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Optimal Transport-Based Coverage Control for
Swarm Robot Systems: Generalization of the

Voronoi Tessellation-Based Method
Daisuke Inoue , Yuji Ito , Member, IEEE , and Hiroaki Yoshida

Abstract—Swarm robot systems, which consist of many
cooperating mobile robots, have attracted attention for their
environmental adaptability and fault tolerance advantages.
One of the most important tasks for such systems is cov-
erage control, in which robots autonomously deploy to
approximate a given spatial distribution. In this letter, we
formulate a coverage control paradigm using the concept
of optimal transport and propose a novel control tech-
nique, which we have termed the optimal transport-based
coverage control (OTCC) method. The proposed OTCC,
derived via the gradient flow of the cost function in the
Kantorovich dual problem, is shown to cover a widely used
existing control method as a special case. We also per-
form a Lyapunov stability analysis of the controlled system,
and provide numerical calculations to show that the OTCC
reproduces target distributions with better performance
than the existing control method.

Index Terms—Agents-based systems, cooperative con-
trol, large-scale systems.

I. INTRODUCTION

SWARM robot systems, in which many mobile robots work
cooperatively to perform given tasks, are expected to have

strong environmental adaptability and high fault tolerance in
comparison with single-robot systems [1]–[3]. One of the most
fundamental and important challenges of such systems is cov-
erage control, in which robots move and reposition themselves
autonomously so that their placement approaches a predeter-
mined spatial distribution. The application ranges from the
optimal placement of sensor networks to efficient rescue of
human life in the event of a disaster [4]. From the early
2000s to the present, various methods have been proposed,
such as potential-function-based control [5], probability-based
control [6], [7], and broadcast-based control [8], [9], in order
to solve the coverage tasks. A detailed review of these methods
is provided in [10].
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Among them, the Voronoi tessellation-based coverage con-
trol (VTCC) method proposed by Cortes et al. [11] is a seminal
work and widely used. In this method, the coverage area is
divided into subspaces referred to as Voronoi regions, each of
which is assigned to a robot, and the robot is moved toward the
center of gravity of its assigned Voronoi region. The cost func-
tion defined for the entire robot swarm is shown to decrease
over time, meaning that eventually the robots are appropriately
scattered throughout the coverage area. The VTCC has been
commonly used in practice for its mathematical guarantee of
stability, as well as the simplicity and the scalability of the
algorithm [12].

By regarding a robot swarm as an abstract group of points
in Euclidean space, the coverage control is interpreted as the
problem of transporting a given discrete distribution to approx-
imate a target continuous distribution. This is commonly
referred to as the optimal transport problem, and its math-
ematical properties and numerical solutions have been widely
investigated [13]–[15]. Recent areas of interest concerning
the optimal transport problem extend to applications such as
machine learning [16]–[18], image processing [19], [20], and
natural language processing [21].

In this letter, we formulate coverage control as an
optimal transport problem in order to propose a novel
control technique, which we call the optimal transport-
based coverage control (OTCC) method. Multi-agent con-
trol methods using optimal transport have been proposed
in [22], [23]. However, the relation between the control
laws proposed in these references and the VTCC has not
been investigated. Our control method differs from exist-
ing methods in that it considers gradient flows for the
cost function of the optimal transport problem, which
allows us to compare the structure and performance of the
proposed OTCC with that of the VTCC. The contributions
of the present coverage control formulation is summarized
as follows:

• The cost function for the VTCC is shown to be a spe-
cial case of the cost function for the Kantorovich dual
problem.

• The new control law is derived as the gradient flows of
the cost function for the Kantorovich dual problem.

• A sufficient condition for the Lyapunov stability is pro-
vided for the controlled system, followed by a more
specific condition in one-dimensional case.
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• Numerical analysis is conducted to show that the
proposed method reaches a closer state to the
global optimum than what can be achieved via
the VTCC.

