
realized by the agent. For instance, the agent can be tasked
to visit a sequence of areas of interest, where some of them
may not be reachable (e.g., surrounded by water that the
ground robot cannot traverse) in the real environment. LTL
constraints that cannot be fully satisfied are often relaxed to
allow the tasks to be fulfilled as much as possible. In [31], a
least-violating control strategy for finite LTL was developed
to allow potentially infeasible tasks within a partially known
workspace. In [32], sampling-based algorithm for minimum
violation motion planning was developed. In [33] and [34],
partial satisfaction of Co-safe LTL specifications was consid-
ered to deal with uncertain environment. These strategies were
further extended in [18] for motion planning of service robots.
In [35], LDLf is applied with a graph search algorithm to
treat the soft constraints. However, only finite horizon motion
planning was considered in the works of [18] and [31]–
[35]. When considering infinite horizon motion planning, the
minimal revision problem was considered in [36] and [37]
with the goal of making the revised motion planning close
to the original LTL. In [38], minimum violation of graph-
based algorithm is presented, which is further extended in
[39] by considering shortest plans. In [12], cooperative control
synthesis of multi-agent systems was considered in a partially
known environment to maximize the satisfaction of the spec-
ified LTL constraints. However, [36]–[38] focus on the single
objective of minimal revision to the original LTL. [12] and
[39] optimize the static cost (shortest path) via graph-based
method, without considering motion planning with respect to
time-varying optimization objectives (e.g., reward collection).
It is not yet understood how user-specific missions can be
successfully managed to solve optimization problems with
time-varying parameters under a dynamic environment, where
desired tasks can be partially infeasible.

B. Contributions

This work considers online motion planning of an au-
tonomous agent subject to LTL mission constraints. The
operating environment is assumed to be dynamic and only
partially known to the agent. The environment also has time-
varying areas of interest to be visited by the agent. The
areas of interest are associated with time-varying rewards
and time-varying state labels, where the rewards indicate

the relative importance and state labels indicate time-varying
workspace properties. Since previously user-specified tasks
may not be fully realized (i.e., partially infeasible) by the agent
in the environment, this work considers hard and soft LTL
constraints, where hard constraints enforce safety requirement
(e.g. avoid obstacles) while soft constraints represents tasks
that can be relaxed to not strictly follow user-specifications if
the environment does not permit. The motion planning of the
agent is to generate policies, in decreasing order of priority,
to 1) formally guarantee the satisfaction of safety constraints;
2) mostly satisfy soft constraints (i.e., minimize the violation
cost if desired tasks are partially infeasible); and 3) collect
time-varying rewards as much as possible (i.e., visiting areas
of more interests).

To achieve these objectives, the motion of the agent is
modeled by a finite deterministic transition system (DTS),
with a limited sensing capability of detecting obstacles and
observing rewards within a local area. A relaxed product
automaton is constructed based on the DTS and the non-
deterministic Büchi automaton (NBA) generated from the
desired LTL specifications, which allows the agent to not
strictly follow the desired LTL constraints. A utility function
composed of the violation cost and the accumulated rewards is
developed, where the violation cost is designed to quantify the
differences between the revised and the desired motion plan.
The accumulated rewards are designed to bias the motion plan
towards those areas of more interests. Since the workspace is
only partially known, real-time sensed information is used to
update the agent’s knowledge about the environment. Under
the assumption of time-varying rewards that can only be
locally observed, RHC is synthesized with an LTL formula
to maximize the accumulated utilities over a finite horizon,
while ensuring that safety constraints are fully satisfied and
soft constraints are mostly satisfied.

Differing from most existing works that mainly focus on
motion planning with feasible LTL constraints, this work
considers control synthesis of an agent operating in a complex
environment with dynamic properties and time-varying areas
of interest that can only be observed locally, wherein use-
specified tasks might not be fully feasible. Integrated with the
RHC framework, a relaxed product automaton is developed to
handle partially infeasible tasks by quantifying the violation
of soft constraints. RHC is synthesized with an LTL formula
to maximize the accumulated utilities over a finite horizon,
while formally ensuring the objectives in decreasing orders:
1) hard constraints are fully satisfied; 2) soft constraints
are mostly satisfied; 3) accumulate rewards that change dy-
namically are locally optimized at each time-step over finite
horizon. This work is closely related to [24]. However, we
extend the approach in [24] by considering partially infeasible
tasks where the energy function is redesigned to take into
account the violation cost of the revised path to the desired
path. In addition, rigorous analysis is provided, showing the
correctness of the produced infinite trajectory and the recursive
feasibility of RHC-based motion planning. It’s also shown
the computational complexity in automaton update is reduced.
Simulation and experiment results are provided to demonstrate
its effectiveness.

2

IEEE Control System Letters Cai et al. Presented in ACC 2021

II. PRELIMINARIES

An LTL formula is built on a set of atomic propositions Π,
which are properties of system states that can be either true
or false, standard Boolean operators such as ∧ (conjunction),
∨ (disjunction), ¬ (negation), and temporal operators such as
♦ (eventually), , (next), � (always), and ∪ (until). A word
satisfies φ if φ is true at the first position of the word; �φ
means φ is true for all future moments; ♦φ means φ is true at
some future moments; ,φ means φ is true at the next moment;
and φ1Uφ2 means φ1 is true until φ2 becomes true. The
semantics of an LTL formula are defined over words, which are
an infinite sequence o = o0o1 . . . with oi ∈ 2Π for all i ≥ 0,
where 2Π represents the power set of Π. Denote by o |= φ if
the word o satisfies the LTL formula φ. More expressivity can
be achieved by combining temporal and Boolean operators.
Detailed descriptions of the syntax and semantics of LTL can
be found in [40].

An LTL formula can be translated to a nondeterministic
Büchi automaton (NBA).

Definition 1. An NBA is a tuple B = (S, S0, ∆,Σ,F), where
S is a finite set of states; S0 ⊆ S is the set of initial states;
Σ ⊆ 2Π is the input alphabet; ∆ : S×Σ � 2S is the transition
function; and F ⊆ S is the set of accepting states.

Let s σ� s′ denote the transition from s ∈ S to s′ ∈ S
under the input σ ∈ Σ if s′ ∈ ∆ (s, σ). Given a sequence
of input σ = σ0σ1σ2 . . . over Σ, a run of B generated by
σ is an infinite sequence s = s0s1s2 · · · where s0 ∈ S0, and
si+1 ∈ ∆ (si, σi) for each i > 0. If the input σ can generate at
least one run s that intersects the accepting states F infinitely
many times, B is said to accept σ. For any LTL formula φ
over Π, one can construct an NBA with input alphabet Σ =
2Π accepting all and only words that satisfy φ [40]. Let Bφ
denote the NBA generated from the LTL formula φ. To convert
an LTL formula to an NBA, readers are referred to [41] for
algorithms and implementations.

A dynamical system with finite states evolving determin-
istically under control inputs can be modeled by a weighted
finite deterministic transition system (DTS) [42].

Definition 2. A weighted finite DTS is a tuple T =
(Q, q0, δ,Π, L, ω), where Q is a finite set of states; q0 ∈ Q is
the initial state; δ ⊆ Q × Q is the state transitions; Π is the
finite set of atomic propositions; L : Q � 2Π is the labeling
function; and ω : δ � R+ is the weight function.

Let q → q′ denote the state transition (q, q′) ∈ δ in T ,
where q, q′ ∈ Q. Each transition in δ is associated with a
weight determined by ω. A path of T is an infinite sequence
q = q0q1 . . . where qi ∈ Q and (qi, qi+1) ∈ δ for i ≥ 0. A
path q over T generates an output sequence σ = σ0σ1 . . .
where σi = L (qi) for i ≥ 0. The transition (q, q′) ∈ δ is
deterministic, which implies a one-to-one map between q =
q0q1 . . . and the transitions (q0, q1), (q1, q2), . . . , thus resulting
in a DTS.

Let Rk (q) denote the varying reward associated with a
state q at time-step k. Given a trajectory at this time qk =
q0q1 . . . qn, the accumulated reward along the trajectory s̄Pk

is Rk (q) =
N∑
i=1

Rk (qi) . The time-varying reward function

represents the event of interest in the environment1. The
optimization of rewards at each time-step is one of objectives
in this paper.

