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Abstract— It is an important decision-making problem for
a miner in the blockchain networks if he/she participates
in the mining so that he/she earns a reward by creating
a new block earlier than other miners. We formulate this
decision-making problem as a noncooperative game, because
the probability of creating a block depends not only on one’s
own available computational resources, but also those of other
miners. Through theoretical and numerical analyses, we show
a hysteresis phenomenon of Nash equilibria depending on the
reward and a jump phenomenon of miner decisions by a slight
change in reward. We also show that the reward for which
miners decide not to participate in the mining becomes smaller
as the number of miners increases.

Index Terms— Blockchain, Proof of Work, Decision-making,
Game Theory, Hysteresis.

I. INTRODUCTION

Blockchain is a distributed ledger technology for record-

ing transactions that underlies various services such as the

digital currency Bitcoin [1]. Blockchain-based services use

cryptography to record transactions as a chain of blocks.

A block consists of a block header and transaction data.

The block header contains a cryptographic hash of the

previous block, making blockchain-based services resistant

to tampering. In these services, users called miners create

blocks in a distributed manner, and the longest chain of

blocks, called the main chain, is considered to be legitimate.

The process of creating blocks is called mining. Blockchain-

based services approve transactions through a consensus

algorithm, typically proof-of-work (PoW). In this algorithm,

the mining difficulty is set using a 4-byte value called a nonce

in the block header. To create a block, miners must find a

nonce such that the cryptographic hash value for the previous

block satisfies specific conditions, determined according to

the mining difficulty. In general, a cryptographic hash value

for a block is unique according to the nonce contained in the

block. Moreover, a nonce that satisfies the specific conditions

cannot be calculated directly. This is an exhaustive search

that imposes a large computational cost on miners. Conse-

quently, PoW also contributes to the resistance to tampering.

Because transaction approvals depend on miner calculations,

miner incentives are important to maintain blockchain-based

services. When a miner successes in creating a block and the

created block is contained in the main chain, he/she gets a

reward.
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Game theory is used to analyze the interaction among

rational decision-makers [2]. A Nash equilibrium is the most

accepted solution concept for a non-cooperative game. Intu-

itively, it is the most rational solution for all decision-makers

in the sense that no decision-maker has a reason for changing

his/her decision if the others maintain their decisions. A non-

cooperative game is applied in various fields, such as network

security [3] and resource management [4].

Because miners make decisions in a distributed and selfish

manner, many studies have adopted game theory to analyze

their behavior [5]. In particular, mining involves significant

energy consumption [6], [7], so it is important to analyze

miner behavior considering both energy consumption and

the expected reward. Dimitri [8] discussed the computational

resources needed for mining under a given computation

cost and showed that the decision on investment for mining

depends only on the average mining cost. Fiat et al. [9]

discussed computational resources spent for mining under an

upper limit on time units for hash calculations, showing that

all miners use all available resources. These previous studies

implicitly assumed blocks will always be created within a

given cost or number of hash calculations. However, these

assumptions are not practical for actual blockchain-based

services.

In this paper, we formulate the energy consumption under

the condition that miners keep calculating while paying the

cost without the upper limit until the block is created. We

adopt a deterministic game approach to analyze the relation

between mining reward amount and the decision-making

regarding participation in mining considering energy con-

sumption and the expected reward. Specifically, we formulate

a utility function according to energy consumption and the

mean reward for mining, and model the decision-making

problem of miners as a noncooperative game. Through

theoretical and numerical analyses, we show a hysteresis

phenomenon of Nash equilibria depending on the reward and

a jump phenomenon of miner decisions by a slight change

of the reward. The remainder of this paper is organized as

follows. In Section II, we formulate the decision-making

problem as a noncooperative game. In Section III, we analyze

the Nash equilibrium of the game in the case of two miners.

Section IV presents a numerical analysis.

II. GAME FORMULATION

A. Miner decision-making as a game

It is an important decision-making problem for a miner in

the blockchain networks if he/she participates in the mining

so that he/she earns a reward by creating a new block
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earlier than other miners. We formulate this decision-making

problem as a non-cooperative game because the probability

of creating a block depends not only on one’s own available

computational resources, but also those of other miners.

