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Dissipativity verification with guarantees for polynomial systems

from noisy input-state data

Tim Martin and Frank Allgöwer*

Abstract—In this paper, we investigate the verification of dis-
sipativity properties for polynomial systems without an explicitly
identified model but directly from noise-corrupted measurements.
Contrary to most data-driven approaches for nonlinear systems,
we determine dissipativity properties over all finite time horizons
using noisy input-state data. To this end, we propose two
noise characterizations to deduce two data-based set-membership
representations of the ground-truth system. Each representation
then serves as a framework to derive computationally tractable
conditions to verify dissipativity properties with rigorous guar-
antees from noise-corrupted data using sum of squares (SOS)
optimization.

I. INTRODUCTION

THE standard approach to obtain a controller for non-

linear systems requires to retrieve a sufficiently precise

model and the application of nonlinear controller design tech-

niques [1]. However, the identification of nonlinear systems is

in general time consuming and requires often expert knowl-

edge. Hence, the interest on data-driven controller design

techniques, where the controller is deduced without identifying

a model but directly from measured data of the system, has

risen recently.

One well-elaborated theory for the controller design of

nonlinear systems are dissipativity properties [2] which give

rise to stabilizing control laws as the small gain theorem [1]

(Theorem 5.6). Since these system properties give insight to

the system and facilitate a controller design without knowledge

of the system, the verification of these properties from mea-

sured trajectories can be leveraged to a data-driven controller

design with stability and performance guarantees.

For linear time-invariant (LTI) systems, [3] determines dis-

sipativity properties over a data-depended finite time horizon

from a noise-free single input-output trajectory. By exploiting

the set-membership representation of an unknown LTI system

by noisy input-state samples from [4], [5] provides guaranteed

dissipativity properties over all finite time horizons as defined

in [2] and required for, e.g., the small gain theorem. For non-

linear systems, [6] is tailored to estimate certain dissipativity

properties over a data-depended finite time horizon, as the L2-

gain or conic relations [7], from a large number of input-output

trajectories based on the Lipschitz constant of the system

operator. To reduce the amount of required data, [8] proposes

sequential experiments to improve iteratively the accuracy of

a non-parametric data-based Lipschitz approximation of the
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system operator. Nevertheless, the amount of data might be

still too large for a real application as also indicated by bounds

on the sampling complexity from [9].

For that reason, we establish in this paper a data-based

framework, which is based on a set-membership approach

for polynomial systems and is more data-efficient than [6]

and [8], to determine dissipativity properties over all finite

time horizons. Contrary to [10], we consider polynomial

systems in discrete time and measurements in presence of

noise. By characterizing this noise by two distinct descriptions,

we propose two data-based set-membership representations

of the ground-truth system which constitute two frameworks

to deduce computationally tractable conditions for verifying

dissipativity properties using sum of squares (SOS) optimiza-

tion. The first noise description bounds the noise signal in

each time step which is commonly assumed, e.g., in set-

membership identification [11]. This characterization yields

for the verification of dissipativity properties with polynomial

supply rates an SOS optimization problem which can be solved

by semi-definite programming using standard SOS techniques

[12]. Since the complexity of this SOS optimization problem

increases for additional samples, the second ansatz character-

izes the noise by a single cumulative property. This approach

was first introduced in [4] and yields a feasibility condition of a

linear matrix inequality (LMI) to verify (Q,S,R)-dissipativity.

II. PRELIMINARIES

In this section, we introduce the notion of SOS polynomials

and matrices and formulate the problem of verifying dissi-

pativity properties for unidentified polynomial systems from

noise-corrupted input-state data.

A. SOS optimization

For a vectorial index α =
[
α1 · · · αn

]T
∈ N

n
0 and a

vector x =
[
x1 · · · xn

]T
∈ R

n, we write |α| = α1+ · · ·+
αn, the monomial xα = xα1

1 · · ·xαn

n , and R[x] for the set of

all polynomials p in x, i.e.,

p(x) =
∑

α∈Nn

0
,|α|≤d

aαx
α,

with real coefficients aα ∈ R. d ∈ N0 corresponds to the

degree of the polynomial if there is an aα 6= 0 with |α| = d.