Model checking a DTS against a LTL formula is based on
the construction of the product automaton between the DTS
and the corresponding NBA. Given the defined NBA and DTS,
a weighted product automaton can be constructed as follows.

Definition 3 (Weighted Product Automaton). Given a
weighted DTS T = {Q, q0, δ,Π, L, ω} and an NBA B =
(S, S0, ∆,Σ,F), the product automaton P̃ = T ×B is defined
as a tuple P̃ = {PP̃ , PP̃0, LP̃ , ∆P̃ ,FP̃ , ωP̃},
• PP̃ = Q × S is the set of states, e.g., pP̃ = (q, s) and
p′P̃ = (q′, s′) where pP̃ , p

′
P̃ ∈ PP̃ ;

• PP̃0 = {q0} × S0 is the set of initial states;
• LP̃ : PP̃ � 2Π is a labeling function, i.e., LP̃ (pP̃) =
L (q);

• ∆P̃ ⊆ PP̃ × PP̃ is the set of transitions, i.e.,

((q, s) , (q′, s′)) ∈ ∆P̃ if and only if q � q′ and s
L(q)
� s′;

• FP̃ = Q×F is the set of accepting states;
• ωP̃ : ∆P̃ � R+ is the weight function, i.e.,
ωP̃

(
pP̃ , p

′
P̃

)
= ω (q, q′).

Let (q, s) →P̃ (q′, s′) denote the transitions from (q, s) =

sP̃ to (q′, s′) = p′P̃ in P̃ if
(
pP̃ , p

′
P̃

)
∈ ∆P̃ . A trajectory

pP̃ = (q0, s0) (q1, s1) . . . of P̃ is an infinite sequence where
(q0, s0) ∈ SP̃0 and (qi, si)→P̃ (qi+1, si+1) for all i ≥ 0. The
trajectory pP̃ is called accepting if and only if sP̃ intersects
FP̃ infinitely many times. Let γT (pP̃) = q0q1 . . . denote
the projection of pP̃ on the transition system T . Note that a
trajectory sP̃ can be uniquely projected onto T by γT . By
the construction of P̃ from T and B, sP̃ is an accepting
trajectory on P̃ if and only if γT (pP̃) satisfies the LTL
formula corresponding to B.

III. EXAMPLE AND PROBLEM FORMULATION

A. Example Demonstration

As a running example, consider a robot operating in an envi-
ronment abstracted to a labeled grid-like graph G = (V, E ,Π),
where the node set V represents the partitioned areas, the edge
set E indicates possible transitions, and the atomic propositions
Π = {Base, Supply, Report, Obstacle, Survey} indicate
the labeled properties of the areas2, as shown in Fig. 1. The
robot motion in the environment is then represented by the
finite DTS T in Def. 2 evolving over G, where Q represents
the node set V , and the possible transitions δ are captured
by the edge set E . As an example application, a specific
surveillance mission φ is considered in this work, where
the robot is required to visit a set of stations repetitively,

1Local sensing rewards are considered in this work. Other types of rewards,
such as in trajectory optimization [43], information gathering [44], and local
tasks [26], are also applicable.

2Abstracted environments have been widely used in the literature, and many
existing partition methods, such as triangulation and rectangular grids, can be
applied to partition the workspace [45].

3

IEEE Control System Letters Cai et al. Presented in ACC 2021

Figure 1: (a) Example of a partitioned operating environment,
where the shaded area around the vehicle indicates its local
sensing. (b) The corresponding abstracted grid-like graph of
(a), where the size of green dots is proportional to their reward
values and the red dot represents the vehicle.

while maximizing the collected rewards and avoiding obstacles
on the way to the destinations. Due to the consideration
of partially infeasible environment, the user-specified LTL
task φ consists of hard constraints φh and soft constraints
φs, i.e., φ = φh ∧ φs, where φh models the constraint of
collision avoidance that have to be fully satisfied while φs
models soft constraints that can be relaxed if it’s infeasible in
current environment. In this case, The desired task of the robot
within the environment G is described by an LTL formula
φ over the atomic propositions Π. A variety of tasks can
be represented in LTL formulas, such as the sequential visit
of Survey and Report (i.e., ♦ (Survey ∧ ♦Report)), the
persistent surveillance of visiting Base infinitely many times
(i.e., �♦Base), and avoiding collision while achieving a task
φ (i.e., � (¬Obstacle ∧ φ)). More expressivity of tasks can
be achieved based on the combination of temporal and Boolean
operators over Π. The environment is assumed to be only
partially known to the robot, i.e., the robot may know the static
destinations to visit but not the obstacles it may encounter
during mission operation. The environment is dynamic in the
sense of containing real-time dynamic obstacles and time-
varying rewards associated with each state. The time-varying
reward Rk (q) ∈ R+ is given at each step. It is further assumed
that the robot can only detect obstacles, observe rewards, and
sense node labels within a local area around itself. As an
example application, the robot is required to complete the
given LTL task, while maximizing the collected rewards. More
detailed task descriptions can be found in Section VI-A.

The description above is just an representation and this work
can be extended in several directions. The LTL tasks can be
defined for other sets of atomic propositions and requirements
and the rewards-optimization problem can be easily applied to
other meaningful time-varying objectives.

B. Problem formulation

Given the time-varying reward function Rk (qi), ∀i =
1, . . . , N associated with each states in DTS that is unknown

a priori, and is only observed and optimised locally online at
time k, the motion planning problem in this work is presented
as follows.

Problem 1. Given a deterministic transition system T , and a
user-specified LTL formula φ = φh∧φs, the control objective
is to design an online planning strategy, in decreasing order
of priority, that 1) φh is fully satisfied; 2) φs is fulfilled as
much as possible if the task is not feasible; and 3) rewards
collection at each time-step is maximized over a finite horizon
during mission operation.

In Problem 1, by saying to fulfill φs as much as possible, we
mean to minimize the violation of φs, which will be formally
defined in Section IV-A.

IV. RELAXED AUTOMATON AND PROBLEM FORMULATION

Sec. IV-A discusses how φs can be relaxed to allow motion
revision and how the violation of φs can be quantified. Sec.
IV-B describes the construction of an energy function that
enforces the satisfaction of accepting conditions. Sec. IV-C
presents how local sensing can be used to update the robot’s
knowledge about the environment to facilitate motion revision.

A. Relaxed LTL Specifications

Let Bh = (Sh, Sh0, ∆h,Σh,Fh) and Bs =
(Ss, Ss0, ∆s,Σs,Fs) denote the NBA corresponding to
φh and φs, respectively. The relaxed product automaton for
φ = φh ∧ φs is constructed as follows.

Definition 4 (Relaxed Product Automaton). Given a weighted
DTS T = {Q, q0, δ,Π, L, ω} and the NBA Bh and Bs, the
relaxed product automaton P = T × Bh × Bs is defined
as a tuple P = T × Bh × Bs is defined as a tuple P =
{SP , SP0, LP , ∆P ,FP , ωP , hP , vP}, where
• SP = Q × Sh × Ss is the set of states, e.g., sP =

(q, sh, ss) and s′P = (q′, s′h, s
′
s) where sP , s′P ∈ SP ;

• SP0 = {q0} × Sh0 × Ss0 is the set of initial states;
• LP : SP → 2Π is a labeling function, i.e., LP (sP) =
L (q);

• ∆P ⊆ SP × SP is the set of transitions, i.e., defined by
((q, sh, ss) , (q

′, s′h, s
′
s)) ∈ ∆P if and only if (q, q′) ∈ δ,

∃lh ∈ 2Πh and ∃ls ∈ 2Πs such that s′h ∈ ∆ (sh, lh) and
s′s ∈ ∆ (ss, ls);

• hP : ∆P → {0,∞} ;
• ωP : ∆P → R+ is the weight function;
• vP : ∆P → R+ is the violation function;
• FP = Q×Fh ×Fs is the set of accepting states.