We denote N = {1, 2, . . . , n} as a set of miners (n ≥ 2)

in a blockchain network. Each miner k ∈ N has a strategy

set Sk = {0, 1}. The strategy sk = 1 denotes that miner k
participates in the mining and sk = 0 denotes that miner k
does not participate in the mining. Let s = (s1, . . . , sn) and

S = ×k∈NSk be a strategy profile and the set of strategy

profiles, respectively. We denote U : S → R
n as a utility

function for all miners and Uk : S → R as a utility function

for miner k ∈ N , that is, U(s) = (U1(s), . . . , Un(s)) for a

given strategy profile s. Then, the game is described as the

tuple

Gn = (N , S, U). (1)

In Section II-B, we will derive the utility function Uk.

B. Derivation of the utility function

To create a new block, a miner calculates a hash value

H(tx, prev.hash, nc) using the data of the previous block,

namely, the Merkle root of transactions tx, the hash of

previous block header prev.hash, and the nonce nc. The hash

function H outputs an L-bit hash value (L ∈ N) according

to inputs tx, prev.hash, and nc. In PoW [1], [10], the miner

needs to find a nonce that satisfies

H(tx, prev.hash, nc) ≤ 2L−h. (2)

For a given target value 2L−h in (2)1, the probability that

a miner creates a block with one hash calculation is

P
[

H(tx, prev.hash, nc) ≤ 2L−h
]

=
1

D
,

where D = 2h [11]. The relation between blocks and the

times they are created is modeled by a Poisson process [12].

Let wk be the average number of queries to H(·) of miner

k ∈ N calculated per unit operating time. The rate λk of the

Poisson process for miner k is given by λk = wk/D [13].

When the miner k participates in the mining, he/she needs

a cost ck ≥ 0 per unit operating time and calculates queries

whose average number per unit operating time depends on

the cost, that is, we assume that wk = fk(ck), where fk :
R+ → R+ is a non-decreasing function. If miner k chooses

sk = 1, then the rate of the Poisson process is

λk =
skfk(ck)

D
.

First, we calculate the expected reward for mining. Let

M ⊆ N be the set of miners who choose to participate in

the mining. We assume that all miners in M start trying to

create a new block at time t = 0 and that they create same-

size blocks. The first miner to create a block that reaches

1Note that h ∈ N. In this context, h corresponds to the difficulty of
finding a nonce. The larger h is, the more time is needed for miners to
find a nonce. The selection of values L and h depends on the blockchain
services. In Bitcoin [1], L = 256 and difficulty h is set so that the average
number of generated blocks per hour is constant.

consensus earns a reward R ≥ 0 (R ∈ R+)2. Let Bk(t)
be the probability of miner k creating a block before other

miners be between t and t + dt. Then, using the properties

of the Poisson process, we have

Bk(t)

= exp(−λkt)λkdt exp(−λkdt)
∏

i∈M\{k}

exp(−λi(t+ dt))

≈ λk exp

(

−
∑

i∈M

λit

)

dt = λk exp

(

−
∑

i∈N

λit

)

dt. (3)

From the assumption that all miners create same-size blocks,

the probability of earning the reward equals the probability

of creating the block [12]. Then, for any miner k ∈ N ,

the probability Pk(s) of earning the reward is given by the

integration of (3) in the interval [0,∞):

Pk(s) =

∫ ∞

0

λk exp

(

−
∑

i∈N

λit

)

dt

=
λk

∑

i∈N λi

=
skfk(ck)

∑

i∈N sifi(ci)
.

Note that the probability of miner k earning the reward is

0 when miner k chooses sk = 0. Therefore, for any miner

k ∈ N , the expected reward Rk(s) is

Rk(s) =
skfk(ck)

∑

i∈N sifi(ci)
R. (4)

Next, we calculate the expected cost for creating a block

in the same way as calculating the expected reward. Assume

miner k consumes cost ck per unit operating time until a

nonce that satisfies (2) is found. The expected cost for mining

CSk(s) is

CSk(s) = ck

∫ ∞

0

tλk exp

(

−
∑

i∈N

λit

)

dt

=
ckλk

(
∑

i∈N λi)2
=

skfk(ck)
∑

i∈N sifi(ci)

Dck
∑

i∈N sifi(ci)
.

(5)

Finally, we define the utility function

Uk(s)

=

{

0 if s = (0, . . . , 0),
skfk(ck)∑
i∈N sifi(ci)

(

R− Dck∑
i∈N sifi(ci)

)

otherwise

(6)

as the difference between (4) and (5). Note that when no

miners decide to participate in the mining, Uk(s) = 0 for all

miners.