Furthermore, we denote R[x]m as the set of all m-dimensional

vectors with entries in R[x] and R[x]r×s as the set of all r×s-
matrices with entries in R[x]. The degree of a polynomial

matrix is the largest degree of its elements.
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Definition 1 (SOS matrix). A polynomial matrix P ∈ R[x]r×r

with even degree is called an SOS matrix if there exists a

matrix Q ∈ R[x]s×r such that P = QTQ. Moreover, let the

set of all r × r-SOS matrices be denoted by SOS[x]r×r. For

r = 1, P is called SOS polynomial.

SOS matrices are computationally attractive as we can

verify whether a polynomial matrix is an SOS matrix by an

LMI feasibility condition which deduces from the following

square matricial representation [13].

Proposition 2. A polynomial matrix P ∈ R[x]r×r is an SOS

matrix if and only if there exist a real matrix X � 0 and a

vector Z ∈ R[x]β containing monomials of x such that

P =
[
Z ⊗ Ir

]T
X

[
Z ⊗ Ir

]
,

where Ir denotes the r× r-identity matrix and ⊗ corresponds

to the Kronecker product.

Proof. The statement follows from the Gram matrix method

[14]. A detailed proof can be found in [13].

In our application of SOS optimization, we are confronted

to verify that a polynomial p ∈ R[x] is non-negative for all

x ∈ {x ∈ R
n : c1(x) ≥ 0, . . . , ck(x) ≥ 0} with ci ∈ R[x]. We

can boil down this problem to an LMI feasibility condition

using the following SOS relaxation from [15].

Proposition 3 (SOS relaxation). A polynomial p ∈ R[x] is

non-negative for all x ∈ {x ∈ R
n : c1(x) ≥ 0, . . . , ck(x) ≥

0} with ci ∈ R[x] if there exist SOS polynomials ti ∈
SOS[x], i = 1, . . . , k such that p−

∑k

i=1 tici ∈ SOS[x].

Proof. A proof based on the Positivstellensatz can be found

in [15] (Lemma 2.1).

B. Problem setup

We consider the nonlinear discrete-time system with poly-

nomial dynamics

x(t+ 1) = f(x(t), u(t)), f ∈ R[x, u]n (1)

and state-input constraints (x, u) ∈ P with non-empty set

P = {(x, u) ∈ R
n × R

m : pi(x, u) ≤ 0, pi ∈ R[x, u],

i = 1, . . . , c}.
(2)

The goal of this paper is the derivation of computationally

tractable conditions to check whether system (1) is dissipative

on (2) without identifying a model but directly from input-

state data. Since dissipativity properties are originally defined

for continuous-time unconstrained systems in [2], we specify a

suitable notion of dissipativity for discrete-time systems under

constraints.

Definition 4 (Dissipativity). System (1) is dissipative on P ⊆
R

n × R
m with respect to the given supply rate s : P → R if

there exists a continuous storage function λ : X → R≥0 such

that

λ(f(x, u))− λ(x) ≤ s(x, u), ∀(x, u) ∈ P, (3)

where X ⊆ R
n denotes the projection of P on the state-space

R
n. Moreover, the system is called (Q,S,R)-dissipative if it

is dissipative with respect to the supply rate

s(x, u) =

[
x

u

]T [
Q S

ST R

] [
x

u

]

.

While the verification of dissipativity inequality (3) for a

(known) polynomial system (1) and polynomial supply rate

using SOS optimization is well-investigated [12], dissipativity

verification of an unidentified polynomial system directly from

noisy data as formulated next hasn’t been analyzed yet.

Suppose that an upper bound on the degree of f is known

while its coefficients are unidentified. Then the system dynam-

ics (1) can be represented by

f(x, u) = Az(x, u) = (In ⊗ z(x, u)T )a, (4)

where z ∈ R[x, u]ℓ contains at least all monomials of f

according to the known upper bound on the degree of f .