The major difference between P̃ and P is that for two any
state sP = (q, sh, ss) and s′P = (q′, s′h, s

′
s), the constraints

s′h ∈ ∆ (sh, L (q)) and s′s ∈ ∆ (ss, L (q)) in P̃ are relaxed
in P as defined above. Consequently, P is more connected
than P̃ in terms of possible transitions, which will reduce
the computational complexity during automaton update (see
Section IV-C). Any transition ((q, sh, ss) , (q, s

′
h, s
′
s)) ∈ ∆P

that violates the hard constraint will have a infinite viola-
tion hP (((q, sh, ss) , (q, s

′
h, s
′
s))). To identify trajectories that

violate the original φs the least when the environment is

4

IEEE Control System Letters Cai et al. Presented in ACC 2021

infeasible, vP is designed to quantify the violation cost.
Suppose that Π = {α1, α2 . . . αM} and consider an evaluation
function Eval : 2Π � {0, 1}M , where Eval (l) = (vi)

M with
vi = 1 if αi ∈ l and vi = 0 if αi /∈ l, where i = 1, 2, . . . ,M
and l ∈ 2Π. To quantify the difference between two elements
in 2Π, consider ρ (l, l′) = ‖v − v′‖1 =

∑M
i=1 |vi − v′i| , where

v = Eval (l), v′ = Eval (l′), l, l′ ∈ 2Π, and ‖·‖1 is the
l1 norm. The distance from l ∈ 2Π to a set X ⊆ 2Π is
then defined as Dist (l,X) = min

l′∈X
ρ (l, l′) if l /∈ X , and

Dist (l,X) = 0 otherwise. Now the violation cost of the
transition from sP = (q, sh, ss) to s′P = (q′, s′h, s

′
s) can

be defined as vP (sP , s
′
P) = Dist (L (q) ,X (ss, s

′
s)), where

X (ss, s
′
s) =

{
l ∈ 2Π |s′s ∈ ∆ (ss, l)

}
is the set of input

alphabets that enables the transition from ss to s′s. Hence, the
violation cost vP (sP , s

′
P) quantifies how much the transition

from sP to s′P in P violates the constraints imposed by φs.

Based on the defined vP (sP , s
′
P), we design the

weight function ωP (sP , s
′
P) = hP (sP , s

′
P) + ω (q, q′) +

β·vP (sP , s
′
P), where β ∈ R+ indicates the relative penalty.

A larger β tends to bias the selection of trajectories with less
violation cost. The weight function ω (q, q′) is defined on the
Euclidean distance between q and q′ on T , which measures
the implementation cost of the transition from q to q′. Since
each transition

(
sPk , s

P
k+1

)
∈ ∆P is associated with a weight

in Def. 4, the total weight of a trajectory sP is

W (sP) =

n−1∑
k=1

(
hP
(
sPk , s

P
k+1

)
+ ω (qk, qk+1)

+β · vP
(
sPk , s

P
k+1

))
.

(1)

Theorem 1. Given an accepting run sP =
(q0, sh0, ss0) (q1, sh1, ss1) . . . of P for φ = φh ∧ φs, the hard
constraints φh will always be satisfied if W (sP) 6=∞.

Proof: Let Fh denote the set of accepting states of Bh
corresponding to FP (i.e., the projection of FP of P onto
Fh of Bh), and let sh = sh0sh1 . . . denote the projection
of sP over P onto Bh. By the definition of an accepting
run, sP intersects at least one state of FP infinitely often,
which implies sh visits Fh infinitely often. In addition, by the
definition of ∆P ⊆ SP × SP , all transitions along sh follow
the rule shi

L(q)→ shj if hP (sPi, sPj) = 0, which implies
the transitions are always valid in Bh. Therefore, sh satisfies
the accepting conditions of Bh, which implies that φh is fully
satisfied.

Theorem 1 indicates that any accepting run of P can
guarantee that the hard constraints φh are satisfied by select-
ing the run with finite total cost in (1). An accepting run
sP is valid if and only if it satisfies φh. In (1), the term∑n−1
k=1 β · vP

(
sPk , s

P
k+1

)
measures the violation of φs. Hence,

a valid accepting run sP fulfills φs as much as possible, if the
violation of φs can be minimized.

Example 1. Consider an example of φ = φh ∧ φs and T
in Fig. 2. The double circles in Fig. 2(a) and (b) represent
the accepting states of Bh and Bs, respectively. Fig. 2(a)
represents safety constraints of avoiding obstacles and Fig.

Figure 2: (a) Example of safety constraint φh = ¬Obs. (b)
Example of a soft constraint φs = �♦a ∨�♦b. (c) Example
of DTS.

Figure 3: (a) Product automaton based on Def.3. (b) Relaxed
product automaton based on Def.4.

2(b) represents soft constraints of visiting a and b infinitely
often. Fig. 2(c) represents a DTS with labeled states. Fig. 3(a)
shows the product automaton in Def. 3 between T and the
two NAB φh and φs. Fig. 3(b) shows the relaxed product
automaton in Def. 4, where red edges represent transitions
with non-zero violation cost. The plot in Fig. 3 omits the
states that are not reachable from initial states and double
circle states are accepting states. In Fig. 3(a), there exists no
accepting path since accepting states are not reachable due to
constraints of φh. In contrast, in the relaxed automaton, there
exists a path visiting accepting states infinitely often. In this
case, the projection of accepting path with minimum violation
cost in Fig. 3(b) onto DTS T is the path visiting a of Fig.
2(c) infinitely often while avoiding obstacles.

Remark 1. Since the accepting condition of P requires to visit
both accepting states of Bh and Bs infinitely, there should
exist no conflicts between the satisfaction of Bh and Bs in
this work and [46]. The more general construction without
considering such conflicts can be found in [12] resulting extra
dimensional complexity and our framework also works for the
general design.

5

IEEE Control System Letters Cai et al. Presented in ACC 2021

B. Energy Function

Analogous to Lyapunov theory, where the convergence of
the system states to equilibrium points is indicated by a de-
creasing Lyapunov function, a Lyapunov-like energy function
is designed in this section to enforce the acceptance condition
of an automaton by requiring the distance to the accepting
states to decrease as the system evolves. Given two states
rPi , s

P
j ∈ SP , the set of all finite trajectories on P from sPi to

sPj is defined as D
(
sPi , s

P
j

)
=
{
sP = sP1 s

P
2 . . . s

P
n

}
such that

sP1 = sPi , sPn = sPj ,
(
sPk , s

P
k+1

)
∈ ∆P , ∀k = 1, 2 . . . , n−1. If

D
(
sPi , s

P
j

)
6= ∅, sPj is reachable from sPi on P . Based on (1),

the distance d
(
sPi , s

P
j

)
is defined as the lowest total weight

along a trajectory from sPi to sPj , i.e.,

d
(
sPi , s

P
j

)
=

{
min

sP∈D(sPi ,sPj)
W (sP) if D

(
sPi , s

P
j

)
6= ∅,

∞ Otherwise.
(2)

d
(
sPi , s

P
j

)
can be efficiently determined by the well known

Dijkstra’s algorithm.
Given P(SP ,∆P) , the graph induced from P(SP ,∆P) by ne-

glecting the weight of each transition is denoted by G(SP ,∆P).

Definition 5. The largest self-reachable subset of the accept-
ing set FP is defined as F∗ such that each pair states of F∗
can reach each other in P .

F∗ in this paper can be constructed by following similar
procedures in [24] by neglecting the cost of hP .

Definition 6 (Energy Function). For sP ∈ SP , the energy
function J (sP) is designed as

J (sP) =

{
min
s′P∈F∗

d (sP , s
′
P) if sP /∈ F∗,

0 if sP ∈ F∗.
(3)

The design of J (sP) in (6) is inspired by [24]. Different
from [24], we adapt it to the relaxed product automaton by
taking into account the distance from the states to the largest
self-reachable subset F∗ of the relaxed product automaton.
Since ωP is positive by definition, d (sP , s

′
P) > 0 for all

sP , s
′
P ∈ SP , which implies that J (sP) ≥ 0. Particularly,

J (sP) = 0 if sP ∈ F∗. If a state in F∗ is reachable from
sP , then J (sP) 6=∞, otherwise J (sP) =∞. Hence, J (sP)
indicates the minimum distance from sP to F∗.

Theorem 2. For the energy function designed in (3), if a
trajectory sP = sP1 s

P
2 . . . s

P
n is accepting, there is no state

sPi , ∀i = 1, . . . , n, with J
(
sPi
)

=∞, and all accepting states
in sP are in the set F∗ with energy 0. In addition, for any state
sP ∈ SP with sP /∈ F∗ and J (sP) 6=∞, there exists at least
one state s′P with (sP , s

′
P) ∈ ∆P such that J (s′P) < J (sP).