2The reward includes a fixed reward and a variable one depending on the
block size. From the assumption that all miners create same-size blocks,
reward R is independent of the miners.



C. Extension to mixed strategies

We denote X = ×k∈NXk as a mixed strategy space where

Xk = {xk = (x0
k, 1− x0

k)
T | 0 ≤ x0

k ≤ 1},

and x0
k represents the probability of miner k choosing sk =

0. Let x = (x1, . . . , xn) and x−k represent a mixed strategy

profile for all miners and for all miners except k, respectively.

We define eim as an m-dimensional unit vector in which only

the i-th component is 1. Note that mixed strategy profiles

(e12, . . . , e
1
2) and (e22, . . . , e

2
2) correspond to pure strategy

profiles s = (0, . . . , 0) and s = (1, . . . , 1), respectively.

Then, for any mixed strategy profile x, the expected utility

function uk : X → R of miner k ∈ N is

uk(x) = x0
kuk(e

1
2, x−k) + (1− x0

k)uk(e
2
2, x−k).

Note that uk(e
1
2, x−k) and uk(e

2
2, x−k) are the expected

utility values when miner k chooses strategy sk = 0 and

sk = 1, respectively.

Let β̃k : X → 2Xk represent the best response correspon-

dence of miner k for mixed strategy x as

β̃k(x)

= {x∗
k ∈ Xk | ∀x

′
k ∈ Xk uk(x

∗
k, x−k) ≥ uk(x

′
k, x−k)}.

A mixed strategy x∗ satisfying x∗ ∈ β̃(x∗) is called a Nash

equilibrium, where β̃(x) = ×k∈N β̃k(x) ⊆ X . We denote

NE(Gn) as the set of Nash equilibria in game Gn.

III. THE TWO-MINERS CASE

In this section, we focus on the case of two miners,

namely, where N = {1, 2} and fk(ck) is a linear function

fk(ck) = vkck, vk ∈ R+ for all k ∈ N . We theoretically

derive the Nash equilibria of game G2, where the utility

functions of two miners are written as

U1(s)

=

{

0 if (s1, s2) = (0, 0),
s1

s1+s2pvpc

(

R− d
s1+s2pvpc

)

otherwise,

(7)

U2(s)

=

{

0 if (s1, s2) = (0, 0),
s2pvpc

s1+s2pvpc

(

R− dpc

s1+s2pvpc

)

otherwise,

(8)

where pv := v2/v1 > 0, pc := c2/c1 > 0, and d := D/v1 >
0. We can assume pv ≥ 1 (0 < v1 ≤ v2) without loss of

generality3.

Strategic forms for finite two-player games are depicted as

matrices. Tables I and II show payoffs for the corresponding

strategy profiles of miners 1 and 2, respectively. We obtain

the set of Nash equilibria for mixed strategies of game G2

as in Proposition 1.

3Intuitively, vk is the cost-effectiveness, and pv and pc are parameters
that represent ratios of cost-effectiveness and cost, respectively. When v1 is
constant, the larger the difficulty D (difficulty level h), the larger the value
of d.

Proposition 1: Assume pv ≥ 1. We define functions g1 :
R → R and g2 : R → R as

g1(z) = pvpc

(

z −
pc

1 + pvpc

)(

2pvpc + 1

pv(1 + pvpc)
− z

)−1

,

(9)

g2(z) =

(

z −
1

1 + pvpc

)(

pvpc

(

2 + pvpc
1 + pvpc

− z

))−1

.

(10)

Respectively letting α1 and α2 be α1 := g1(R/d) and α2 :=
g2(R/d), the set NE(G2) is given as follows4:

If pc ≥ 1, then

NE(G2) =














































































{(e12, e
1
2)}

if R
d
< pc

1+pvpc

,

{(e12, e
1
2), (e

2
2, (γ2, 1− γ2)

T)}

if R
d
= pc

1+pvpc

,

{(e12, e
1
2), (e

2
2, e

2
2), ((α1, 1− α1)

T, (α2, 1− α2)
T)}

if
pc

1+pvpc
< R

d
< 1

pv
,

{(e22, e
2
2), (e

1
2, (δ2, 1− δ2)

T)}

if R
d
= 1

pv
,

{(e22, e
2
2)}

if R
d
> 1

pv
,

(11)

where γ2 ∈ [0, g2(pc/(1 + pvpc))] and δ2 ∈ [g2(1/pv), 1].