A ∈ R
n×ℓ and a = vec(AT ) ∈ R

nℓ, where vec denotes the

vectorization of a matrix by stacking its columns, contain the

unknown coefficients. Furthermore, we assume the access to

noisy input-state data

{(x̃+i , x̃i, ũi)i=1,...,D} (5)

satisfying x̃+i = f(x̃i, ũi) + d̃i. Note that we measure the

state x̃+i from the underlying system, i.e., x̃+i = x+i + di with

x+i = f(xi, ui), the true state xi 6= x̃i, and input ui 6= ũi and

where di ∈ R
n summarizes the uncertainty due to measure-

ment noise. Therefore, d̃i = di + f(xi, ui) − f(x̃i, ũi), i.e.,

the noise vector d̃i contains the effect of di and analogously

to [11] the difference when applying the dynamics to the

uncertain state x̃i and input ũi instead of the true state xi
and input ui. As clarified in [5], we could also study noise d̃i
that affects through a matrix B to include addition knowledge

on its influence.

In the sequel, we characterize the noise d̃i, i = 1, . . . , D
more precisely to derive data-based set-membership represen-

tations of the unidentified polynomial system (1).

III. DATA-DRIVEN DISSIPATIVITY VERIFICATION FOR

SEPARATELY BOUNDED NOISE

In this section, we develop a framework for dissipativity

verification of polynomial system (1) from noise-corrupted

data (5) if the noise is bounded explicitly in each time step as

specified in the following assumption.

Assumption 5 (Separately bounded noise). For the measured

data (5), suppose that for i = 1, . . . , D

d̃i ∈ DSB
i = {d ∈ R

n : δi(d) ≤ 0, δi ∈ R[d]}, (6)

where DSB
i is bounded.

The noise characterization in Assumption 5 seems to be

general and incorporates, e.g., quadratically bounded noise

δi(d) =

[
d

1

]T [
∆1 ∆2

∆T
2 ∆3,

] [
d

1

]

,∆1 ≻ 0,∆3 ≤ 0. (7)



Moreover, Assumption 5 includes noise with bounded ampli-

tude δi(d) = dTd − ǫ2 and noise that exhibits a fixed signal-

to-noise-ratio δi(d) = dTd − ǫ̃2x̃Ti x̃i which are frequently

assumed in system identification [11].

To derive a data-based set-membership representation of

the ground-truth system (1) which is the basis to verify

dissipativity properties without identifying an explicit model,

we next define the set of all systems parametrized by a

x(t+ 1) = (In ⊗ z(x, u)T )
︸ ︷︷ ︸

=:Z(x,u)

a, (8)

with unidentified coefficient vector a ∈ R
nℓ and known vector

z ∈ R[x, u]ℓ, which explain the data (5).

Definition 6 (Feasible system set). The set of all systems (8)

admissible with the measured data (5) for separately bounded

noise (6) is given by the feasible system set FSSSB = {Za ∈
R[x, u]n : a ∈ ΣSB} with ΣSB = {a ∈ R

nℓ : ∀i ∈
{1, . . . , D} ∃d̃i∈ DSB

i satisfying x̃+i = Z(x̃i, ũi)a+ d̃i}.

Since the samples (5) satisfy x̃+i = f(x̃i, ũi) + d̃i with

d̃i ∈ DSB
i by assumption, the ground-truth system is an

element of FSSSB, i.e., f ∈ FSSSB. Thereby, FSSSB is a

set-membership representation of the ground-truth system (1).

Analogously to [4], we deduce in the following lemma a data-

based description of FSSSB.

Lemma 7. The set of all coefficients ΣSB for which system

(8) explains the measured data set (5) for separately bounded

noise (6) is equivalent to

{a ∈ R
nℓ : δi(x̃

+
i − Z(x̃i, ũi)a) ≤ 0, i = 1, . . . , D} (9)

with the data-dependent polynomials δi(x̃
+
i − Z(x̃i, ũi)a) ∈

R[a], i = 1, . . . , D.

Proof. If a ∈ ΣSB then there exist realizations of the noise

d̃i, i = 1, . . . , D such that x̃+i = Z(x̃i, ũi)a+ d̃i and δi(d̃i) ≤
0. Combining both yields (9).

To prove the converse, suppose that a is an element of (9).

Then construct d̃i, i = 1, . . . , D such that x̃+i = Z(x̃i, ũi)a+
d̃i. Since a satisfies (9), d̃i, i = 1, . . . , D satisfy (6), and hence

a ∈ ΣSB.