Proof: Consider an accepting state sPi ∈ FP . Suppose
sPi /∈ F∗. If a trajectory sP is accepting, sP must intersect
FP infinitely many times by Def. 4, which indicates there
exists another state sPj ∈ FP such that sPj is reachable from
sPi . If sPj ∈ F∗, the construction of F∗ indicates that sPi must
be in F∗, which contradicts the assumption that sPi /∈ F∗. If

sPj /∈ F∗, there must exist a non-trivial strongly connected
component (SCC) composed of accepting states reachable
from sPj [42]. By definition of F∗, all states in SCC belong to
F∗. Since the SCC is reachable from sPj , it implies sPj ∈ F∗,
which contradicts that sPj /∈ F∗. Consequently, all accepting
states in sP must be in F∗ and have energy zero based on
(3). Since F∗ is reachable by any state in sP , J

(
sPi
)
6= ∞

for all i = 1, . . . , n.
If J (sP) 6=∞ for sP ∈ SP , (3) indicates F∗ is reachable

strictly following the hard constraint from sP . That is, based
on the distance defined in (2), there exists a shortest trajectory
sP = sP1 s

P
2 . . . s

P
n , where sP1 = sP and sPn ∈ F∗. Bellman’s

optimal principle can then be invoked to conclude that there
exists a state s′P with (sP , s

′
P) ∈ ∆P such that J (s′P) <

J (sP).
Theorem 2 indicates that, as long as the energy function

keeps decreasing, the generated trajectory will eventually
satisfy the accepting conditions in Def. 4. As a result, the
designed energy function can be used to enforce the conver-
gence to accepting states.

C. Automaton Update
Since the environment is only partially known, this sec-

tion describes how the real-time information sensed by the
robot during the runtime can be used to update the system
model to facilitate motion planning. The robot starts with
an initial, possibly imprecise, knowledge about the envi-
ronment. A potential cause of infeasible task specifications
is the imprecise state labels. Due to limited local sensing
capability, let QN denote the set of sensible neighboring states
and let JsPK = {sP = (q, sh, ss) |q ∈ QN } denote a class
of sP sharing the same neighboring states. Specifically, let
Info (sP) = {LP (s′P) |s′P ∈ Sense (sP)} denote the newly
observed labels of s′P that are different from the current
knowledge, where Sense (sP) represents a local set of states
that can be sensed by the robot at sP . If the sensed labels
LP (s′P) are consistent with the current knowledge of s′P ,
Info (sP) = ∅. Otherwise, the properties of s′P need to be
updated.

Let J (JsPK) ∈ R|JsPK| denote the stacked J for all
sP ∈ JsPK. For i, j = 1, . . . |SP |, let HP ∈ R|SP |×|SP |
denote a matrix where the (i, j)th entry of HP represents
hP
(
sPi , s

P
j

)
and let VP ∈ R|SP |×|SP | denote a matrix

where the (i, j)th entry of VP represents the violation cost
vP
(
sPi , s

P
j

)
. The terms J , HP and VP are initialized from

the initial knowledge of the environment. Algorithm 1 outlines
how HP , VP and J are updated based on the locally sensed
information to facilitate motion planning in line 2-9. At each
step, if Info (sP) 6= ∅, the energy function J for each states
of JsPK is updated by Algorithm 1.

Lemma 1. The largest self-reachable set F∗ remains the same
during the automaton update in Algorithm 1.

Proof: By neglecting the cost of transitions in Section
IV-B, the relaxed product automaton P(SP ,∆P) can be treated
as a directed graph G(SP ,∆P). By Def.4, Alg. 1 only updates
the cost of each transition. As a result, the topological structure
of G(SP ,∆P) and its corresponding F∗ remain the same.

6

IEEE Control System Letters Cai et al. Presented in ACC 2021

Algorithm 1 Automaton Update

1: procedure INPUT: (the current state sP = (q, sh, ss), the current J (JsPK),
F∗, and Info (sP))

Output: the updated J ′

2: if Info (sP) 6= ∅ then
3: for all s′P =

(
q′, s′h, s

′
s

)
∈ Sense (sP) such that LP

(
s′P

)
∈

Info (sP) do
4: for all ŝ′P such that (s′P , ŝ

′
P) ∈ ∆P do

5: Update the labels of LP
(
s′P

)
according to L

(
q′
)

6: Update HP and VP
7: end for
8: end for
9: Update J (JsPK) based on (3)

10: end if
11: end procedure

Remark 2. The construction of F∗ in [24] involves the
computation of d (sP , s

′
P) for all s′P ∈ FP and the check of

terminal conditions, leading to the computational complexity
of O

(
|FP |3 + |SP |2 × |FP |2 + |FP |

)
. In contrast, Lemma

1 indicates that F∗ in this work only needs to be updated
whenever newly sensed information different from its knowl-
edge is obtained, which reduces the complexity. In the worst
case, the complexity is |QN |. Instead of computing the whole
relaxed product automaton, Algorithm 1 only updates partial
information of the systems.

V. CONTROL SYNTHESIS OF LTL MOTION PLANNING

This section presents a RHC-based online motion planning
strategy that optimizes accumulated utilities over a predefined
finite horizon subject to energy function based constraints,
where the accumulated utilities take into account both the
time-varying reward and the violation cost, while the energy
function based constraints enforce the satisfaction of the
acceptance condition of the relaxed product automaton P .

A. Receding Horizon Control

The general idea of RHC is to generate a predicted optimal
trajectory at each time step by solving an online optimiza-
tion problem to maximize a utility function over a finite
horizon N . With only the first predicted step applied, the
optimization problem is repeatedly solved to predict optimal
trajectories. Specifically, based on the current state sPk , let
s̄Pk = sP1|ks

P
2|k . . . s

P
N |k denote a predicted trajectory of horizon

N at time k from sPk , where the ith predicted state sPi|k ∈ SP
satisfies

(
sPi|k, s

P
i+1|k

)
∈ ∆P for all i = 1, . . . , N − 1, and(

sPk , s
P
1|k

)
∈ ∆P . Let Path

(
sPk , N

)
be the set of trajectories

of horizon N generated from sPk . Note that a predicted
trajectory s̄Pk ∈ Path

(
sPk , N

)
can uniquely project to a path

γT
(
s̄Pk
)

= q = q1 · · · qN on T , where γT

(
sPi|k

)
= qi,

∀i = 1, . . . , N .
The finite horizon N is selected based on the robot’s local

sensing such that the labels LP (qi) and the reward Rk (qi),
∀i = 1, . . . , N , are all observable by the robot at time k.
The accumulated reward along the predicted trajectory s̄Pk is

R
(
γT
(
s̄Pk
))

=
N∑
i=1

Rk

(
γT

(
sPi|k

))
.

Once a predicted step k of RHC is implemented, the hard
and soft violation cost induced from the current state sPk to
the next predicted step sP1|k are considered, i.e., hP

(
sPk , s

P
1|k

)
and V

(
sPk
)

= β ·vP
(
sPk , s

P
1|k

)
. The utility function of RHC

is then designed as

U
(
s̄Pk
)

= −hP
(
sPk , s

P
1|k

)
+R

(
γT
(
s̄Pk
))

min
{
e−κV(sPk), 1

}
(4)

where κ ∈ R+ is a tuning parameter indicating how aggres-
sively a predicted path is penalized by violating the soft task
constraints and the non-zero violation V

(
sPk
)

in (4) would
enforce the decrease of U

(
s̄Pk
)
. If hP

(
sPk , s

P
1|k

)
= ∞, it

indicates that U
(
s̄Pk
)

is negative infinite. By applying a larger
κ optimizing U

(
s̄Pk
)

tends to bias the selection of paths
towards the objectives, in the decreasing order, of 1) hard task
φh satisfaction, 2) fulfilling soft task φh as much as possible,
and 3) time-varying rewards locally optimization.

Since maximizing U
(
s̄Pk
)

alone cannot guarantee the satis-
faction of the acceptance condition of P , energy function the
energy function based constraints are incorporated. We first
select initial states from SP0 that can reach the set F∗. The
RHC executing on SP0 is designed as

s̄P0,opt = arg max
s̄P0 ∈Path(sP0 ,N)

U
(
s̄P0
)

subject to : J
(
sP0
)
<∞.