4Intuitively, the value R/d represents how much reward is given for the
difficulty, increasing with reward R and decreasing with difficulty level h.

TABLE I

MINER 1’S PAYOFF FOR THE CORRESPONDING STRATEGY PROFILE.

S2

0 1

S1

0 0 0

1 R− d
1

1 + pvpc

(

R−
d

1 + pvpc

)

TABLE II

MINER 2’S PAYOFF FOR THE CORRESPONDING STRATEGY PROFILE.

S2

0 1

S1

0 0 R −
d

pv

1 0
pvpc

1 + pvpc

(

R −
dpc

1 + pvpc

)



If instead 1− 1/pv ≤ pc < 1, then

NE(G2) =














































































{(e12, e
1
2)}

if R
d
< 1

1+pvpc

,

{(e12, e
1
2), ((ε1, 1− ε1)

T, e22)},

if R
d
= 1

1+pvpc

,

{(e12, e
1
2), (e

2
2, e

2
2), ((α1, 1− α1)

T, (α2, 1− α2)
T)}

if 1
1+pvpc

< R
d
< 1

pv

,

{(e22, e
2
2), (e

1
2, (δ2, 1− δ2)

T)}

if R
d
= 1

pv
,

{(e22, e
2
2)}

if R
d
> 1

pv
,

(12)

where ε1 ∈ [0, g1(1/(1 + pvpc))] and δ2 ∈ [g2(1/pv), 1].
Finally, if 0 < pc < 1− 1/pv, then

NE(G2) =































{(e12, e
1
2)} if R

d
< 1

pv

,

{(e12, (ζ2, 1− ζ2)
T)} if R

d
= 1

pv
,

{(e12, e
2
2)} if 1

pv

< R
d
< 1

1+pvpc

,

{((η1, 1− η1)
T, e22)} if R

d
= 1

1+pcpv

,

{(e22, e
2
2)} if R

d
> 1

1+pvpc
,

(13)

where ζ2 ∈ [0, 1] and η1 ∈ [0, 1].
Proof: Because the pure strategy sets S1 and S2 are

finite, there exists at least one Nash equilibrium in game

G2 in the mixed strategies [2]. x1 = (x0
1, 1 − x0

1)
T, 0 ≤

x0
1 ≤ 1 and x2 = (x0

2, 1 − x0
2)

T, 0 ≤ x0
2 ≤ 1 represent

mixed strategies of miners 1 and 2, respectively. We denote

the expected payoffs of miners 1 and 2 as u1(x1, x2) and

u2(x1, x2), respectively. The difference in expected payoffs

between sk = 1 and sk = 0 for miner k is

u1(e
2
2, x2)− u1(e

1
2, x2)

=
d

1 + pvpc

((

R

d
−

1

1 + pvpc

)

+ pvpc

(

R

d
−

2 + pvpc
1 + pvpc

)

x0
2

)

(14)

and

u2(x1, e
2
2)− u2(x1, e

1
2)

=
d

1 + pvpc

(

pvpc

(

R

d
−

pc
1 + pvpc

)

+

(

R

d
−

2pvpc + 1

pv(1 + pvpc)

)

x0
1

)

. (15)

From (14) and (15), for another miner ℓ ∈ N \{k}, the best

response β̃k(x) of miner k changes depending on the value

range for gℓ(R/d). We thus consider five cases: gℓ(R/d) <
0, gℓ(R/d) = 0, 0 < gℓ(R/d) < 1, gℓ(R/d) = 1, and

gℓ(R/d) > 1.

When 0 < gℓ(R/d) < 1, the sign of the difference

between miner k’s expect payoff for sk = 1 and sk = 0

changes depending on the value of x0
ℓ as follows5.











uk(e
2
2, xℓ)− uk(e

1
2, xℓ) < 0 if gℓ(R/d) < x0

ℓ ≤ 1,

uk(e
2
2, xℓ)− uk(e

1
2, xℓ) = 0 if x0

ℓ = gℓ(R/d),

uk(e
2
2, xℓ)− uk(e

1
2, xℓ) > 0 if 0 ≤ x0

ℓ < gℓ(R/d).