Notation: Let R, R+, and N be a set of real, non-negative
real, and positive integer numbers, respectively. The Euclidean
norm of x ∈ R

n is represented as ‖x‖. We call Uz ⊂ R
n

is a neighborhood of z ∈ R
n if there exists an open ball

Br := {x | ‖x − z‖ < r} for some r > 0 and Br ⊂ Uz holds.
For a real-valued function G:Rn × R

m → R, we denote the
partial derivative of G(p, q) with respect to p as ∇pG and with
respect to q as ∇qG. The higher-order derivatives follow the
convention ∇2

p G = ∂2G
∂p2 , ∇2

q G = ∂2G
∂q2 , and so on.

II. REVIEW OF OPTIMAL TRANSPORT

This section provides a brief overview of optimal transport
in order to assist in formulating the optimal transport-based
coverage control. We begin by considering two continuous
density functions ρ0 : Rd → R+ and ρT : Rd → R+ on R

d

space, where d ∈ N is the space dimension.
Definition 1 (Kantorovich Problem): The problem of find-

ing a simultaneous probability density function p(x, y) that
minimizes the following cost function CK(p) is called the
Kantorovich problem:

CK(p) =
∫
Rd×Rd

1

2
‖x − y‖2p(x, y) dx dy , (1)

where p(x, y) satisfies the following conditions:∫
Rd

p(x, y) dy = ρ0(x), (2)
∫
Rd

p(x, y) dx = ρT(y). (3)

We denote the solution of the Kantorovich problem as
W(ρ0, ρT) := infp CK(p) and call it the Wasserstein metric.
In fact, W is a function that measures the distance between
the two distributions, and it is known that W actually satisfies
the axiom of distance [14].

Definition 2 (Kantorovich Dual Problem): The problem of
finding integrable functions φ:Rd → R and ψ :Rd → R that
maximize the following cost functions CKD(φ,ψ) is called the
Kantorovich dual problem:

CKD(φ,ψ) =
∫
Rd
φ(x)ρ0(x) dx +

∫
Rd
ψ(y)ρT(y) dy , (4)

where φ and ψ satisfy the following condition:

φ(x)+ ψ(y) ≤ 1

2
‖x − y‖2. (5)

Strong duality is known to hold for the Kantorovich problem
and its dual problem.

Proposition 1 ([13, Th. 1.3]): For the Kantorovich
problem solution p∗(x, y) and the dual problem solutions
φ∗(x) and ψ∗(y), the following equation holds:

CK(p
∗) = CKD(φ

∗, ψ∗). (6)

Thus, the problem of finding the simultaneous distribution
of p in (1) is replaced by the problem of finding the functions
φ and ψ in (4). In fact, it is known that we only need to find
one of the two functions.

Proposition 2 ([13, Remark 1.12]): In the Kantorovich
dual problem, the following equality holds for the pair
of functions φ∗ and ψ∗ that maximize the cost function
CKD(φ,ψ).

ψ∗(y) = inf
x∈Rd

{
1

2
‖x − y‖2 − φ∗(x)

}
. (7)

In the next section we focus on the optimal transport problem
where the distribution is restricted to a particular family.

III. PROPOSED CONTROL METHOD

This section provides the optimal transport-based coverage
control with the aid of the idea in the previous section. We
begin by considering n ∈ N mobile robots located on R

d space.
Let the position of the i-th robot at time t ∈ R+ be xi(t) ∈ R

d

and let its dynamics be given as follows:

ẋi(t) = ui(t), (8)

where ui(t) ∈ R
d is the input that determines the speed of the

robot. Next, we define a distribution formed by robots as

ρ(x, t) = 1

n

n∑
i

δ(x − xi(t)), (9)

where we define δ(·) as a Dirac’s delta function. We focus
on the problem of minimizing the distance (measured by W)
between the target distribution ρT and the distribution ρ0(x) =
ρ(x, t) at each time:

min
x

W(ρ(x, t), ρT(x)), (10)

where we define x := [x	
1 , . . . , x	

n ]	 as a position vector of
robots. Our goal is to design inputs ui(t) (∀i ∈ {1, . . . , n}) that
achieves (10) at each time for the system of (8).

The results provided in the previous section yield the
following expression for the problem of (10).

