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Parameter Identification with Finite-Convergence Time Alertness

Preservation*

Romeo Ortega1, Alexey Bobtsov2 and Nikolay Nikolaev2

Abstract— In this brief note we present two new parameter
identifiers whose estimates converge in finite time under weak
interval excitation assumptions. The main novelty is that, in
contrast with other finite-convergence time (FCT) estimators,
our schemes preserve the FCT property when the parameters
change. The previous versions of our FCT estimators can track
the parameter variations only asymptotically. Continuous-time
and discrete-time versions of the new estimators are presented.

I. PARAMETER ESTIMATORS WITH

ALERTNESS-PRESERVING

FINITE-CONVERGENCE TIME

The objective of this work is to propose continuous-

time (CT) and discrete-time (DT) on-line estimators of the

parameters θ ∈ R
q of a linear regression equation (LRE) of

the form

y = φ⊤θ, (1)

from the measurable quantities y and φ. The estimators

should satisfy three specifications

S1 Convergence of the estimates should be achieved in

finite-time.

S2 Convergence is ensured under weak interval excitation

(IE) conditions [4].

S3 The estimator should preserve its alertness to be able

to estimate—still with FCT—future variations of the

unknown parameters.

Instrumental to solve this problem is the use of the

dynamic regressor extension and mixing (DREM) procedure

proposed in [1]. In particular, we adapt the FCT-DREM

estimator proposed in [6] to incorporate the new feature of

FCT alertness preservation (AP). A CT version of such an

scheme was reported in [7, Section V], in this note we give

a DT version of it.

An early variation of the least-squares method, that

converges in finite time, was proposed 32 years ago.

Similarly to more recent FCT estimators [2], [3], [9] in its

initial stage the algorithm is akin to an off-line estimator,

which involves a numerically sensitive matrix inversion

and, as it converges to a standard least-squares, loses

its alertness. For the sake of completeness we present

comparative simulations of the proposed estimator with the

FCT estimator reported in [12], which relies on the injection
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of high-gain via the use of fractional powers and/or relays

in the estimator dynamics. See also [8], [11] where a similar

high-gain approach is adopted.

Notation. R>0, R≥0, Z>0 and Z≥0 denote the positive

and non-negative real and integer numbers, respectively.

Continuous-time (CT) signals s : R≥0 → R are denoted s(t),
while for discrete-time (DT) sequences s : Z≥0 → R we use

s(k) := s(kTs), with Ts ∈ R>0 the sampling time. When a

formula is applicable to CT signals and DT sequences the

time argument is omitted.

II. FCT ESTIMATORS: FORMULATION FROM

SCALAR LRES VIA DREM

As it has been widely documented the powerful DREM

estimator design procedure [1] allows us to generate, from

the q-dimensional LRE (1), q-scalar LREs of the form

Yi = ∆θi, i ∈ q̄ := {1, 2, . . . , q} (2)

where ∆ is the determinant of an extended regressor matrix.

In the remaining of the note, we will use this simple scalar

LREs to design the AP-FCT parameter estimator.

A. CT FCT-DREM

The following CT FCT-DREM estimator was reported in

[6] and, as it constitutes the basis of our new AP-FCT, we

repeat it for ease of reference. Also, to make the note self-

contained we give a brief summary of the proof, referring

the interested reader to [6] for further details.

Proposition 1: Consider the scalar CT LREs (2) and the

gradient-descent estimators1

˙̂
θi(t) = γi∆(t)[Yi(t)−∆(t)θ̂i(t)], (3)

with γi > 0. Define the FCT estimate

θ̂FCTi (t) :=
1

1− wc

i (t)
[θ̂i(t)− wc

i (t)θ̂i(0)], (4)

where wc

i (t) is defined via the clipping functions

wc

i (t) =







µi if wi(t) ≥ µi

wi(t) if wi(t) < µi,
(5)

µi ∈ (0, 1) are designer chosen parameters, and wi(t) is

given by

ẇi(t) = −γi∆2(t)wi(t), wi(0) = 1. (6)

1In the sequel, the quantifier i ∈ q̄ is omitted for brevity.
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Assume there exists a time tci > 0 such that the IE

condition [4]
∫ tci

0

∆2(τ)dτ ≥ − 1

γi
ln(1− µi), (7)

is satisfied. Then,

θ̂FCTi (t) = θi, ∀t > tci , (8)

that is, the estimator has the feature of FCT.

Proof: Define the parameter errors θ̃i := θ̂i − θi. The

scalar error equations are given by

˙̃
θi(t) = −γi∆2(t)θ̃i(t),

whose explicit solution is

θ̃i(t) = e−γi

∫
t

0
∆2(s)dsθ̃i(0). (9)

Now, notice that the solution of (6) is

wi(t) = e−γi

∫
t

0
∆2(s)ds.