Therefore, the best response β̃k(x) is

β̃k(x) =











{e12} if gℓ(R/d) < x0
ℓ ≤ 1,

Xk if x0
ℓ = gℓ(R/d),

{e22} if 0 ≤ x0
ℓ < gℓ(R/d).

(16)

Similarly, we obtain the best response β̃k(x) depending on

the value range for gℓ(R/d) as follows:

• When gℓ(R/d) < 0,

β̃k(x) = {e12}. (17)

• When gℓ(R/d) = 0,

β̃k(x) =

{

Xk if x0
ℓ = 0,

{e12} if 0 < x0
ℓ ≤ 1.

(18)

• When gℓ(R/d) = 1,

β̃k(x) =

{

Xk if x0
ℓ = 1,

{e22} if 0 ≤ x0
ℓ < 1.

(19)

• When gℓ(R/d) > 1,

β̃k(x) = {e22}. (20)

We next derive the range of R/d satisfying 0 <
gk(R/d) < 1, k = 1, 2. From (9) and (10), it is easily

shown that g1 and g2 are monotonically increasing functions.

Therefore, we obtain

0 < g1(R/d) < 1 ⇒
pc

1 + pvpc
<

R

d
<

1

pv
, (21)

0 < g2(R/d) < 1 ⇒
1

1 + pvpc
<

R

d
< 1. (22)

Assuming pv ≥ 1, the magnitude relationship among pc/(1+
pvpc), 1/pv, 1/(1 + pvpc), and 1 depends on the value of

pc, as follows:

1) When pc ≥ 1,

1

1 + pvpc
≤

pc
1 + pvpc

<
1

pv
≤ 1.

2) When 1− 1/pv ≤ pc < 1,

pc
1 + pvpc

<
1

1 + pvpc
≤

1

pv
≤ 1.

3) When 0 < pc < 1− 1/pv,

pc
1 + pvpc

<
1

pv
<

1

1 + pvpc
< 1.

We derive the set of Nash equilibria in the case of 1).

Then, we have nine cases depending on the value range of

R/d. Table III shows the relation between R/d and the set of

Nash equilibria. Therefore, (11) is the set of Nash equilibria.

We can similarly prove (12) and (13).



TABLE III

RELATION BETWEEN R/d AND THE SET OF NASH EQUILIBRIA.

R/d value α1 α2 Set of Nash equilibria

0 < R/d < 1/(1 + pvpc) α1 < 0 α2 < 0 {(e1
2
, e1

2
)}

R/d = 1/(1 + pvpc) α1 < 0 α2 = 0 {(e1
2
, e1

2
)}

1/(1 + pvpc) < R/d < pc/(1 + pvpc) α1 < 0 0 < α2 < 1 {(e1
2
, e1

2
)}

R/d = pc/(1 + pvpc) α1 = 0 0 < α2 < 1 {(e1
2
, e1

2
), (e2

2
, (γ2, 1− γ2)T)}, γ2 ∈ [0, g2(pc/(1 + pvpc))]

pc/(1 + pvpc) < R/d < 1/pv 0 < α1 < 1 0 < α2 < 1 {(e1
2
, e1

2
), (e2

2
, e2

2
), ((α1, 1− α1)T, (α2, 1− α2)T)}

R/d = 1/pv α1 = 1 0 < α2 < 1 {(e2
2
, e2

2
), (e1

2
, (δ2, 1− δ2)T)}, δ2 ∈ [g2(1/pv), 1]

1/pv < R/d < 1 α1 > 1 0 < α2 < 1 {(e2
2
, e2

2
)}

R/d = 1 α1 > 1 α2 = 1 {(e2
2
, e2

2
)}

R/d > 1 α1 > 1 α2 > 1 {(e2
2
, e2

2
)}

O pc

R
d

1

1

1
pv

1 −

1
pv

(a)

(b)

(c)

(d)

1
1+pv

Fig. 1. The pc − R/d parameter plane where pv ≥ 1 is fixed.

For a given pv , pc affects change in the Nash equilibria de-

pending on R/d. Fig. 1 shows the pc−R/d parameter plane

where pv ≥ 1 is fixed. If the pair (pc, R/d) is in region (a),

(b), (c), or (d), set NE(G2) satisfies NE(G2) = {(e22, e
2
2)},

NE(G2) = {(e12, e
1
2), (e

2
2, e

2
2), ((α1, 1 − α1)

T, (α2, 1 −
α2)

T)}, NE(G2) = {(e12, e
1
2)}, or NE(G2) = {(e12, e

2
2)},

respectively6.