Since FSSSB contains the ground-truth systems, (1) is dis-

sipative if all systems of the feasible system set FSSSB are

dissipative. Based on this idea, the following theorem provides

a data-based SOS condition for the verification of dissipativity

properties without an identified model of (1).

Theorem 8. Let the data samples (5) satisfy Assumption 5.

Then system (1) is dissipative on (2) w.r.t. the given supply

rate s ∈ R[x, u] if there exist a storage function λ ∈ SOS[x]
and polynomials si ∈ SOS[x, u, a], i = 1, . . . , c and ti ∈
SOS[x, u, a], i = 1, . . . , D such that ψ ∈ SOS[x, u, a] with

ψ(x, u, a) = s(x, u)−λ(Z(x, u)a)+λ(x)+ . . .

D∑

i=1

δi(x̃
+
i − Z(x̃i, ũi)a)ti(x, u, a)+

c∑

i=1

pi(x, u)si(x, u, a).

Proof. By Definition 4, all systems of the feasible system set

FSSSB, and hence system (1), are dissipative on (2) if there

exists a continuous storage function λ : X → R≥0 such that

s(x, u)− λ(Z(x, u)a) + λ(x) ≥ 0 (10)

for all (x, u) ∈ P and all a ∈ ΣSB. Since the sets P and ΣSB

are defined by polynomial inequalities in (2) and Lemma 7,

respectively, we can apply Proposition 3 to conclude that

(10) holds if there exist a storage function λ ∈ SOS[x] and

SOS polynomials si ∈ SOS[x, u, a], i = 1, . . . , c and ti ∈
SOS[x, u, a], i = 1, . . . , D such that ψ ∈ SOS[x, u, a].

Even though Z(x, u)a is an unidentified polynomial vector

in R[x, u]n, it is a known polynomial vector in R[x, u, a]n.

For that reason, we can verify ψ ∈ SOS[x, u, a] as an SOS

problem with free variables x, u, and a by applying standard

SOS solvers, e.g., [16]. For quadratically bounded noise (7),

we can achieve an SOS condition independent of a.

Corollary 9. Let the data samples (5) satisfy Assumption 5

with δi from (7). Then system (1) is dissipative on (2)

with respect to the supply rate s ∈ R[x, u] if there ex-

ist a storage function λ(x) = xTPx, P � 0 and poly-

nomials ti ∈ SOS[x, u], i = 1, . . . , D and si(x, u, a) =
[
aT 1

]
Si(x, u)

[
aT 1

]T
, i = 1, . . . , c, with Si ∈

SOS[x, u](nℓ+1)×(nℓ+1) such that Ψ ∈ SOS[x, u](nℓ+1)×(nℓ+1)

with

Ψ(x, u) =

c∑

i=1

pi(x, u)Si(x, u) +

D∑

i=1

Qiti(x, u)

+

[
−Z(x, u)TPZ(x, u) 0

0 s(x, u) + xTPx

]

and the data-dependent matrices

Qi=






Z̃T
i ∆1Z̃i −Z̃T

i (∆1x̃
+
i +∆2)

−(x̃+
T

i ∆1 +∆T
2 )Z̃i

[
x̃+i
1

]T [
∆1 ∆2

∆T
2 ∆3

] [
x̃+i
1

]






using the abbreviation Z(x̃i, ũi) = Z̃i.

Proof. Note that the quadratically bounded noise (7) yields

δi(x̃
+
i − Z(x̃i, ũi)a) =

[
aT 1

]
Qi

[
aT 1

]T
. Then pursuing

the proof of Theorem 8, system (1) is dissipative if there

exist a P � 0, ti ∈ SOS[x, u], i = 1, . . . , D, and Si ∈
SOS[x, u](nℓ+1)×(nℓ+1), i = 1, . . . , c such that

[
a

1

]T

Ψ(x, u)

[
a

1

]

∈ SOS[x, u, a]. (11)

If Ψ ∈ SOS[x, u](nℓ+1)×(nℓ+1) then there exists a Φ ∈
R[x, u]q×(nℓ+1) with Ψ = ΦTΦ by Definition 1. Therefore,

(11) is an SOS polynomial by Definition 1.

For a closer look on Theorem 8 and Corollary 9, we refer

to Section V and finish this section with an extension of

Theorem 8 and Corollary 9, respectively.