The key observation is that, using the equation above in (9),

and rearranging terms we get that

[1− wi(t)]θi = θ̂i(t)− wi(t)θ̂i(0). (10)

Now, observe that wi(t) is a non-increasing function and,

under the interval excitation assumption (7), we have that

wc

i (t) = wi(t) < µi < 1, ∀t ≥ tc, (11)

Clearly, (10) and (11) imply that

1

1− wc(t)

[

θ̂(t)− wc(t)θ̂(0)
]

= θ, ∀t > tc,

completing the proof.

B. DT FCT-DREM

In [6, Proposition 2] a DT DREM estimator was reported.

We give below an FCT-version of this scheme and give a

brief summary of the proof.

Proposition 2: Consider the scalar DT LREs defined by

(2) with the DT gradient-descent estimator

θ̂i(k + 1) = θ̂i(k) +
∆(k)

ci +∆2(k)

[

Yi(k + 1)−∆(k)θ̂i(k)
]

(12)

with positive constants ci. Define the dynamic extension

wi(k + 1) =
ci

ci +∆2(k)
wi(k), wi(0) = 1. (13)

and the clipping function

wc
i (k) =











ρi if wi(k) ∈ [ρi, 1]

wi(k) if wi(k) ∈ [0, ρi),

(14)

where ρi ∈ (0, 1) are designer chosen constants. Assume

there exists a kci ∈ (0,∞) such that the IE condition

kc

i
∏

i=0

[

ci
ci +∆2(i)

]

< ρi, (15)

is satisfied. Then,

θ̂FCTi (k) :=
1

1− wc
i (k)

[θ̂i(k)− wc
i (k)θ̂i(0)], (16)

ensures

θ̂FCTi (k) = θi, ∀k ≥ kci .

Proof: From, (2) and (12) we get the parameter error

equation

θ̃i(k + 1) =
ci

ci +∆2(k)
θ̃i(k) (17)

whose explicit solution satisfies

θ̃i(k) = ψi(k)θ̃i(0), (18)

where, for ease of future reference, we defined the scalar

sequence

ψi(k) :=

k
∏

i=0

[

ci
ci +∆2(i)

]

(19)

The solution of (13) is given by

wi(k) = ψi(k), (20)

whose replacement in (18) yields

θ̃i(k) = wi(k)θ̃i(0).

Using the definition of the parameter error and rearranging

terms we get that

[1− wi(k)]θi = θ̂i(k)− wi(k)θ̂i(0). (21)

According to (14) we have that, under the assumption (15),

wi(k) < ρi < 1 for all k ≥ kci , Consequently, for k ≥ kci
we can write

θi =
1

1− wi(k)
[θ̂i(k)− wi(k)θ̂i(0)].

The proof is completed, from (16), noting that wi(k) =
wc

i (k) for all k ≥ kci .

III. NEW ESTIMATOR WITH FCT ALERTNESS

PRESERVATION

There are two practical problems with the approach de-

scribed above. First, the estimates at the current time are

reconstructed from the knowledge of the initial estimate

θ̂i(0), complicating the task of tracking variations of the

true parameters after convergence of the estimates. Second,

independently of the behaviour of ∆, the functions wi are

monotonically non-increasing and converge to zero if ∆ is

not square summable (or integrable). In this case, θ̂FCTi → θ̂i,
and the FCT estimator converges to a standard gradient,

losing its FCT feature. Therefore, to keep the FCT alertness

of the estimator, i.e., to track parameter variations in finite-

time upon the arrival of new excitation, it is necessary to reset

the estimators—a modification that is always problematic to

implement. A typical procedure is the so-called covariance

resetting for least-squares algorithms, see [10, Section 2.4.2].

These drawbacks can be overcome with the new FCT-

DREM estimators proposed below.



A. CT FCT-DREM with alertness preservation

For the sake of brevity, we present only the derivation of a

relation similar to (10), from which we can easily construct

the FTC estimator and prove that the new FTC estimator

does not converge to the gradient one.

Proposition 3: Fix TD ∈ R>0 and define

ẇD

i (t) = −γi
[

∆2(t)−∆2(t− TD)
]

wD

i (t), w
D

i (0) = 1.
(22)

Then,

[

1− wD

i (t)
]

θi = θ̂i(t)− wD

i (t)θ̂i(t− TD). (23)

Moreover, wD

i (t) is bounded away from zero.

