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Abstract—The identification of anomalies is a critical com-
ponent of operating complex, large-scale and geographically
distributed cyber-physical systems. While designing anomaly
detectors, it is common to assume Gaussian noise models to
maintain tractability; however, this assumption can lead to the
actual false alarm rate being significantly higher than expected.
Here we design a distributionally robust threshold of detection
using finite and fixed higher-order moments of the detection
measure data such that it guarantees the actual false alarm
rate to be upper bounded by the desired one. Further, we
bound the states reachable through the action of a stealthy
attack and identify the trade-off between this impact of attacks
that cannot be detected and the worst-case false alarm rate.
Through numerical experiments, we illustrate how knowledge of
higher-order moments results in a tightened threshold, thereby
restricting an attacker’s potential impact.

I. INTRODUCTION

From critical infrastructures and industrial process control
to autonomous driving and various biomedical applications,
dynamical control systems are increasingly able to be instru-
mented with new sensing and actuation capabilities. These
cyber-physical systems (CPS) comprise growing webs of in-
terconnected feedback loops and must operate efficiently and
resiliently in dynamic and uncertain environments. As these
systems become large, devising both model-based [1], [2]
and data-driven [3]–[5] methods for detecting anomalies (such
as component failures or malicious attacks) are critical for
their robust and efficient operation. Such critically important
cyber-physical networks have become an attractive target to
attackers. These systems are large and complex and are often
not monitored well enough, enabling attackers to manipulate
the system without being detected and cause damage [6], [7].

To simplify the analysis and design, often such complex
cyber-networks are modeled as a discrete-time linear time
invariant system with Gaussian noises. However, this can lead
to a significant miscalculation of probabilities and risk if the
underlying processes behave differently, for example due to
various nonlinearities or malicious attacks. In the context of
attacks, it is possible for an attacker to modify the sensor
outputs and effectively generate aggressive and strategic noise
profiles to sabotage the operation of the system. With stochas-
tic optimization techniques, particularly using the emerging
area of distributionally robust optimization (DRO) approaches
[8], these limitations can be recognized and addressed. DRO
enables modelers to explicitly incorporate inherent ambiguity
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in probability distributions into optimization problems. DRO
approaches can be categorized based on the form of the
ambiguity set. There are several different parameterizations,
including those based on moments, support, directional deriva-
tives [9], and Wasserstein balls [10]. In practice, we have
access to only a finite amount of historical data. However, it is
possible to use finite historical data and guarantee resiliency
in such critical cyber-physical networks. Here, we propose to
use moment-based DRO methods to improve modeling and
reduce false alarm rates in cyber-physical networks.

In the context of attacks, the detector tuning has a direct
implication on the effect an attacker can have while still
remaining stealthy [2], [11]. A model-based approach to attack
detection uses a detector that raises alarms when there is a
large enough discrepancy between the actual and predicted
measurements, a statistic termed the residual. The detector’s
sensitivity can be increased by decreasing the threshold of
detection, but there is an inherent trade-off between sensitivity
and the rate at which false alarms are generated. Keeping false
alarms to a manageable level requires adjusting sensitivity and
the tuning of the detector threshold is typically informed by
the distribution of the residual. Authors in [12] used Gaussian
Mixture Model to approximate the arbitrary noise distributions
and obtained a detector threshold corresponding to a desired
false alarm rate.

However, when noise distributions are only known to an
ambiguity set, traditional tools and approximations no longer
suffice to select the threshold and so we turn to a dis-
tributionally robust approach. Interest in a DRO-informed
perspective on detector tuning is supported by recent work
on using a Wasserstein metric [5]. Our moment-based am-
biguity set formulation includes all distributions with fixed
moments up to some order. The problem of designing anomaly
detector thresholds subject to moment constraints of system
uncertainties can be addressed using Generalized Moment
Problems described in [13], [14]. Further, the conditions for a
truncated (finite) moment sequence to represent a probability
measure were studied in [15], [16]. Authors in [17] proposed
semidefinite programs to compute a probability bound for a
random variable lying in a set with known moments up to
some order. These techniques can be utilized to design detector
thresholds for residual distributions consistent with finite fixed
moments up to some order.