Remark 10. To exclude time-varying coefficients a(t) ∈ ΣSB

in Theorem 8 and Corollary 9 and hence to reduce their con-

servatism, we could consider parametrized storage functions

λ ∈ SOS[x, a] and the dissipativity inequality

λ(Z(x, u)a, a) − λ(x, a) ≤ s(x, u), ∀(x, u) ∈ P, ∀a ∈ ΣSB.



IV. DATA-DRIVEN DISSIPATIVITY VERIFICATION FOR

CUMULATIVELY BOUNDED NOISE

We again tackle the problem of verifying whether the

unidentified polynomial system (1) is dissipative by means of

noisy data. However, instead of bounding the noise separately

in time as in the previous section, the noise is characterized by

one property that bounds cumulatively the noise realizations

of the data samples (5), which was first proposed in [4].

Assumption 11 (Cumulatively bounded noise). For the mea-

sured data (5), suppose that the matrix D̃ =
[

d̃1 · · · d̃D
]

is an element of

DCB=

{

F ∈ R
n×D:

[
FT

In

]T [
∆1 ∆2

∆T
2 ∆3

] [
FT

In

]

≺ 0

}

(12)

with ∆1 � 0.

By Assumption 11, all noise realizations d̃1, . . . , d̃D are

cumulatively bounded as ∆1 � 0. Exemplary, (12) incorpo-

rates noise with (strictly) bounded energy
∑D

i=1 d̃
T
i d̃i < δ2e by

D̃D̃T ≺ δ2e In.

Analogously to [4] and Section II-A, combining Assump-

tion 11, data samples (5), and the system dynamics

x(t+ 1) = Az(x(t), u(t)), (13)

with unidentified coefficients A ∈ R
n×ℓ, yields a data-based

set-membership representation of the ground-truth system (1)

which is summarized in the following definition and lemma.

Definition 12 (Feasible system set). The set of all systems

(13) admissible with the measured data set (5) for cumu-

latively bounded noise (12) is given by the feasible system

set FSSCB = {Az ∈ R[x, u]n : A ∈ ΣCB} with ΣCB =
{A ∈ R

n×ℓ : ∃
[

d̃1 · · · d̃D
]
∈ DCB satisfying x̃+i =

Az(x̃i, ũi) + d̃i, i = 1, . . . , D}.

Lemma 13. The set of all coefficients ΣCB for which system

(13) explains the measured data set (5) for cumulatively

bounded noise (12) is equivalent to
{

A ∈ R
n×ℓ :

[
AT

In

]T [
∆̃1 ∆̃2

∆̃T
2 ∆̃3

] [
AT

In

]

≺ 0

}

(14)

with the data-dependent matrices X̃+ =
[
x̃+1 · · · x̃+D

]
,

Z̃ =
[
z(x̃1, ũ1) · · · z(x̃D, ũD)

]
, and

[
∆̃1 ∆̃2

∆̃T
2 ∆̃3

]

=






Z̃∆1Z̃
T −Z̃(∆1X̃

+T

+∆2)

−(X̃+∆1+∆
T
2 )Z̃

T

[

X̃+T

In

]T [
∆1 ∆2

∆T
2 ∆3

] [

X̃+T

In

]




 .

Proof. The statement follows analogously to [4] (Lemma 4)

and the proof of Lemma 7, respectively.

Since the data-based description of ΣCB in Lemma 13

provides a bound on AT instead of A as will be required

for the verification of the “primal” dissipativity inequality (3),

we introduce the dual version of (14) as in [5].

Lemma 14. Suppose that Assumption 11 holds and the inverse

[
−∆̃1 ∆̃2

∆̃T
2 −∆̃3

]−1

=:

[
∆̄1 ∆̄2

∆̄T
2 ∆̄3

]

(15)

exists. Then any matrix A ∈ R
n×ℓ is an element of ΣCB if

and only if

A ∈ ΣCB =

{

A ∈ R
n×ℓ :

[
Iℓ
A

]T [
∆̄1 ∆̄2

∆̄T
2 ∆̄3

] [
Iℓ
A

]

≺ 0

}

.