Proposition 3: The following equation holds:

W(ρ(x, t), ρT(x)) = max
φ

F(x,φ), (11)

where we define a real vector φ = [φ1, . . . , φn]	 ∈ R
n, and

we define a function F:Rdn × R
n → R as

F(x,φ) :=
n∑

i=1

[{
1

n
−
∫
Vφi (x)

ρT(y) dy

}
φi

+
∫
Vφi (x)

1

2
‖xi − y‖2ρT(y) dy

]
. (12)

In addition, the set Vφi (x) is called Laguerre regions:

Vφi (x) (13)

:=
{

y ∈ R
d
∣∣∣∣ 1

2
‖xi − y‖2 − φi ≤ 1

2
‖xj − y‖2 − φj ∀j �= i

}
.

Proof: We show that the function W is transformed into (12)
by using the Kantorovich duality. The first term in (4) is



INOUE et al.: OTCC FOR SWARM ROBOT SYSTEMS: GENERALIZATION OF VORONOI TESSELLATION-BASED METHOD 1485

calculated as
∫
Rd
φ(x)ρ(x, t) dx =

∫
Rd
φ(x)

1

n

n∑
i

δ(x − xi) dx

= 1

n

n∑
i

φi. (14)

Using (7), the second term in (4) is rearranged as∫
Rd
ψ(y)ρT(y) dy

=
∫
Rd

min
i∈{1,...,n}

{
1

2
‖xi − y‖2 − φi

}
ρT(y) dy

=
∑

i

∫
Vφi (x)

{
1

2
‖xi − y‖2 − φi

}
ρT(y) dy . (15)

Finally, (6) ensures that (11) holds.
Thus, the optimization problem to be solved by the robot

swarm is rearranged as the following min-max problem:

min
x

max
φ

F(x,φ). (16)

Accordingly, we propose the following controller as a solution
to the problem of (16).

Definition 3: For the system in (8), the optimal transport-
based coverage control (OTCC) is defined as

ui(t) = −k
(

xi(t)− b̃i(t)
)
, (17)

φ̇i(t) = k′
(

1

n
− ãi(t)

)
, (18)

where k ∈ R+ and k′ ∈ R+ are design parameters that provide
the feedback gain, and ãi(t) and b̃i(t) are defined as

ãi(t) :=
∫
Vφi (x)

ρT(y) dy , (19)

b̃i(t) := 1

ãi(t)

∫
Vφi (x)

yρT(y) dy . (20)

We define and consider the following time derivative of the
function F in (12) along the trajectories x(t) and φ(t) of the
system controlled via the OTCC:

Ḟφ(x(t)) :=
n∑

i=1

{
∂F(x(t),φ(t))

∂xi

}	
ẋi(t), (21)

Ḟx(φ(t)) :=
n∑

i=1

∂F(x(t),φ(t))
∂φi

φ̇i(t). (22)

The following proposition then justifies the conclusion that the
OTCC provides a solution to the problem in (16).

Proposition 4: The following hold for any t ∈ R+:

Ḟφ(x(t)) ≤ 0, Ḟx(φ(t)) ≥ 0. (23)

Proof: We calculate the gradients of the function F as

∂F

∂φi
= 1

n − ãi(t), (24)

∂F

∂xi
= ãi(t)

(
xi(t)− b̃i(t)

)
, (25)

where we used Reynolds’ transport theorem [24] to differenti-
ate the functions including variables in the integration domain.
The time derivative of F along the trajectories x and φ are
evaluated as

Ḟφ(x(t)) = − k

ã(t)

n∑
i=1

∥∥∥∥ ∂F

∂xi

∥∥∥∥
2

≤ 0, (26)

Ḟx(φ(t)) = k′
n∑

i=1

(
∂F

∂φi

)2

≥ 0, (27)

which ends the proof.
Remark 1: We show that the Voronoi tessellation-based

coverage control (VTCC) method [11] is regarded as a spe-
cial case of the proposed OTCC. In [11], the following cost
function is introduced:

J(x) =
n∑

i=1

∫
Vi(x)

1

2
‖y − xi‖2ρT(y) dy , (28)

where the set Vi(x) is called the Voronoi region:

Vi(x) = {y ∈ R
d | ‖xi − y‖ ≤ ‖xj − y‖ ∀j �= i}. (29)

In their study, they proposed the following control law to
minimize the cost function of (28):

ui(t) = −k(xi(t)− bi(t)), (30)

bi(t) := 1

ai(x(t))

∫
Vi(t)

yρT(y) dy , (31)

ai(t) :=
∫
Vi(x(t))

ρT(y) dy . (32)

The OTCC in (17) and (18) agree with the VTCC of (30)
when the variable φ is set to φ(t) ≡ 0. Under this condition,
the cost function for both methods ((12) and (28)) coincide.
Therefore, the VTCC is one of the gradient flows that realize
the transport from ρ(x, t) to ρT(x). However, the VTCC is not
optimal from the aspect of optimal transport because the cost
function is not maximized for φ at each time. In contrast, the
proposed OTCC overcomes this problem and is expected to
provide better control performance.

Remark 2: We discuss the difference between the Voronoi
region in (29) and the Laguerre region in (13). In both sets,
the boundary is perpendicular to the line between neighboring
robots i and j. While the boundary in the Voronoi region is
a bisector, it is not a bisector in the Laguerre region if φ is
not zero. Specifically, when φi is larger than φj, the boundary
moves towards the robot j, and consequently robot i acquires
more area.

Remark 3: Under suitable conditions, the proposed algo-
rithm is scalable in the sense that each robot only needs
the information of neighboring robots. Indeed, the controllers
in (17) and (18) are computed using xj and φj of the robots
j ∈ N φ

i , where N φ
i := {j | Vφi ∩ Vφj �= ∅} is the set of

adjacent robots in the Laguerre sense. Hence, we focus on
clarifying the condition that each robot is capable of obtaining
the information of the neighboring robots. Suppose that each
robot i has a measurement range Ri and obtains the information
of robots j satisfying ‖xj − xi‖ ≤ Ri. Then, the proposed algo-
rithm is feasible if Ri satisfies ‖xj − xi‖ ≤ Ri for any i and
j ∈ N φ

i . Such a range Ri does not increase in a common situ-
ation where many robots are distributed on the workspace and
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|φi − φj| (for any i, j) is sufficiently smaller than the size of
the workspace.

IV. STABILITY ANALYSIS

In this section, we prove the Lyapunov stability of
the system’s equilibrium when using our proposed OTCC.
Suppose that the dynamical system represented by (8) are
controlled with the OTCC in (17) and (18). The system equi-
librium (x∗,φ∗) is then characterized as a point that satisfies
the following conditions:{

x∗
i = b̃i,

φ∗
i ∈

{
φ

∣∣∣ ãi = 1
n

}
,

for i ∈ {1, . . . , n}, (33)

where we assume that x∗
i �= x∗

j holds for all i �= j.
Theorem 1: The equilibrium point (x∗,φ∗) is Lyapunov

stable if there exist neighborhoods Ux∗ around x∗ and for any
x ∈ Ux∗ ,

H(x,φ∗) is positive definite, (34)

where H(x,φ) ∈ R
nd×nd is defined as

(H(x,φ))ij (∈ R
d×d) (35)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

‖xj − xi‖
∫
∂Vφij

(xi − s)(xj − s)	ρT(s) ds , j �= i,

ãiId −
∑
� �=i

1

‖x� − xi‖
∫
∂Vφi�

(xi − s)(x� − s)	ρT(s) ds ,

j = i.

Here, (H(x,φ))ij denotes (i, j)-block matrix element of
H(x,φ), and Id ∈ R

d×d denotes d-dimensional identity matrix.
We define ∂Vφij := Vφi (x) ∩ Vφj (x) as the Laguerre region

boundary of i and j, and the integral in (35) is 0 when ∂Vφij is
an empty set.

We prove Theorem 1 by utilizing following proposition.
Proposition 5 [25]: For a continuous and differentiable

function G:Rn×R
n → R, consider a system with the following

dynamics:

ṗ(t) = −∇pG(p, q),

q̇(t) = ∇qG(p, q). (36)

If G is convex-concave around the saddle point (p∗, q∗), then
the system of (36) is Lyapunov stable at (p∗, q∗).