Contributions: This paper is a significant extension of our
previous work [3] where we used a moment-based ambiguity
set formulation with fixed first two moments (Proposition
2) to obtain a detector threshold via generalized Chebyshev
inequality. The main contributions of the present paper are:
• We propose an approach to construct moment-based

ambiguity sets with fixed moments up to kth order for
the anomaly detection measure and design an anomaly
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detector threshold for CPSs that exhibit non-Gaussian
uncertainties. The approach can utilize either residual
moments obtained through a dynamic model or estimated
directly from residual data.

• We use a semidefinite program (SDP) defined using
higher-order moments of the detection measure to find
a sharper probability bound for classifying the residual
with an improved detector threshold (Theorem 4).

• We illustrate empirically that inclusion of higher-order
moments results in tightened threshold (Lemma 3),
thereby restricting an attacker’s potential impact, and also
prove that the volume of the attack-reachable set shrinks
with a tightened threshold (Corollary 5).

While anomaly detection is widely studied in CPS litera-
ture, our distributionally robust approach using higher-order
moments of the detection measure data marks the novel
contribution of this paper. The rest of the paper is organized
as follows. Section II formulates the problem using moment-
based ambiguity sets. In Section III, the design of anomaly
detector threshold is discussed. Section IV describes the pro-
cedure to find the boundary of the reachable sets obtained
using distributionally robust tuned detector. Section V presents
the numerical results with inferences. Finally, Section VI
concludes and summarizes the future research directions.

II. PROBLEM FORMULATION USING HIGHER-ORDER
MOMENT-BASED AMBIGUITY SETS

In this section, we propose a framework for designing an
anomaly detector threshold for cyberphysical systems. The
approach can utilize either model-based propagation of resid-
ual moments or data-driven estimation of detection measure
moments directly from data.

A. Model-based Problem Formulation
Here, we model an uncertain cyber-physical system as a

stochastic discrete-time linear system

xt+1 = Axt +But + wt, t ∈ N (1)
yt = Cxt + vt, (2)

where xt ∈ Rn, ut ∈ Rm are the system state and input
respectively at time t. The matrices A and B denote the system
matrix and control input matrix, respectively. The output
yt ∈ Rp aggregates a linear combination of the states with the
observation matrix C ∈ Rp×n. We assume that the pair (A,C)
is detectable and (A,B) is stabilizable. The process noise
wt ∈ Rn and the sensor noise vt ∈ Rp are modeled as zero-
mean random vectors independent and identically distributed
across time with covariance matrix Σw,Σv respectively. Let
κ = (k1, . . . , kn)> with kj ∈ Z+ non-negative integers and
Jk = {κ|

∑n
i=1 ki ≤ k}. Further, assume that the feasible first

k moment sequence of the distributions of the wt, vt namely
Mκ
w,M

κ
v , κ ∈ Jk respectively are known. The distributions Pw

of wt and Pv of vt are unknown (and not necessarily Gaussian
and possibly heavy-tailed1) and will be assumed to belong to

1For the purposes of this paper, we consider heavy-tailed distributions as
those whose moments above a certain order may be infinite, in which case
their tails are heavier than a Gaussian. We assume the moments up to order
k are finite.

the k-moments-based ambiguity sets of distributions Pwk and
Pvk respectively defined as follows

Pwk = {Pw | E[wk1t1 w
k2
t2 . . . w

kn
tn ] = Mκ

w, κ ∈ Jk}, (3)

Pvk = {Pv | E[vk1t1 v
k2
t2 . . . v

kp
tp ] = Mκ

v , κ ∈ Jk}. (4)