Proof: Without loss of generality we assume that ∆(t−
TD) = 0 for t < TD. Then, the solution of (22) is

wD

i (t) = e
−γi

∫
t

t−TD

∆2(s)ds
. (24)

From (24), and the fact that

∫ t

t−TD

∆2(s)ds ≤ ∆2
maxTD,

where ∆max ≥ ‖∆(t)||∞, we conclude that

wD

i (t) ≥ e−γi∆
2
maxTD > 0.

Now, from the solution of the parameter error equation (9)

in the interval [t− TD, t] we get

θ̃i(t) = e
−γi

∫
t

t−tD
∆2(s)ds

θ̃i(t− TD).

Hence, θ̃i(t) = wD

i (t)θ̃i(t − TD). The proof of the claim is

established rearranging the terms of the equation above.

Remark 1: It is important to note that when ∆(t)
decreases—that is, when we loose excitation—wD

i (t) grows

towards one, and the alertness in not lost. On the other hand,

when new excitation arrives and ∆(t) grows, then wD

i (t)
decays and the FCT condition wD

i (t) < µi is satisfied. In this

way, the new FTC estimator preserves its FTC property if the

parameters change. This fact is illustrated in the simulations

of Section IV. Notice also that, in contrast with the FCT

estimator of Proposition 1, where the calculation of the θ̂FCTi

in (4) is done using the initial parameter estimate θ̂i(0), the

FCT reconstruction of the estimated parameter is done in

(23) using the estimate at time t− TD, that is, θ̂i(t− TD).

Remark 2: For the new FTC DREM estimator the interval

excitation inequality becomes the existence of a time tci ≥ TD
such that

∫ tci

tc
i
−TD

∆2(s)ds ≥ − 1

γi
ln(1− µi). (25)

Recalling (24), it has the same interpretation as (7).

B. DT FCT-DREM with alertness preservation

Similarly to the CT case, for the sake of brevity, we present

only the derivation of a relation similar to (21), from which

we can easily construct the FTC estimator and prove that the

new FTC estimator does not converge to the gradient one.

Proposition 4: Fix a positive integer d. Consider the DT,

scalar LRE (2) and the gradient parameter update (12) with

the dynamic extension (13) and the sequence

wd

i (k) =
wi(k)

wi(k − d− 1)
. (26)

Then,

[1− wd

i (k)]θi = θ̂i(k)− wd

i (k)θ̂i(k − d).

Proof: First, we make the observation that, for all finite

k, the sequence wi(k) is bounded away from zero. Replacing

the solution of wi(k)—given by (19) and (20)—in (26) it is

clear that

wd

i (k) =

k
∏

i=k−d

[

ci
ci +∆2(i)

]

Hence, replacing the equation above in (18) we have that

θ̃i(k) = wd

i (k)θ̃i(k − d).

The proof is completed rearranging the terms of the identity

above.

Remark 3: It is clear that the same behavior that is indi-

cated in Remark 1 regarding the CT version is observed in

this DT one—explaining the important FCT-AP property.

IV. SIMULATIONS

In this section we present simulations illustrating the

results of Propositions 1-4 for a single parameter. Moreover,

for the sake of comparison, we show some simulation results

of the high-gain FCT estimator proposed in [12].

A. CT FCT-DREM with alertness preservation

In this subsection we compare the FCT DREM of Propo-

sition 1 and the new FCT DREM of Proposition 3. The

objective of the simulation is to prove that the new FTC

DREM is able to react when new excitation arrives. This is

in contrast with the old FCT DREM estimator that, since

wi(t) → 0, converges to the gradient estimator and loses its

FTC alertness property.

We consider two scenarios: with and without excitation in

∆(t). For the first case we consider the PE signal ∆(t) =
sin( π

10 t), and for the second one ∆(t) = 1√
t+1

. Note that

in the second case ∆(t) → 0, hence it is not PE. However,

∆(t) 6∈ L2, hence it satisfies the conditions for convergence

of the DREM estimator [1], [7].

To illustrate the FTC tracking capabilities of the estimators

the unknown parameter θ is time-varying and given by

θ(t) =



















10 for 0 ≤ t < 10,

15 for 10 ≤ t < 20,

15− 0.5(t− 20) for 20 ≤ t < 30,

10 for t > 30,
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Fig. 1: Transients of the CT parameter estimates with ∆(t) =
sin( π

10 t).
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Fig. 2: Transients of the CT parameter estimates with ∆(t) =
1√
t+ 1

.

i.e., it starts at 10, jumps to 15 at t = 10, and then linearly

returns to 10.

For the simulations we set γ = 2, µ = 0.98, and TD = 0.2.

These parameters have been chosen such that the transients

of both FCT estimators coincide in the ideal case when θ is

constant and the system is excited.