(5)

The constraint J
(
sP0
)
<∞ in (5) is critical, since a bounded

energy J
(
sP0
)

guarantees the existence of a satisfying trajec-
tory from sP0 over P . According to the working principle of
RHC, the first element of the optimal trajectory s̄P∗ can be
determined as sP∗0 = sP1|0,opt, where sP1|0,opt is the first element
of s̄P0,opt obtained from (5).

After determining the initial state sP∗0 , RHC will be em-
ployed repeatedly to determine the optimal states sP∗k for k =
1, 2, At each time instant k, a predicted optimal trajectory
s̄Pk,opt = sP1|k,opts

P
2|k,opt . . . s

P
N |k,opt will be constructed based on

sP∗k−1 and s̄Pk−1,opt obtained at the previous time k − 1. Note
that only sP1|k,opt will be applied at time k, i.e., sP∗k = sP1|k,opt,
which will then be used with s̄Pk,opt to generate s̄Pk+1,opt.

Theorem 3. For each time k = 1, 2 . . ., provided sP∗k−1 and
s̄Pk−1,opt from previous time step, consider a receding horizon
control (RHC)

s̄Pk,opt = arg max
s̄Pk ∈Path(sP∗k−1,N)

U
(
s̄Pk
)

(6)

subject to the following constraints:

1) J
(
sPN |k

)
< J

(
sPN |k−1,opt

)
if J

(
sP∗k−1

)
> 0 and

J
(
sPi|k−1,opt

)
6= 0 for all i = 1, . . . , N ;.

2) J

(
sP
i0(sPk−1,opt)−1|k

)
= 0 if J

(
sP∗k−1

)
> 0 and

J
(
sPi|k−1,opt

)
= 0 for some i = 1, . . . , N ;

3) J
(
sPN |k

)
<∞ if J

(
sP∗k−1

)
= 0.

Applying sP∗k = sP1|k,opt at each time k, the optimal trajectory

7

IEEE Control System Letters Cai et al. Presented in ACC 2021

s̄P∗ = sP∗0 sP∗1 . . . is guaranteed to satisfy the acceptance
condition of P .

Proof: Consider a state sP∗k−1 ∈ SP , ∀k = 1, 2, . . ., and
Path

(
sP∗k−1, N

)
represents the set of all possible paths starting

from sP∗k−1 with horizon N . Since not all predicated trajectories
maximizing the utility U

(
s̄Pk
)
, s̄Pk ∈ Path

(
sP∗k−1, N

)
, in (6)

are guaranteed to be accepting by P , additional constraints
need to be imposed. Note that the energy function J

(
sP∗k−1

)
defined in (3) indicates the distance from the current state
sP∗k−1 to F∗. A trajectory on P is accepting if the trajectory
can intersect F∗ infinitely many times. Therefore, the key idea
of the design of the constraints for (6) is to ensure the energy
of the states along the trajectory eventually decreases to zero.
Following this idea, different cases are considered.

(i) Case 1: If J
(
sP∗k−1

)
> 0 and J

(
sPi|k−1,opt

)
6= 0 for all

i = 1, . . . , N , the constraint J
(
sPN |k

)
< J

(
sPN |k−1,opt

)
is en-

forced. Recall that s̄Pk−1,opt = sP1|k−1,opts
P
2|k−1,opt . . . s

P
N |k−1,opt

is the predicted optimal trajectory at the previous time k − 1.
The energy J

(
sP∗k−1

)
> 0 indicates that there exists a

trajectory from sP∗k−1 to F∗, and J
(
sPi|k−1,opt

)
6= 0 for

all i = 1, . . . , N indicates s̄Pk−1,opt does not intersect F∗.
The constraint J

(
sPN |k

)
< J

(
sPN |k−1,opt

)
enforces that the

energy of the last state sPN |k in the predicted trajectory at
the current time k must be less than that of the previously
predicted s̄Pk−1,opt, which indicates the energy along s̄Pk,opt
strictly decreases at each iteration k. Note that, based on
Theorem 2, there always exists a state s′P on P satisfying(
sPN |k−1,opt, s

′
P

)
∈ ∆P and J (s′P) < J

(
sPN |k−1,opt

)
. There-

fore, if we can construct a trajectory s̄Pk = sP1|k, . . . , s
P
N |k with

sPi|k = sPi+1|k−1,opt and sPN |k,opt = s′P for all i = 1, . . . , N −1,
the problem (6) is guaranteed to have at least one solution for
Case 1.

(ii) Case 2: If J
(
sPi|k−1,opt

)
= 0 for some i = 1, . . . , N ,

s̄Pk−1,opt intersects F∗. Let i0
(
s̄Pk−1,opt

)
be the index of the

first occurrence in s̄Pk−1,opt where J
(
sPi0|k−1

)
= 0. The

constraint J

(
sP
i0(sPk−1)−1|k

)
= 0 enforces the predicted

trajectory at the current time k to have energy 0 (i.e., intersect
F∗), if the previously predicted trajectory s̄Pk−1,opt does so. To
show that the problem (6) has at least one solution for Case 2,
we can always construct s̄Pk = sP1|k, . . . , s

P
N |k by letting sPi|k =

sPi+1|k−1,opt and sPN |k = s′P for all i = 1, . . . , N − 1, where

s′P can be any state on P satisfying
(
sPN |k−1,opt, s

′
P

)
∈ ∆P

and J (s′P) <∞.
(iii) Case 3: If J

(
sP∗k−1

)
= 0, it indicates sP∗k−1 ∈ F∗.

The constraint J
(
sPN |k

)
< ∞ only requires the predicted

trajectory s̄Pk ending at a state with bounded energy, where
Cases 1 and 2 can then be applied to enforce the following
sequence sP∗k+1s

P∗
k+2 . . . converging to F∗. To show that there

always exists sPN |k with J
(
sPN |k

)
<∞, note that there exists

a state s′P satisfying
(
sP∗k−1, s

′
P
)
∈ ∆P and J (s′P) <∞. Let

sP1|k = s′P . Based on Theorem 2, we can always construct

s̄Pk = sP1|k, . . . , s
P
N |k such that J

(
sPi|k

)
< J

(
sPi+1|k

)
for all

i = 1, . . . , N − 1, and J
(
sPN |k

)
< ∞. Consequently, the

problem (6) has solutions for Case 3.
Analogous to the analysis in [24], the energy function based

constraints (6) in Theorem 3 ensure that s̄P∗ = sP∗0 sP∗1
intersects the accepting states FP infinitely, resulting in the
satisfaction of the acceptance condition of P . If the RHC
yields an negative infinite utility, the hard constraint is violated
and the robot fails to accomplish the task. In this paper, we
assume φh is always feasible.

B. Control Synthesis
The control synthesis of the LTL online motion planning

strategy is outlined in Algorithm 2. In Lines 1-3, an off-line
computation is first performed over P to obtain an initial
J and an initial violation cost VP . At time k = 0, the
receding horizon control (5) is applied to determine sP∗0 in
Lines 4-7. Due to the dynamic and uncertain nature of the
environment, Algorithm 1 is applied at each time k > 0 to
update J (JsPK) and VP based on local sensing in Lines 9-
10. The RHC (6) is then employed based on the previously
determined sP∗k−1 to generate s̄Pk,opt, where the next state is
determined as sP∗k = sP1|k,opt in Lines 11-12. The transition
from sP∗k−1 to sP∗k is then immediately applied on P , which
corresponds to the movement of the robot at time k from
γT
(
sP∗k−1

)
to γT

(
sP∗k
)

on T in Line 13. Repeating the process
can generate a trajectory s̄P∗ = sP∗0 sP∗1 . . . that optimizes
the utilities while satisfying the acceptance condition of P .
If J

(
sP0
)

= ∞, there exists no trajectory that satisfies φh in
Line 17.

Theorem 4 (Correctness of Algorithm 2). Given a weighted
DTS T = {Q, q0, δ,Π, L, ω} and Bh and Bs corresponding
to φh and φs, respectively, if there exists an initial state sP0 ∈
SP0 with J

(
sP0
)
<∞, the trajectory generated by Algorithm

2 is guaranteed to satisfy the acceptance condition of P .