When the actual measurement yt is corrupted by an additive
attack, δt ∈ Rp, the true output of the system fed to the
controller becomes

ȳt = yt + δt = Cxt + vt + δt. (5)

We utilize a steady-state Kalman filter to construct a state
estimate x̂t to minimize the squared norm of the estimation
error et = xt − x̂t where,

x̂t+1 = Ax̂t +But + L(ȳt − Cx̂t), (6)

and the estimation error evolves as

et+1 = (A− LC)et + wt − Lvt − Lδt. (7)

In the absence of attacks (that is, δt = 0) and when the
covariance matrices of the noises are fixed and known, the
Kalman gain L = PC>(CPC>+Σv)

−1 minimizes the steady
state covariance matrix

P := lim
t→∞

Pt := E[ete
>
t ]. (8)

Since (A,C) is assumed to be detectable, the existence of P
is guaranteed and it can be found through the solution of an
algebraic Ricatti equation. We define a residual sequence rt as
the difference between the actual received output ȳt and the
predicted output Cx̂t as,

rt = ȳt − Cx̂t = Cet + vt + δt, (9)

and in the attack free setting, rt falls according to a zero mean
distribution with covariance

Σr = E[rtr
>
t ] = CPC> + Σv. (10)

Since (9) is linear, it is possible to obtain the fixed and first
k moments of the random variable rt by propagating the cor-
responding moments of the primitive random variables wt, vt.
Thus, the distribution Pr of rt (not necessarily Gaussian)
belongs to an ambiguity set Prk given by

Prk = {Pr | E[rk1t1 r
k2
t2 . . . r

kp
tp ] = Mκ

r , κ ∈ Jk}. (11)

We define detection measure qt as a quadratic function of rt

qt = r>t Σ−1
r rt, (12)

which will be compared to a threshold for anomaly detection.

B. Data-Driven Moment Estimation from Residual Data

An alternative to obtaining residual moments by propagating
the moments of primitive random variables through the system
model is to instead collect residual data rt (from attack-free
operation) and estimate residual moments or the moments of
qt directly from the data. Such a data-driven approach allows
our proposed tuning approaches to be used in much broader
settings where it is difficult to propagate moments through
a model (or even to obtain a model), but where residual



data is easily generated from sensors and a state estimator.
Higher-order moments require increasingly more data to obtain
accurate estimates. Determining the required amount of data
is possible using finite-sample measure concentration results
given as in [18], but we leave such an analysis for future work.
The proposed methods for setting thresholds for anomaly
detection can be used together with ambiguity sets built upon
data-driven residual estimates, although the false alarm rates
will also be affected by sampling errors. Moment estimation
uncertainty could be accommodated using the same general-
ized moment problem computations we propose here, but with
assumed bounds on moment estimates rather than having them
fixed to exact known values. Such problems can also be refor-
mulated in a computationally tractable manner, as described in,
e.g., Section 3 of [19], which incorporate uncertainty sets for
estimated moments. These formulations would simply impose
further constraints on our primal problem defined in subsection
III.B of our revised manuscript. It is possible and would be
interesting to explore how to use statistical confidence intervals
for data-driven moment estimates to inform bounds used in the
SDP and obtain end-to-end guarantees on false alarm rates
associated with certain thresholds. This will be pursued in
future work.

In either setting, the feasible first k moment sequence of
the distribution of qt denoted by Mk

q is assumed to be known
either from its primitive variables through the model-based
approach or estimated from data. Then, the k-moments-based
ambiguity set of the scalar random variable qt is defined as

Pqk = {Pq | E[qkt ] = Mk
q }. (13)

Proposition 1. [17] Consider a univariate random variable
X defined on Ω = R+, endowed with its Borel sigma algebra
of events. A sequence σ̄ = (M1,M2, . . . ,Mk)> is a feasible
(1, k,Ω)−moment vector of the random variable X , if and
only if the matrices Rk � 0 and Rk−1 � 0, where for any
integer l ≥ 0, the matrices are defined as

R2l =


1 M1 . . . Ml

M1 M2 . . . Ml+1

...
...