Proof. Since the samples (5) satisfy x̃+i = f(x̃i, ũi)+ d̃i with
[

d̃1 · · · d̃D
]
∈ DCB by assumption, the coefficient matrix

Agt of the ground-truth system (1), i.e., f(x, u) = Agtz(x, u),
is an element of ΣCB. Together with ∆1 � 0, the dualization

lemma [17] implies that (Agt ∈ ΣCB and) ∆̄3 � 0. Thereby,

any matrix A ∈ R
n×ℓ satisfies A ∈ ΣCB if and only if A ∈

ΣCB again by the dualization lemma.

By Lemma 14, the feasible system sets FSSCB and FSSCB =
{Az ∈ R[x, u]n : A ∈ Σ̄CB} are equivalent and contain the

ground-truth system (1). Therefore, we can derive analogously

to Section II-A a condition to verify dissipativity properties of

polynomial system (1) without identifying a model but directly

from noisy input-state measurement.

Theorem 15. Suppose that the data samples (5) satisfy As-

sumption 11, the inverse (15) exists, the state-inputs con-

straints (2) are specified by

pi(x, u) =

[
z(x, u)

1

]T

Pi

[
z(x, u)

1

]

, i = 1, . . . , c, (16)

with Pi ∈ R
(ℓ+1)×(ℓ+1) and, without loss of generality, there

exist matrices Tx ∈ R
n×ℓ and T ∈ R

(n+m)×ℓ such that x =

Txz and

[
x

u

]

= Tz. Then system (1) is (Q,S,R)-dissipative

on (2) with quadratic constraints (16) if the LMI (17) holds

for a storage function λ(x) = xTPx, P � 0, a constant τ ≥ 0,

and polynomials ziτi ∈ SOS[x, u], i = 1, . . . , c with a vector

of monomials zi ∈ R[x, u]1×β , to-be-optimized coefficients

τi ∈ R
β , and a linear mapping P̃i : R

β → R
(ℓ+1)×(ℓ+1) with

ziτi

[
z

1

]T

Pi

[
z

1

]

=

[
z

1

]T

P̃i(τi)

[
z

1

]

. (18)

Proof. Since the ground-truth system (1) is an element of

FSSCB and FSSCB by Lemma 14, system (1) is (Q,S,R)-
dissipative on (2) with quadratic constraints (16) if there exists

a storage function λ(x) = xTPx, P � 0 such that

xTPx− z(x, u)TATPAz(x, u) +

[
x

u

]T [
Q S

ST R

] [
x

u

]

≥0,

∀(x, u) :

[
z(x, u)

1

]T

Pi

[
z(x, u)

1

]

≤0, i = 1, . . . , c, ∀A∈ΣCB.

(19)

With A∈ΣCB implying that for all (x, u) ∈ R
n × R

m

z(x, u)T
[
Iℓ
A

]T [
∆̄1 ∆̄2

∆̄T
2 ∆̄3

] [
Iℓ
A

]

z(x, u) ≤ 0,



Θ :=













In 0 0
0 Tx 0
0 T 0

0 Iℓ 0
In 0 0
0 Iℓ 0
0 0 1













T














−P 0
0 P

0 0
0 0

0 0
0 0

0
0

0 0
0 0

Q S

ST R

0 0
0 0

0
0

0 0
0 0

0 0
0 0

τ∆̄1 τ∆̄2

τ∆̄T
2 τ∆̄3

0
0

0 0 0 0 0 0
∑c
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we apply Proposition 3 to conclude that the conditioned

dissipativity inequality (19) holds if there exist a P � 0, a non-

negative constants τ and polynomials ziτi ∈ SOS[x, u], i =
1, . . . , c with (18) satisfying

L(x, u,A)TΘL(x, u,A) ∈ SOS[x, u, vec(A)] (20)

with L(x, u,A) =
[
z(x, u)TAT z(x, u)T 1

]T
. Finally, if

(17) is satisfied then there exists a matrix Ω with Θ = ΩTΩ
and thus (20) is an SOS polynomial by Definition 1.