Here, the convex-concave function and the saddle point are
defined below.

Definition 4 (Convex-Concave Function): A function
g:Rn → R is convex around z̄ ∈ R

n if a neighborhood Uz̄ exists
and the inequality of λg(x)+ (1 − λ)g(y) ≥ g(λx + (1 − λ)y)
holds for any x, y ∈ Uz̄ and λ ∈ [0, 1]. The function g is
concave around z̄ if the inverse inequality holds. Furthermore,
the function G:Rn × R

n → R is convex-concave around
(p̄, q̄) if p �→ G(p, q̄) is convex around p̄ and q �→ G(p̄, q) is
concave around q̄.

Definition 5 (Saddle Point): For a continuous and differen-
tiable function G:Rn ×R

n → R, a point (p∗, q∗) ∈ R
n ×R

n is
a saddle point if there exists neighbors Up∗ and Uq∗ , and the
following holds for any p ∈ Up∗ and q ∈ Uq∗ :

G(p∗, q) ≤ G(p∗, q∗) ≤ G(p, q∗). (37)

Proposition 5 ensures that it is sufficient to show that the
function F in (12) is convex-concave around the equilibrium
(x∗,φ∗) of (33), and that (x∗,φ∗) is the saddle point of F.
The former is guaranteed with the aid of the following two
propositions:

Proposition 6: The function φ �→ F(x∗,φ) with x fixed to
x∗ is concave around φ∗.

Proof: We denote the above function as Fx∗(φ). In order
to use the second-order sufficient condition for the concave
function [26], we evaluate ∇2

φFx∗(φ), the second-order deriva-
tive of Fx∗(φ) for φ. Using Reynolds’ transport theorem, it is
shown that
(
∇2
φFx∗(φ)

)
ij

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

‖x∗
j − x∗

i ‖
∫
∂Vφij

ρT(s) ds , for j �= i,

−
∑
� �=i

1

‖x∗
� − x∗

i ‖
∫
∂Vφi�

ρT(s) ds , for j = i.
(38)

Equation (38) is a weighted graph Laplacian multiplied by
−1. Thus, ψ	∇2

φFx∗(φ)ψ ≤ 0 holds for any φ,ψ ∈ R
n, which

means that ∇2
φFx∗(φ) is negative semidefinite at any point φ ∈

R
n.
Proposition 7: If the condition of (34) holds, the function

x �→ F(x,φ∗) with φ fixed to φ∗ is convex around x∗.
Proof: We denote the above function as Fφ∗(x). Using

Reynolds’ transport theorem, the second-order derivative of
Fφ∗ is calculated as ∇2

x Fφ∗(x) = H(x,φ∗) defined in (35).
Thus, Fφ∗ is convex around x∗ if (34) holds.

The equilibrium is directly shown to be the saddle point
using the convex-concavity.

Proposition 8: If the condition of (34) holds, (x∗,φ∗) is the
saddle point of the function F of (12).

Proof: We show that (37) holds. By using Taylor’s formula,
the following holds for the equilibrium point (x∗,φ∗) and any
φ in the neighborhood of φ∗:

F(x∗,φ)− F(x∗,φ∗) = ∇φFx∗(φ∗)	(φ − φ∗)

+ (φ − φ∗)	 1

2
∇2
φFx∗(φ̃)(φ − φ∗) ≤ 0, (39)

where φ̃ is a point between φ∗ and φ. The inequality comes
from the definition of the equilibrium point in (33) and the con-
cavity of Fx∗(φ∗). The other inequality in (37) is also shown
by considering Taylor’s formula in the neighborhood of x∗.

Finally, Theorem 1 is proved by using above propositions.
Proof of Theorem 1: Propositions 6 and 7 show that

the function F of (12) is convex-concave around (x∗,φ∗)
when (34) is satisfied. In addition, Proposition 8 ensures that
(x∗,φ∗) is the saddle-point of F. As a result, Proposition 5
guarantees that (x∗,φ∗) is Lyapunov stable. �

By limiting the space dimension to d = 1, we reduce the
condition in Theorem 1 to the following explicit form.