. . .
...

Ml Ml+1 . . . M2l

 , R2l+1 =


M1 . . . Ml+1

M2 . . . Ml+2

...
. . .

...
Ml+1 . . . M2l+1

 .
(14)

III. DESIGN OF ANOMALY DETECTOR THRESHOLDS

Given a threshold 2αq,k > 0 and the distance measure qt,
alarm time(s) t? are produced according to the following rules,

{
qt ≤ αq,k, no alarm
qt > αq,k, alarm: t? = t.

(15)

Even in the absence of attacks, the detector is expected to
generate false alarms due to the infinite support of vt, because
some values drawn from Pq will exceed the threshold αq,k. If
Pq is known, then it is possible to extract an optimum thresh-
old value α∗q from the corresponding cumulative distribution
function Fq for a desired false alarm rate, A. For example,

2The first and second subscripts in the threshold separated by a comma
denote the random variable and number of moments respectively.

if rt is Gaussian, qt would be a chi-squared random variable,
and the optimum threshold α?q corresponding to the desired
false alarm rate A = A? is then

α?q = αχ2 := 2P−1
(

1−A?, p
2

)
, (16)

where P−1(·, ·) denotes the inverse regularized lower incom-
plete gamma function [1]. When the complete distribution is
not available, tuning methods using (16) may design thresholds
that generate actual false alarm rates significantly higher than
what is desired. With the distributionally robust approach, we
aim to achieve a false alarm rate less than A, and the detector
threshold α?r,k is selected such that

sup
Pr∈Pr

k

Pr(r
>
t Σ−1

r rt ≤ α?r,k) = 1−A. (17)

When the first two moments (k = 2) of rt are known,
the following proposition using the generalized Chebyshev
inequality explained in [20], [21] can be used to obtain the
worst case detector threshold α?r,2 satisfying (17).

Proposition 2. [3] Given a desired false alarm rate A and
rt ∼ Pr ∈ Prk with k = 2, the optimal distributionally robust
threshold α?r,2 satisfying (17) is

α?r,2 =
p

A
. (18)

A. Improved Detector Threshold With Higher-Order Moments

It is possible to obtain a sharpened detector threshold than
α?r,2, if higher-order moments are taken into account. For
example, the skewness and kurtosis parameters convey asym-
metry and heaviness of tails of the distribution, respectively.
We can leverage such information about the true but unknown
distribution revealed by the higher-order moments to tighten
the required probability bound and thereby obtain an improved
detector threshold. It is possible to use rt with higher order
moments (first k moments) to obtain a sharpened detector
threshold α?r,k. However, it was shown in [17] that for rt ∈ Rp
with support Ω = Rp and k ≥ 4, it is NP-hard to find
tight bounds for the corresponding moment bound problem
with rational problem data. On the other hand, they provide
a semidefinite optimization problem in k + 1 dimension for
the case of a univariate random variable with k moments.
Hence, rather looking for higher-order moments of rt, instead
we look for higher-order moments of scalar random variable
qt. Subsequently, we use a bisection algorithm to obtain a
sharpened detection threshold α?q,k for a given A.

B. Estimating Probability Using (1, k,Ω)−Moment Bound

Given the first k moments of random variable qt with
support Ω = R≥0 and the set Sk = R>αq,k

representing an
alarm event as shown in Figure 1, the infinite dimensional
(1, k,Ω)−moment bound primal problem is given by

sup
Pq∈Pq

k

Pq(qt ∈ Sk)

s.t.
∫

Ω

qrdµ = Mr
q , r = 0, 1, . . . , k.

(19)



Fig. 1: A moment based polynomial bounding the indicator
function 1Sk representing the set Sk = R>αq,k

is shown here.