In Theorem 15, dissipativity verification boils down to an

LMI feasibility problem instead of an SOS problem as in

Theorem 8 because we extract in (20) all monomials in x, u,

and vec(A) into L(x, u,A) similar to the square matricial

representation in Proposition 2. However, this computational

advantage comes at the cost of additional conservatism

compared to Theorem 8 as Theorem 15 considers quadratic

storage functions and requires in its derivation simplified

multipliers for Proposition 3, e.g., τ independent of x and

u. Note that we can generalize Theorem 15 for supply rates

s(x, u) = z(x, u)TQz(x, u).
In Theorem 15, we consider SOS polynomials

zi(x, u)τi, i = 1, . . . , c instead of non-negative constants

as otherwise LMI (17) becomes indefinite if Pi contains a

negative right lower element which is mostly the case, e.g.,

xTx ≤ 1. Note that a linear mapping P̃i exists as the left

hand side of the quadratic decomposition (18) is linear in τi.

However, P̃i is not unique but is spanned by a linear subspace

which provides additional degrees of freedom to deteriorate

the conservatism of condition (17).

We conclude this section by demonstrating the flexibility

of this framework by employing prior system knowledge.

Remark 16. We can take prior knowledge of the system

dynamics into account by considering

x(t+ 1) = Az1(x(t), u(t)) +
[
Ā1 Ā2

]
[
z1(x(t), u(t))
z2(x(t), u(t))

]

with unidentified matrix A and known matrices Ā1 and Ā2.

The additional vector of monomials z2(x, u) is beneficial if,

for instance, g(x) of a (polynomial) control-affine system

x(t + 1) = f(x(t)) + g(x(t))u(t) is known from some

insight to the system. Moreover, z2(x, u) might be necessary

for the quadratic decomposition (18). Note that incorporating

prior knowledge as described here is also conceivable for the

framework of separately bounded noise.

V. COMPARISON OF BOTH FRAMEWORKS FOR SEPARATELY

BOUNDED NOISE

Motivated by the frequently assumed separately bounded

noise ||d̃i||2 ≤ ǫi as non-probabilistic noise description, e.g.,

in system identification [11], we compare in this section both

previously proposed frameworks for data-driven dissipativity

verification for this noise characterization.

According to [4], the cumulatively bounded noise descrip-

tion (12) can incorporated this separately bounded noise by

D̃D̃T �
∑D

i=1 ǫ
2
i In. However, this characterisation also facil-

itates, e.g., noise with bounded energy
∑D

i=1 d̃
T
i d̃i ≤

∑D

i=1 ǫ
2
i

which includes more noise realizations than ||d̃i||2 ≤ ǫi.

Hence, Assumption 5 provides a more accurate description

than Assumption 11 for the separately bounded noise ||d̃i||2 ≤
ǫi, and therefore leads to a tighter set-membership representa-

tion of the ground-truth system (1). For that reason, Theorem 8

provides a less conservative condition for dissipativity verifica-

tion than Theorem 15 which is indeed observed in Section VI.

Furthermore, the feasible system set FSSSB cannot increase

by considering additional data samples. Contrary, we show

in Subsection VI-A that adding samples with high signal-to-

noise-ratio to an original data set of FSSCB might decrease its

accuracy for dissipativity verification, and hence might render

LMI (17) infeasible. One explanation is that we cumulate

all data samples equally weighted in (14) into one condition

which corresponds to restrict all SOS polynomial multipliers

ti(x, u, a), i = 1, . . . , D in Theorem 8 to be equal. Therefore,

data samples with large noise increase the uncertainty of

FSSSB. To circumvent this problem in Theorem 15, we could

consider the intersection of FSSCB for the original data set

and for the data set with additional data by an S-procedure

argument.

Further advantages of Theorem 8 are that its accuracy can

be improved by parametrized storage functions as shown in

Remark 10 and general polynomial state-input constraints and

supply rates can be handled.

On the other hand, the framework of cumulatively bounded

noise is computationally more attractive. The verification

condition in Theorem 15 boils down to an LMI condition and

its complexity doesn’t increase with the amount of samples

as all data samples (5) are cumulated into one condition.

Contrary, Theorem 8 requires one additional SOS polynomial

multiplier for each sample which might yield to a non-tractable

optimization problem. This issue could be circumvented by the

relaxation t1(x, u, a) = · · · = tD(x, u, a) which then leads to

a cumulative noise characterization.