Theorem 2: Suppose that d = 1 holds for the space dimen-
sion. Then, (x∗,φ∗) is Lyapunov stable provided that the
following inequality holds for any i ∈ {1, . . . , n}:

hi(x∗,φ∗) < 1, (40)
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where the function hi:Rn × R
n → R is defined as

hi(x,φ)

:= 2n
∑

j∈N φ
i

∣∣∣∣xij

2
+ φij

xij

∣∣∣∣
(

1

2
+ |φij|

x2
ij

)
ρT

(
x+

ij

2
− φij

xij

)
. (41)

In (41), we define xij := (xi − xj)/2, x+
ij := (xi + xj)/2, and

φij := (φi − φj)/2.
The proof of Theorem 2 is obvious through the following

proposition.
Proposition 9: Suppose that d = 1 holds. If the inequality

of (40) holds for any i ∈ {1, . . . , n}, the function x �→ F(x,φ∗)
with φ fixed to φ∗ is convex around x∗.

Proof: Using d = 1, we assume xi < xi′ for i < i′ without a
loss of generality. Then, ∂Vφij exists as ∂Vφij = {x+

ij /2−φij/xij}
only if j ∈ {i ± 1}, and ∂Vφij = ∅ otherwise. The value of
∇2

x Fφ∗(x) in (35) is then calculated as follows:(
∇2

x Fφ∗(x)
)

ij
(42)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−
(

xij

2
+ φij

xij

)(
1

2
− φij

x2
ij

)
ρT

(
x+

ij

2
− φij

xij

)
, j = k,

(
xij

2
+ φij

xij

)(
1

2
− φij

x2
ij

)
ρT

(
x+

ij

2
− φij

xij

)
, j = h,

where we denote k := i − 1 and h := i + 1. For j = i,

(
∇2

x Fφ∗(x)
)

ii
= ãi +

(
xih

2
+ φih

xih

)(
1

2
+ φih

x2
ih

)
ρT

(
x+

ih

2
− φih

xih

)

−
(

xik

2
+ φik

xik

)(
1

2
+ φik

x2
ik

)
ρT

(
x+

ik

2
− φik

xik

)
.

(43)

By using Gershgorin theorem [27], all eigenvalues of
∇2

x Fφ∗(x) lie within a disk with a center of (∇2
x Fφ∗(x))ii and a

radius of
∑

j |(∇2
x Fφ∗(x))ij|, so that the following is obtained

as a sufficient condition for all eigenvalues to be positive:

ãi >
∑

j∈N φ
i

2

∣∣∣∣xij

2
+ φij

xij

∣∣∣∣
(

1

2
+ |φij|

x2
ij

)
ρT

(
x+

ij

2
− φij

xij

)
. (44)

Therefore, in order for ∇2
x Fφ∗(x) to be positive definite at

the equilibrium x∗, it is sufficient that (40) holds, where we
use the fact that ãi = 1/n holds at the equilibrium. From the
assumption that x∗

i �= x∗
j (∀i �= j), we see that both sides

of (44) are continuous functions. Thus, if (44) holds at the
equilibrium x∗, it remains in its neighborhood, which shows
that the function F is convex around x∗.

V. NUMERICAL EXPERIMENTS

In this section, numerical analysis is conducted to verify the
performance of the proposed OTCC. We first consider a one-
dimensional case with 40 robots uniformly distributed over the
interval [−10,−5]. The target density distribution ρT is set as
ρT(x) = N(0, 3), where N(μ, σ 2) denotes the density func-
tion for the normal distribution with a mean μ and a variance
σ 2. We use k = 0.5 for the feedback gain in the VTCC, and
k = 0.5 and k′ = 1.0 × 10−4 as the feedback gains in the

Fig. 1. Time evolution of the position of each robot. Here, the proposed
OTCC (blue-solid) is compared with the VTCC in [11] (orange-dashed).
The bold lines represent the average value of all robot positions.