Proof: The existence of an initial state sP0 ∈ SP0 with
J
(
sP0
)
< ∞ indicates the existence of a solution to (5).

The solution s̄P0,opt from (5) determines the first element of
the trajectory s̄P∗, i.e., sP∗0 = sP1|0,opt, with J

(
sP∗0

)
< ∞,

from which (6) can be applied recursively to determine the
rest elements sP∗k , k = 1, . . . , of s̄P∗. Particularly, for
each time k, if the constraint 1 in Theorem 3 is satisfied,
J
(
sP∗k−1

)
< ∞ indicates there exist other states with lower

energy by Theorem 2. Hence, repeatedly applying (6) can
generate a set of predicted optimal paths with J

(
sPN |k

)
>

J
(
sPN |k+1

)
> J

(
sPN |k+2

)
. . . satisfying J

(
sPN |j

)
= 0 for

some j > k. If the constraints 2) and 3) in Theorem 3
are satisfied, the predicted optimal trajectories s̄Pk,opt from
(6) will lead s̄P∗ to states with zero energy, which implies
the intersections with F∗. Repeating the process described
above, the resulting trajectory s̄P∗ from Algorithm 2 satisfies
the acceptance condition. Moreover, if J

(
sPk
)
< ∞, it

indicates there exists a run satisfying φh and the violation
cost −hP

(
sPk , s

P
1|k

)
in RHC ensures the satisfaction of φh

since only the first predicted step is applied.

8

IEEE Control System Letters Cai et al. Presented in ACC 2021

Algorithm 2 Control synthesis of LTL online motion planning

1: procedure INPUT:(The DTS T = {Q, q0, δ,Π, L, ω} and the NBA Bh,Bs

corresponding to the user-specified LTL formula φ = φh ∧ φs)
Output: The trajectory s̄P∗ = sP∗0 sP∗1 . . .

Off-line Execution:
2: Construct the relaxed product automaton P = T × Bh × Bs

3: Construct F∗, and initialize HP , VP and J
online Execution:

4: if ∃sP0 ∈ SP0 J
(
sP0

)
<∞ then

5: Solve (5) for s̄P0,opt
6: sP∗0 = sP1|0,opt and k ← 1
7: while k > 0 do
8: Apply automaton update at sP∗k−1 in Algorithm 1 based on local sensing

9: Locally observe rewards Rk

(
γT

(
sP∗k−1

))
10: Solve (6) for s̄Pk,opt
11: Implement corresponding transitions on P and T
12: sP∗k = sP1|k,opt and k + +

13: end while
14: else
15: There does not exist an accepting run from initial states;
16: end if
17: end procedure

Corollary 1. Given a weighted DTS T = {Q, q0, δ,Π, L, ω},
Bh and Bs, if ϕs is feasible, the solution of Algorithm 2 fully
satisfies the task ϕ = ϕh ∧ ϕs exactly with κ in (4) selected
sufficiently large.

Since Corollary 1 is an immediate result of Theorem 1 and
Theorem 4, its proof is omitted.

C. Complexity
Since the off-line execution involves the computation of

P , F∗, the initial J , and the initial VP , its complexity
is O

(
|FP |3 + |SP |2 × |FP |2 + |FP |

)
. For online execution,

Since F∗ remains the same during mission operation, as
indicated in Algorithm 1, the worst case requires |JsPK| runs
of Dijkstra’s algorithm. In Algorithm 2, the selected horizon
N in RHC is crucial to the complexity. Suppose the number
of total transitions between states is |∆δ|. The complexity
of recursive computation at each time step is bounded by
|∆δ|N . Another layer of the complexity in Algorithm 1 comes
from the automaton update and the computation of energy
function computation at each iteration. Suppose the number of
Sense (sP) is bounded by |N1|, which indicates a maximum
|N1| × |SP | runs is required to update the violation cost
VP and the state labels. In addition, updating energy J
requires |SP | runs of the Dijkstra Algorithm in each itera-
tion. Therefore, the complexity of Algorithm 1 is at most
O (|N1| × |SP |+ |SP |). Overall, the maximum complexity of
the online portion of RHC is O

(
|N1| × |S|+ |SP |+ |∆δ|N

)
.

In the simulation and experiment, we set the penalty param-
eter β = 500 and the tuning parameter κ = 100. The LTL task
is φ = φh ∧ φs, where φh = �¬Obstacle and φs is defined
in Section VI-A and VI-B, respectively. φh was translated to
a Büchi Automaton Bh via LTL2BA [47] with |Sh| = 1.

VI. CASE STUDY

A. Simulation Results
Consider an application in which a mobile robot performs

persistent surveillance in a dynamic environment. The envi-

ronment consists of a Base station that the robot should visit
repeatedly, Survey points that indicate the areas of interest
that the robot should explore, a Report station where the robot
should report its findings after visiting Survey, a Supply

station where the robot can get refueled, and a set of Obstacle
that the robot should avoid during the mission. It is assumed
that the locations of Supply, Base, and Report are fixed and
known to the robot, while the Survey points (i.e., the events of
interest) are dynamic and can even be occasionally infeasible
for the robot to explore. In addition, the potential Obstacle
are dynamic. The task of the robot is formulated based on LTL
as

φs =�♦Base
∧� (Base→ # (¬Base ∪ Survey))

∧� (Survey→ # (¬Survey ∪ Report))

∧� (Report→ # (¬Report ∪ Supply)) .

(7)

In English, φs in (7) means the robot needs to always avoid
Obstacle while repeatedly and sequentially visiting Base,
Survey, Report, and Supply.

The workspace is abstracted to a grid-like graph consisting
of 10 × 10 nodes as shown in Fig. 4. The labels Π =
{Base, Supply, Report, Obstacle, Survey} are shown in
circles with blue, purple, cyan, black, and yellow, respectively.
The robot is represented by a red dot transiting along edges
between nodes. Each node q in the graph is associated with
a time-varying reward Rk (q), and the reward is randomly
generated from a uniform distribution in the range [10, 25] at
time k. The rewards are presented as green circles with size
proportional to the reward value. LTL2BA [47] was used to
translate φs to a Büchi Automaton Bs with |Ss| = 28 states.

The simulation was implemented in MATLAB on a PC with
3.6 GHz Quad-core CPU and 32 GB of RAM. Since the DTS
T has |Q| = 100 states, the relaxed product automaton P
has |SP | = 2800 states. The computation of P , the largest
self-reachable set F∗, and the energy function took 4.7s. The
control algorithm outlined in Algorithm 2 was implemented
for 200 time steps with horizon N = 4. Each iteration of
Algorithm 2 took 1 to 3s depending on the volume of local
updates. To demonstrate the ability of the robot in handling
partially infeasible tasks, it is assumed that the φs is fully
feasible in the first 100 time steps and it becomes infeasible
afterwards in the sense that the survey points are not accessible
(i.e., yellow nodes are off).

Fig. 4(a) shows the robot’s initial knowledge about
the environment, which consists of known destinations
{Base, Supply, Report} and locally observed rewards. Figs.
4(b) and (c) show the snapshots of the environment at t = 1s
and t = 140s, respectively. Fig. 4(c) shows that φs is relaxed
since the robot is required to visit Survey points in (7), while
Survey points do not exist from t = 101s to t = 200s,
thus leading to a revised motion plan. Note that, due to
the consideration of dynamic obstacles, the deployment of
black circles can vary with time. Figs. 5(a) and (b) show the
trajectories of the robot in the feasible and infeasible φs ,
respectively. Fig. 6 shows the evolution of the energy function
during mission operation. Each time the energy J (sP) = 0

9

IEEE Control System Letters Cai et al. Presented in ACC 2021

Figure 4: Snapshots of the environment at different time instants. The robot’s position is represented by a red circle, while the
randomly generated rewards within the sensing zone of the vehicle are marked by green circles of different sizes proportional
to the reward value. The red arrow lines represent the predicted trajectory at the current time. (a) shows the robot’s initial
knowledge about the environment at t = 1s. Initially the robot is only informed of the positions of Base, Supply, Report, and
Survey stations, without any a priori knowledge of obstacles (i.e., black circles). (b) shows the real setup of the environment
scattered with dynamic obstacles at t = 1s. The environment is assumed to be time-varying with yellow circles (i.e., Survey
stations) on and off at different times, which indicates the environment can be infeasible for the robot’s desired task. (c) shows
that the environment is infeasible at t = 140s, where yellow circles are off.