Furthermore, in our testing in Section VI, system descrip-

tion (13) is computationally more efficient than (8) when

tackling systems (4) with a large number of unidentified

coefficients.

To summarize this discussion, while the framework of

separately bounded noise provides a data-efficient approach

for the often used bounded noise ||d̃i||2 ≤ ǫi, the framework

of cumulatively bounded noise is computationally more attrac-

tive. For that reason, the latter framework should always be

considered if the noise is characterized by some cumulative

property.

VI. NUMERICAL EXAMPLES

To measure the conservatism of both frameworks for sepa-

rately bounded noise, we apply Corollary 9 and Theorem 15

on two systems to find a guaranteed upper bound on their

ℓ2-gain γ which corresponds to the supply rate s(x, u) =
γ2uTu − xTx. To this end, the SOS problem of Corollary 9

and the LMI feasibility problem of Theorem 15 are extended

by the minimization over γ.

A. Example 1

We determine an upper bound on the ℓ2-gain of the poly-

nomial system

x(t+ 1) = −0.8x(t) + 0.1x(t)2 + u(t)

with state constraint x2 − 1 ≤ 0 and input constraint

u2 − 0.01 ≤ 0. We receive the upper bound γ ≤ 10.0 by

SOS optimization exploiting the system dynamics.

To apply our data-driven methods, we draw samples (5)

from a single trajectory with initial condition x(0) = 1, input

u(t) = 0.1, t ≥ 0, and a random sampled and (separately)

bounded noise |d̃i| ≤ 0.02.

Considering the first three noisy data samples of the trajec-

tory, we receive the upper bounds for the ℓ2-gain γSB = 16.3
from Corollary 9 and γCB = 17.1 from Theorem 15.

As stated in Section V, additional data don’t increase

γSB but potentially γCB. Indeed, while the upper bound γSB

decreases to 13.3 using the first 20 samples, γCB increases to

74.7 using the first 6 samples and LMI (17) even becomes

infeasible for more samples. This observation is due to the

high signal-to-noise-ratio of the measured trajectory for t ≥ 5.

Note that all optimization problems in this example are solved

in less than a second on a Lenovo i5 notebook.

B. Example 2

The ℓ2-gain of the system
[
x1(t+ 1)
x2(t+ 1)

]

=

[
−0.5x1 + 0.3x22 + 0.2x1x2
0.4x2 + 0.1x22 − 0.2x31 + u

]

(t)

with x21 ≤ 1, x22 ≤ 1, and u2 ≤ 1 is examined. Given the

ground-truth system, we determine 2.1 as an upper bound

of the ℓ2-gain by SOS optimization. The noise of the data

(5) exhibits constant signal-to-noise-ratio ||d̃i||2 ≤ 0.02||x̃i||2.

Furthermore, x(0) =
[
−1 −1

]T
and we apply the input

signal u(t) = 0.7 sin(0.002t2 + 0.1t) such that the system

is excited over the whole time horizon. Moreover, we as-

sume z(x, u) =
[
x1 x2 x21 x22 x1x2 x31 u

]T
, i.e., the

unidentified model (4) contains 14 unknown coefficients and

more monomials than is required to describe the ground-truth

system.

Using the first 30 noisy samples of the input-state trajectory,

we calculate the bounds γSB = 3.8 and γCB = 11.1. With 300
data samples available, we can reduce the upper bound γSB

to 2.3 and γCB to 3.6. The advantage of Theorem 15 is that

computation time to solve its optimization problem is about

two seconds while solving the SOS optimization problem of

Corollary 9 takes now about 10minutes.

VII. CONCLUSIONS

We established two set-membership frameworks to check

whether a polynomial system is dissipative without an explic-

itly identified model but directly from noise-corrupted input-

state measurements. The first framework provides a data-

efficient but computationally expensive condition for sepa-

rately bounded noise using standard SOS optimization. The

second framework considers cumulatively bounded noise to

deduce a more computationally attractive LMI condition with

SOS multipliers, which corresponds partially to a generaliza-

tion of [5] for polynomial systems. Subject of future research,

we extend the results to find optimal dissipativity properties as

conic relations [7] or nonlinearity measures [18]. Furthermore,

the extension of the presented frameworks for input-output

measurements might be interesting.
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