proposed OTCC. The integrations in (19) and (20) are car-
ried out numerically by restricting the robot workspace to the
interval of [−10, 10] and discretizing it into small cells. Each
robot then determines the ownership of each cell based on the
definition of the Laguerre regions and performs numerical inte-
gration over the area belonging to the robot. The two control
methods are performed for the above system and the trajectory
of the robots’ position is shown in Fig. 1. In both methods,
the robots that were centered around x = −7.5 at time t = 0
move over time to present the desired distribution ρT centered
at x = 0. However, in the VTCC, many robots remain in the
region of x < 0, and the mean value of the distribution does
not approach to x = 0. In contrast, the OTCC reproduces the
shape of the target distribution ρT more closely over time.
For more quantitative analysis, we examine the value of the
cost function in (28) in the steady state. The value of the cost
function in the VTCC is 1.36 × 10−3, whereas the value in
the proposed OTCC is 1.08 × 10−3, which suggests that the
latter provides better control. To check whether the conditions
of Theorem 2 are satisfied, we next examine the value of the
left-hand side of (40) in the steady state. The maximum value
for all robots is 5.69 × 10−1 (< 1), which indicates that the
stationary point is Lyapunov stable.

Next, we consider a two-dimensional case, with 25 robots
uniformly distributed over the interval of [−8,−2]2 and with
an interval of [−10, 10]2 for robot workspace. We use ρT(x) =
1
2 {N(μ1, 
) + N(μ2, 
)} as the target density distribution,
while μ1 = [−5,−5]	, μ2 = [5, 5]	, and 
 = diag(4, 4)
are used for the mean and covariance. We set k = 0.5 for the
feedback gain in the VTCC, and k = 0.5 and k′ = 5.0 × 10−2

for the feedback gains in the proposed OTCC. Fig. 2 shows the
visualized trajectory of the positions of the robots using two
control laws. The black circles represent the positions of the
robots, and the areas painted in different colors represent the
Voronoi/Laguerre region to which each robot belongs. In both
methods, the robots move in a way that reproduces the desired
distribution ρT . In the VTCC, only 6 of the 25 robots move
to the upper-right distribution, while the remaining robots stay
in the lower-left distribution. In contrast, in the OTCC, 12 of
the 25 robots move to the upper-right distribution, thus sug-
gesting that the shape of the target distribution ρT is better
reproduced. We calculate the value of the cost function of (28)
at the steady state. The value in the VTCC is 9.70 × 10−1,
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Fig. 2. Time evolution of the position of each robot. (a) The VTCC
in [11], (b) The proposed OTCC.

whereas the value in the proposed OTCC is 8.84 × 10−1, thus
indicating the distribution is better reproduced in the proposed
method.

Remark 4: We discuss the reasons of higher performance
of the OTCC. This is because that the equilibrium condition
in the OTCC is stricter than that in the VTCC, which makes
the robot less likely to be trapped in the stationary point. The
equilibrium condition in the VTCC is that the robot is placed
at the center of gravity of each region (xi = bi), and once this
condition is satisfied, each robot does not move thereafter. In
the OTCC, however, there is an additional condition that the
weighted area of each region is equal (ãi = 1/n in (33)).
Thus, even if the former condition is satisfied, robots continue
to move unless the latter condition is satisfied, which is why
robots are less likely to be trapped at the stationary point.

VI. CONCLUSION

In this letter, we propose the optimal transport-based cov-
erage control (OTCC) method as an improvement to the
Voronoi tessellation-based coverage control (VTCC) method.
Our proposed method, which is derived via the Kantorovich
dual problem, is consistent with the VTCC with setting
φ(t) ≡ 0. This correspondence successfully reconsiders the
VTCC in the optimal transport framework. We also derive
the conditions of Lyapunov stability for the controlled system
in Theorem 1 and 2, showing that once the robot swarm
reaches the equilibrium point, they remain in the neighbor-
hood. Numerical calculations clearly show that our proposed
method is more capable of escaping the local optimum point
and achieving better control than the VTCC. As one of our

next research topics, we plan to extend the applicability of the
OTCC to more general class of systems.
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