The transient of the estimators for ∆(t) = sin( π
10 t) are

given in Fig. 1, where we plot the time-varying parameter

θ, the gradient estimate θ̂grad(t), as well as the old and

the new FCT estimates, denoted in the plots as θ̂FCT(t) and

θ̂FCT−D(t), respectively. We observe that, as expected, in the

time interval [0, 10] both FCT estimators are overlapped

and converge in finite time, while the gradient converges

only asymptotically. The difference between the old FCT

estimator and the new one is clearly appreciated in the time

interval [10, 20], where we see that the new FCT estimator

tracks the parameter variation in finite time, while the old

one—now glued to the gradient—only does it asymptotically.

The behavior of the CT estimators for t ∈ [20, 40] shows

that, as predicted by the theory, the old FCT behaves as

the gradient estimator and their trajectories coincide. On the

other hand, the new estimator preserves FCT alertness after

the first parameter jump and achieves fast tracking of the

linearly time-varying θ(t). We also observe in the figure a

blip in the estimates at t = 30 that coincides with the time

of freezing of the true parameter.

For the non-PE case of ∆ = 1/
√
t+ 1, the transients

of the CT estimators are given in Fig. 2. We observe that
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Fig. 3: Transients of the DT parameter estimates with ∆(t) =
sin( π

10 t).
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Fig. 4: Transients of the DT parameter estimates with ∆(t) =
1√
t+ 1

.

both FCT estimators, again, essentially coincide in the first

few seconds and converge in finite time, while the gradient

does it only asymptotically. After the first parameter change

at t = 10 the old FTC and the gradient coincide, while the

new FCT manages to track in finite time the parameter jump.

However, during the ramp parameter change—because of the

lack of excitation—neither one of the estimators can track

the parameter variation but the new FCT estimator performs

much better.

B. DT FCT-DREM with alertness preservation

In this subsection we present the simulation results for the

DT estimators of Propositions 2 and 4. The estimator gains

were set to γ = 2, c = 1, d = 1, TD = 1 and T = 0.5.

The same simulation scenario of the CT schemes given

above is reproduced here and the transient behaviors are

shown in Figs. 3 and 4. Essentially the same remarks made

for the CT schemes of the previous subsection are applicable

in the DT case.

C. Comparison of the CT FCT-DREM with two schemes of

[12]

Now, we compare the FCT-D algorithm with two of the

schemes proposed in [12]. Namely,

i) Algorithm 1

˙̂
θ(t) = γ∆(t)⌈Y(t) −∆(t)θ̂(t)⌋α (27)

where γ > 0 and α ∈ [0, 1).
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Fig. 5: Transients of the parameter estimates with ∆(t) =
sin( π

10 t) for the CT FCT-D estimator and Algorithms 1 and

3 of [12].

ii) Algorithm 3

˙̂
θ(t) = γsign(∆(t))⌈Y(t) −∆(t)θ̂(t)⌋

|∆(t)|
ς∆max (28)

where γ > 0, ς > 1, ∆max = maxt∈[−T 0,T 0+T ]|∆(t)|
for given T 0 ∈ R+ and θ̂(t0) = 0.

It should be underscored in [12] a third estimator was also

proposed but this scheme is not well-defined when ∆(t) = 0
and could not be simulated.

For the simulation of the CT FCT-D we set γ = 2, µ =
0.98, and TD = 0.2, while for Algorithm 1 (27) we set γ = 5
and α = 0.75. and for Algorithm 3 (28) we set γ = 5, ς = 2.

The same simulation scenario of the CT schemes given

in Subsection IV-A is reproduced here and the transient

behaviors are shown in Figs. 5 and 6. As shown in the figures

Algorithm 3 indeed achieves FCT and preserves its alertness.

However, in spite of the theoretical analysis reported in [12]

the estimator of Algorithm 1 tracks only asymptotically.

To test the sensitivity of the algorithms to the pres-

ence of noise, we repeated the simulations adding a signal

0.1 sin(10t) to the measurement Y(t). The results of the

simulations are shown in Figs. 7 and 8. Interestingly, the

behavior of Algorithm 1 does no seem to be affected by

the noise—but, as before, the tracking is only asymptotic.

For the PE case of Fig 7 we see only a minor performance

degradation due to the noise in all schemes that is further

degraded for the non-PE case of Fig 8.

V. CONCLUSIONS

We have presented two new FCT-DREM parameter es-

timators with enhanced performance—in particular, with

respect to their ability to track parameter variations in finite-

time. CT and DT versions of the new estimators are given.

The performance improvement of the proposed schemes was

illustrated with representative simulations.
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APPENDIX

TABLE I: List of Acronyms

AP Alertness preservation

CT Continuous-time

DREM Dynamic regressor extension and mixing

DT Discrete-time

FCT Finite-convergence time

IE Interval excitation

LRE Linear regressor equation
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