Figs. 2–4 show the relation between R/d and x0
k (k =

1, 2) in Nash equilibria. The blue (left) and red (right) lines

represent values for x0
1 and x0

2, respectively.

Fig. 2 shows the case where pc > 1 − 1/pv is fixed.

Consider the case where 1 − 1/pv < pc < 1. The pure

strategy profile s = (0, 0) is a Nash equilibrium if R/d is

smaller than 1/pv. If R/d is larger than 1/pv, the pure Nash

equilibrium s = (0, 0) disappears and only the pure strategy

profile s = (1, 1) is a Nash equilibrium.

The pure strategy profile s = (1, 1) is a Nash equilibrium

if R/d is larger than 1/(1 + pvpc). If R/d is smaller than

5We present the case where k = 1 and ℓ = 2, but the same applies when
k = 2 and ℓ = 1.

6NE(G2) for the boundary between regions (a) and (b) is given by the
fourth equation in (11) and the fourth equation in (12). Similarly, NE(G2)
for the boundaries of regions (b) and (c), (c) and (d), and (d) and (a) are
given by the second equation in (11) if pc ≥ 1 and the second equation
in (12) if 1 − 1/pv < pc < 1, the second equation in (13), and the
fourth equation in (13), respectively. NE(G2) when the pair (pc, R/d) =
(1−1/pv , 1/pv) is given by NE(G2) = {((ε1, 1−ε1)T, e2

2
), (e1

2
, (δ2, 1−

δ2)T)}, where ε1 ∈ [0, 1] and δ2 ∈ [0, 1].

0.2 0.4 0.6 0.8

R/d

0.0

0.2

0.4

0.6

0.8

1.0

x
0 1

0.2 0.4 0.6 0.8

R/d

0.0

0.2

0.4

0.6

0.8

1.0

x
0 2

Fig. 2. The case when (pv, pc) = (2, 0.8).
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0.0
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Fig. 3. The case when (pv, pc) = (2, 0.5).

1/(1+pvpc), the pure Nash equilibrium s = (1, 1) disappears

and only the pure strategy profile s = (0, 0) is a Nash

equilibrium.

This change in Nash equilibria due to change in R/d
implies that when the mining reward exceeds some value, all

miners will decide to participate in the mining, after which

they continue for a while even if the reward decreases to

the boundary of region (b). Thus, a hysteresis phenomenon

exists in the region. Moreover, a jump phenomenon regarding

the strategy profiles miners choose occurs owing to the

disappearance of Nash equilibria when the reward changes

across the region boundary.

Fig. 3 shows the case where pc = 1 − 1/pv. A transition

from region (c) to (a), that is, a jump from one pure strategy

profile to another, is observed when R/d equals 1/pv =
1/(1+pvpc). This transition is only seen when pc = 1−1/pv.

Fig. 4 shows the case where pc < 1 − 1/pv is fixed.

The pure strategy profile s = (0, 1) is a Nash equilibrium

if 1/pv < R/d < 1/(1 + pvpc). Two pure Nash equilibria

do not coexist in the interior of each region while mixed

strategy profile (e12, (ζ2, 1−ζ2)
T) and ((η1, 1−η1)

T, e22) are
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Fig. 4. The case when (pv, pc) = (2, 0.2).
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Fig. 5. Relation between R/d and x0

k
in Nash equilibria for each the

number of miners n.

Nash equilibria on the boundary R/d = 1/pv and R/d =
1/(1 + pvpc).

IV. NUMERICAL ANALYSIS

In this section, we use Gambit [14] to numerically cal-

culate Nash equilibria for the game Gn with n > 2. We

estimate ck = c and fk(c) = vc, v > 0 for all k ∈ N 7.

From (6) and these assumptions, Uk(s) can be rewritten as

Uk(s) =

{

0 if s = (0, . . . , 0),
sk∑

i∈N si

(

R− d∑
i∈N si

)

otherwise,

where d := D/v. Value d is fixed to 100 and set R ∈
{0, 1, . . . , 150}. We calculate Nash equilibria for each R
when the number of miners n is 2, 3, 4, 5, and 6.