Table I: The comparison of workspace size and computation
time.

Workspace M P Min Max Mean Horizon
size[cell] |Q| |SP | Time[s] Time[s] Time[s] N
10× 10 100 2800 0.88 2.91 1.70 4
10× 10 100 2800 1.12 3.6 1.81 6
30× 30 900 25200 1.47 5.45 3.12 4
30× 30 900 25200 1.99 9.12 4.83 8
50× 50 2500 700000 2.01 14.9 6.11 4

in Fig. 6 indicates that an accepting state has been reached,
i.e., the desired task is accomplished for one time. The jumps
of energy from t = 100s to 200s (e.g., t = 100s) in Fig.
6 are due to the violation of the desired task whenever the
environment becomes infeasible. Nevertheless, the developed
control strategy still guarantees the decrease of energy function
to satisfy the acceptance condition of P . Fig. 7 shows the
collected local time-varying reward. The simulation video is
provided3.

In order to demonstrate scalability and computational com-
plexity of the framework, we repeat the control synthesis intro-
duced above for workspace with different sizes. Specifically,
each rectangular state of previous 10 × 10 grid-like graph
are further divided into the number of grid-cells 32, 52. The
dimensions of resulting graph, DTS T , and relaxed product
automaton P , and the maximum, minimum and mean time
taken to solve the predicted trajectories at each time-step are
shown in Table I, where we also analysis how the various
horizon will influence the computations. Due to the off-line
computation for largest-self reachable sets that always remains
the same, we omit its time comparison.

From table I, we can see that the computational time at
each time will be dramatically influenced by updated process

3https://www.youtube.com/watch?v=RyRnKXDDH5U&t=30s

involving recomputing the energy function based on updated
knowledge. The benefits of RHC based algorithm in this paper
is that the proposed algorithm only need to consider the local
scale optimization problem and the energy constraints will
ensure the global task satisfaction. As a result, the minimum
solving time at each time-step will be slightly influenced.

B. Experiment results

Experiments were performed on a mobile robot, Khepera
IV, to verify the developed control strategy. The workspace is
about 48′′ × 96′′, consisting of 4 × 8 square cells, as shown
in Fig. 8, where the bottom figure shows the experiment
workspace while the top figure shows the corresponding
simulated workspace. The robot is allowed to transit between
adjacent cells, i.e., the robot at a cell has four possible actions,
“up,” “down,” “right,” and “left.” Consider three areas of
interest, P1, P2, and P3, which correspond to orange, green,
and cyan cells, respectively. The desired task of the robot is to
avoid obstacles (i.e., carbon boxes in Fig. 8) and visit P1, P2,
and P3 sequentially and infinitely often, which is expressed as
an LTL specification

φs = �♦P1

∧�P1 → # (¬P1 ∪ P2)

∧�P2 → # (¬P2 ∪ P3) .

(8)

The robot is assumed to know the locations of P1, P2, and
P3, without knowing the obstacle positions. It is possible that
the preassigned task φ cannot be fully accomplished, due to
unexpected obstacles. Fig. 8 shows an infeasible case of φs,
where P3 is surrounded by obstacles and not accessible by
the robot. Therefore, the task (8) cannot be fully realized,
and the robot has to revise its motion plan and adapts to the
real environment. In addition, each cell is assumed to have
a time-varying reward, randomly generated from a uniform

10

IEEE Control System Letters Cai et al. Presented in ACC 2021

Figure 5: The robot trajectories in feasible and infeasible cases
of φs, respectively. In (a), the environment is fully feasible
from t = 1s to t = 45s, and the robot successfully completes
the desired task (7). In (b), the environment is infeasible from
t = 140s to t = 190s, where yellow circles do not exist.
The robot revises its motion to only sequentially visit Base,
Supply, and Report stations. In both (a) and (b), the planned
path maximizes the reward collection in a receding horizon
manner.

Figure 6: Plot of the energy function during mission operation.

Figure 7: Plot of accumulative collected time-varying rewards.

Figure 8: The workspace of the real environment (bottom)
and the simulated environment (top). The turtle represents the
robot, and the blue squares represent the predicted trajectory,
where the number indicates the locally observed rewards.

distribution in the range [5, 15]. The robot is desired to
maximize reward collection while performing the task (8).

The online motion planning strategy in Algorithm 2 was
implemented in python on a VMware with a 3.6 GHz Quad-
core CPU and 8 GB of RAM. The robot actuation module
was implemented on Linux with an Optitrack motion capture
system providing real-time position feedback of the robot. The
Büchi Automaton Bs has |Ss| = 12 states, and the DTS T
has |Q| = 32. The relaxed product automaton P has |SP | =
384 states. The horizon in RHC was selected as N = 4, and
the computation of Algorithm 2 at each iteration took 0.25s.
During implementation of Algorithm 2, the obstacles can be
randomly moved, and the robot usually took about 0.5s to
update its motion plan. The experiment video is provided4.

VII. CONCLUSIONS

An RHC-based online motion planning strategy with par-
tially infeasible LTL specifications is developed in this work
to enable the autonomous robot to maximize reward collection
while considering hard and soft LTL constraints. Motion
planning in an uncertain environment can be better modeled

4https://youtu.be/16j6TmVUrTk

11

IEEE Control System Letters Cai et al. Presented in ACC 2021

by a Markov decision process. Future research will consider
extending this work with more realistic robot models and
advanced learning based motion planning . Additional research
will also consider extending the current work to continuous
state space using hybrid control.

Acknowledgments

We thank Marius Kloeatzer, Xuchu Ding, and Calin Belta
for their software and open source.

REFERENCES

[1] T. Luettel, M. Himmelsbach, and H.-J. Wuensche, “Autonomous ground
vehicles-concepts and a path to the future.” Proc. IEEE, vol. 100, pp.
1831–1839, 2012.

[2] W. Zhao, Q. Meng, and P. W. Chung, “A heuristic distributed task
allocation method for multivehicle multitask problems and its application
to search and rescue scenario,” IEEE Trans Cybern, vol. 46, no. 4, pp.
902–915, 2016.

[3] X. Wu, Z. Li, Z. Kan, and H. Gao, “Reference trajectory reshaping
optimization and control of robotic exoskeletons for human-robot co-
manipulation,” IEEE Trans Cybern, 2019.

[4] C. Ton, Z. Kan, and S. S. Mehta, “Obstacle avoidance control of a
human-in-the-loop mobile robot system using harmonic potential fields,”
Robotica, vol. 36, no. 4, pp. 463–483, 2018.

[5] R. J. Downey, T.-H. Cheng, M. J. Bellman, and W. E. Dixon, “Switched
tracking control of the lower limb during asynchronous neuromuscular
electrical stimulation: Theory and experiments,” IEEE transactions on
cybernetics, vol. 47, no. 5, pp. 1251–1262, 2016.

[6] M. Pi, L. Zhijun, Q. Li, Z. Kan, C. Xu, Y. Kang, C.-Y. Su, and
C. Yang, “Biologically inspired deadbeat control of robotic leg pros-
theses,” IEEE/ASME Trans. Mechatronics, 2020.

[7] E. Rimon and D. Koditschek, “Exact robot navigation using artificial
potential functions,” IEEE Trans. Robot. Autom., vol. 8, no. 5, pp. 501–
518, Oct 1992.

[8] A. H. Halim and I. Ismail, “Combinatorial optimization: comparison
of heuristic algorithms in travelling salesman problem,” Arch. Comput.
Methods Eng., vol. 26, no. 2, pp. 367–380, 2019.

[9] P. Vansteenwegen, W. Souffriau, and D. Van Oudheusden, “The orien-
teering problem: A survey,” Eur. J. Oper. Res., vol. 209, no. 1, pp. 1–10,
2011.

[10] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J.
Pappas, “Symbolic planning and control of robot motion,” IEEE Robot.
Autom. Mag., vol. 14, no. 1, pp. 61–70, 2007.

[11] S. L. Smith, J. Tumova, C. Belta, and D. Rus, “Optimal path planning
for surveillance with temporal-logic constraints,” Int. J. Robotics Res.,
vol. 30, no. 14, pp. 1695–1708, 2011.