Fig. 5 shows the relation between R/d and x0
k in Nash

equilibria for numbers of miners n = 2, 3, 4, 5, 6. This

result shows that both the hysteresis phenomena and the

jump phenomenon of the strategy profiles can be observed

regardless of the number of miners when all miners pay the

same cost and calculate the same number of hash queries

per unit operating time. In addition, this implies that as the

number of miners increases, R/d for the appearance of a

Nash equilibrium s = (1, . . . , 1) decreases.

Fig. 6 shows the relation between the number of miners

and R/d when the Nash equilibrium s = (1, . . . , 1) appears.

7In this example, all miners calculate the same number of hash queries
per unit operating time.
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Fig. 6. Relation between number of miners and R/d when the Nash
equilibrium s = (1, . . . , 1) appears.

The figure shows that R/d when the equilibrium s =
(1, . . . , 1) appears is inversely proportional to the number

of miners n.

This result shows that once miners decide to participate in

the mining, they continue to mine for smaller rewards as their

number increases. Thus, it is very important when designing

blockchain networks to set the largest possible initial reward

as an incentive for mining in the network. The reward can

later be decreased, after the number of participating miners

increases, without decreasing their number.

V. CONCLUSION

Modeling a decision-making problem for mining partici-

pation as a noncooperative game, we showed that hysteresis

phenomena due to the coexistence of two pure Nash equilib-

ria and jump phenomena in the choice of strategy profiles can

be observed with changes in the mining reward. Moreover,

numerical calculations showed that miners continue mining

for smaller rewards as their number increases. In general, it

is difficult to analyze the miner behavior as n increases. In

future work we will theoretically analyze Nash equilibria by

deriving a macro model of the group of the miners.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
http://bitcoin.org/bitcoin.pdf, 2008.

[2] D. Fudenberg and J. Tirole, “Game theory,” MIT press, 1991.

[3] T. Alpcan and B. Tamer, “Network security: A decision and game-
theoretic approach,” Cambridge University Press, 2010.

[4] Y. Zhang and G. Mohsen Guizani, “Game theory for wireless com-
munications and networking,” CRC press, 2011.

[5] Z. Liu, N. C. Luong, W. Wang, D. Niyato, P. Wang, Y. C. Liang, and
D. I. Kim, “A survey on blockchain: A game theoretical perspective,”
IEEE Access, vol. 7, pp. 47615–47643, 2019.

[6] J. Truby, “Decarbonizing Bitcoin: Law and policy choices for reduc-
ing the energy consumption of Blockchain technologies and digital
currencies,” Energy Research & Social Science, vol. 44, pp. 399–410,
2018.

[7] https://www.cbeci.org/

[8] N. Dimitri, “Bitcoin mining as a contest,” Ledger, vol. 2, pp. 31–37,
2017.

[9] A. Fiat, A. Karlin, E. Koutsoupias, and C. Papadimitriou, “Energy
equilibria in proof-of-work mining,” In Proceedings of the 2019 ACM
Conference on Economics and Computation, pp. 489–502, 2019.

http://bitcoin.org/bitcoin.pdf


[10] J. Debus, “Consensus methods in blockchain systems,” Frankfurt
School of Finance & Management, Blockchain Center, Tech. Rep,
2017.

[11] W. Wang, D. T. Hoang, P. Hu, Z. Xiong, D. Niyato, P. Wang, Y. Wen,
and D. I. Kim, “A survey on consensus mechanisms and mining
strategy management in blockchain networks,” IEEE Access, vol. 7,
pp. 22328–22370, 2019.

[12] N. Houy, “The bitcoin mining game,” Ledger, vol. 1, pp. 53–68, 2016.
[13] D. Kraft, “Difficulty control for blockchain-based consensus systems,”

Peer-to-Peer Networking and Applications, vol. 9, no. 2, pp. 397–413,
2016.

[14] R. D. McKelvey, A. M. McLennan, and T. L. Turocy,
“Gambit: Software tools for game theory,” Version 15.1.1,
http://www.gambit-project.org, 2014.

http://www.gambit-project.org

	I Introduction
	II Game Formulation
	II-A Miner decision-making as a game
	II-B Derivation of the utility function
	II-C Extension to mixed strategies

	III The two-miners case
	IV Numerical Analysis
	V Conclusion
	References