[12] M. Guo and D. V. Dimarogonas, “Multi-agent plan reconfiguration under
local LTL specifications,” Int. J. Robotics Res., vol. 34, no. 2, pp. 218–
235, 2015.

[13] Y. Kantaros and M. M. Zavlanos, “Distributed intermittent connectivity
control of mobile robot networks,” IEEE Trans. Autom. Control, vol. 62,
no. 7, pp. 3109–3121, 2017.

[14] L. Lindemann, J. Nowak, L. Schönbächler, M. Guo, J. Tumova, and D. V.
Dimarogonas, “Coupled multi-robot systems under linear temporal logic
and signal temporal logic tasks,” IEEE Trans. Control Syst. Technol.,
2019.

[15] M. Cai, H. Peng, Z. Li, and Z. Kan, “Learning-based probabilistic
ltl motion planning with environment and motion uncertainties,” IEEE
Trans. Autom. Control, 2020.

[16] M. Cai, Z. Li, H. Gao, S. Xiao, and Z. Kan, “Optimal probabilistic
motion planning with partially infeasible ltl constraints,” arXiv preprint
arXiv:2007.14325, 2020.

[17] M. Cai, S. Xiao, B. Li, Z. Li, and Z. Kan, “Reinforcement learning
based temporal logic control with maximum probabilistic satisfaction,”
in Proc. Int. Conf. Robot. Autom. Xi’an, China: IEEE, 2021, pp. 806–
812.

[18] B. Lacerda, F. Faruq, D. Parker, and N. Hawes, “Probabilistic planning
with formal performance guarantees for mobile service robots,” Int. J.
Robot. Res., vol. 38, no. 9, pp. 1098–1123, 2019.

[19] I. Cizelj and C. Belta, “Control of noisy differential-drive vehicles from
time-bounded temporal logic specifications,” Int. J. Robot. Res., vol. 33,
no. 8, pp. 1112–1129, 2014.

[20] P. Schillinger, M. Bürger, and D. V. Dimarogonas, “Simultaneous task
allocation and planning for temporal logic goals in heterogeneous multi-
robot systems,” Int. J. Robot. Res., vol. 37, no. 7, pp. 818–838, 2018.

[21] A. Jones, M. Schwager, and C. Belta, “Information-guided persistent
monitoring under temporal logic constraints,” in Proc. Am. Control Conf.
IEEE, 2015, pp. 1911–1916.

[22] M. Guo, C. P. Bechlioulis, K. J. Kyriakopoulos, and D. V. Dimarogonas,
“Hybrid control of multiagent systems with contingent temporal tasks
and prescribed formation constraints,” IEEE Trans. Control Network
Syst., vol. 4, no. 4, pp. 781–792, 2017.

[23] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning,” IEEE Trans. Autom. Control, vol. 57, no. 11,
pp. 2817–2830, 2012.

[24] X. Ding, M. Lazar, and C. Belta, “LTL receding horizon control for
finite deterministic systems,” Automatica, vol. 50, no. 2, pp. 399–408,
2014.

[25] Q. Lu and Q.-L. Han, “Mobile robot networks for environmental moni-
toring: A cooperative receding horizon temporal logic control approach,”
IEEE Trans. Cybern., vol. 49, no. 2, pp. 698–711, 2018.

[26] A. Ulusoy and C. Belta, “Receding horizon temporal logic control in
dynamic environments,” Int. J. Robotics Res, vol. 33, no. 12, pp. 1593–
1607, 2014.

[27] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications,” in Proc. IEEE Conf. Decis. Control.
IEEE, 2014, pp. 81–87.

[28] J. Tumova and D. V. Dimarogonas, “A receding horizon approach to
multi-agent planning from local ltl specifications,” in Am. Control Conf.
IEEE, 2014, pp. 1775–1780.

[29] S. S. Farahani, R. Majumdar, V. S. Prabhu, and S. E. Z. Soudjani,
“Shrinking horizon model predictive control with chance-constrained
signal temporal logic specifications,” in Proc. IEEE Am. Control Conf.,
2017, pp. 1740–1746.

[30] C. I. Vasile, X. Li, and C. Belta, “Reactive sampling-based path
planning with temporal logic specifications,” The International Journal
of Robotics Research, p. 0278364920918919, 2020.

[31] J. Tumova, G. C. Hall, S. Karaman, E. Frazzoli, and D. Rus, “Least-
violating control strategy synthesis with safety rules,” in Proc. Int. Conf.
Hybrid Syst., Comput. Control, 2013, pp. 1–10.

[32] L. I. R. Castro, P. Chaudhari, J. Tumova, S. Karaman, E. Frazzoli, and
D. Rus, “Incremental sampling-based algorithm for minimum-violation
motion planning,” in 52nd IEEE Conference on Decision and Control.
IEEE, 2013, pp. 3217–3224.

[33] M. Lahijanian, S. Almagor, D. Fried, L. E. Kavraki, and M. Y. Vardi,
“This time the robot settles for a cost: A quantitative approach to
temporal logic planning with partial satisfaction,” in Twenty-Ninth AAAI
Conference on Artificial Intelligence, 2015.

[34] M. Lahijanian, M. R. Maly, D. Fried, L. E. Kavraki, H. Kress-Gazit,
and M. Y. Vardi, “Iterative temporal planning in uncertain environments
with partial satisfaction guarantees,” IEEE Trans. Robot., vol. 32, no. 3,
pp. 583–599, 2016.

[35] H. Rahmani and J. M. O’Kane, “Optimal temporal logic planning with
cascading soft constraints,” in 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2019, pp. 2524–2531.

[36] K. Kim and G. E. Fainekos, “Approximate solutions for the minimal
revision problem of specification automata,” in IEEE Int. Conf. Intell.
Robot. and Syst., 2012, pp. 265–271.

[37] K. Kim, G. E. Fainekos, and S. Sankaranarayanan, “On the revision
problem of specification automata,” in Proc. IEEE Int. Conf. Robot.
Autom., 2012, pp. 5171–5176.

[38] J. Tumova, L. I. R. Castro, S. Karaman, E. Frazzoli, and D. Rus,
“Minimum-violation ltl planning with conflicting specifications,” in 2013
American Control Conference. IEEE, 2013, pp. 200–205.

[39] H. Rahmani and J. M. O’Kane, “What to do when you can’t do it
all: Temporal logic planning with soft temporal logic constraints,” 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2020.

[40] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. MIT press,
1999.

[41] P. Gastin and D. Oddoux, “Fast LTL to Büchi automata translation,” in
Int. Conf. Comput. Aided Verif. Springer, 2001, pp. 53–65.

[42] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

[43] E. M. Wolff, U. Topcu, and R. M. Murray, “Optimization-based trajec-
tory generation with linear temporal logic specifications,” in IEEE Int.
Conf. Robot. Autom., 2014, pp. 5319–5325.

12

IEEE Control System Letters Cai et al. Presented in ACC 2021

[44] K. Leahy, A. Jones, M. Schwager, and C. Belta, “Distributed information
gathering policies under temporal logic constraints,” in Proc. IEEE Conf.
Decis. Control., 2015, pp. 6803–6808.

[45] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from temporal logic specifications,” IEEE Trans. Autom.
Control, vol. 53, no. 1, pp. 287–297, 2008.

[46] M. Cai, H. Peng, Z. Li, H. Gao, and Z. Kan, “Receding horizon control
based motion planning with partially infeasible ltl constrains,” IEEE
Control Systems Letters, 2020.

[47] T. Babiak, M. Křetínskỳ, V. Řehák, and J. Strejček, “Ltl to Büchi
automata translation: Fast and more deterministic,” in Int. Conf. Tools
Alg. Const. Anal. Syst. Springer, 2012, pp. 95–109.

13

	I Introduction
	I-A Related Work
	I-B Contributions

	II Preliminaries
	III Example and Problem Formulation
	III-A Example Demonstration
	III-B Problem formulation

	IV Relaxed Automaton and Problem Formulation
	IV-A Relaxed LTL Specifications
	IV-B Energy Function
	IV-C Automaton Update

	V Control Synthesis of LTL Motion Planning
	V-A Receding Horizon Control
	V-B Control Synthesis
	V-C Complexity

	VI Case Study
	VI-A Simulation Results
	VI-B Experiment results

	VII Conclusions
	References