Since (19) is infinite dimensional, it is difficult to solve effi-
ciently. However, we can use the linear programming duality
theory to associate a dual variable yr, r = 0, 1, . . . , k with
each equality constraint of (19) to get the corresponding dual
problem

min
k∑
r=0

yrM
r
q

s.t. p(q) =

k∑
r=0

yrq
r ≥ 1, ∀q ∈ Sk,

p(q) =

k∑
r=0

yrq
r ≥ 0, ∀q ∈ Ω.

(20)

The probability obtained as the solution to (20) is an upper
bound to the probability associated with (19). In general, if the
moment vector σ̄k = (M0

q ,M
1
q , . . .M

k
q ) is an interior point

of the set Mk of all feasible moment vectors, then strong
duality exists between (19) and (20) enabling us to obtain a
tight bound on Pq(qt ∈ Sk). To achieve a desired false alarm
rate A, we can tune the threshold αq,k defining the set Sk such
that solution to (20) is A. The following lemma establishes
the general trend observed between the values of the tuned
threshold αq,k for increasing values of k.

Lemma 3. Let A be the desired false alarm rate and qt ∼
Pq ∈ Pqk as in (13). Then, ∀j, k ∈ Z≥1 with j < k, we have

α?q,k ≤ α?q,j (21)

when the associated moments agree up to order j.

Proof. When the associated moments up to order j < k agree,
clearly we have Pqk ⊆ P

q
j , since additional moment constraints

restrict the set of distributions. For a fixed threshold α?q,j tuned
for the false alarm rate A, it follows that

sup
Pq∈Pq

k

Pq(qt > α?q,j) ≤ sup
Pq∈Pq

j

Pq(qt > α?q,j) = A. (22)

Thus, to achieve a desired false alarm rate A under the
constraint that Pq ∈ Pqk , the threshold α?q,k must be non-
increasing in k, satisfying α?q,k ≤ α?q,j for j < k.

Theorem 4. Let ε > 0, k ∈ Z≥2 and consider qt with its first k
moments of distribution (M1

q ,M
2
q , . . . ,M

k
q ) (we let M0

q = 1)
defined on R+ being known (or estimated from the given data)
and the associated anomaly detector threshold αq,k introduced
in (15), which is intended to achieve a desired false alarm
rate A. Suppose that αq,k is obtained by solving the following
bisection algorithm (knowing that the desired α?q,k ∈ [αl, αu]

Algorithm 1: Bisection Subroutine

while αu − αl > ε do
α?q,k ← (αu + αl)/2
pmin ← optimal value of (23) with αq,k = α?q,k
if pmin > A then

αl ← α?q,k
else

αu ← α?q,k

and αu = α?q,k−1 by Lemma 3) where the SDP that gives the
tight upper bound on Pq(qt ≥ αq,k) in the third line is

min
k∑
r=0

yrM
r
q

s.t.
∑

i,j:i+j=2l−1

xij = 0, l = 1, . . . , k,

(y0 − 1) +

k∑
r=1

yrα
r
q,k = x00,

k∑
r=l

yr

(
r

l

)
αr−lq,k =

∑
i,j:i+j=2l

xij , l = 1, . . . , k,

X � 0,∑
i,j:i+j=2l−1

zij = 0, l = 1, . . . , k,

l∑
r=0

yr

(
k − r
l − r

)
αr−lq,k =

∑
i,j:i+j=2l

zij , l = 0, . . . , k,

Z � 0.
(23)

with variables X,Z ∈ R(k+1)×(k+1), yr, r = 0, 1, . . . , k. Then
with this optimal detector threshold α?q,k, the false alarm rate
under the worst-case distribution of the qt specified by the
k-moments-based ambiguity set (13) is at most A.

Proof. To get an upper bound on required probability in (19),
it suffices to check for the polynomials defined in (20) to be
non-negative in their respective sets. That is, the polynomial
p(q) satisfies p(q)− 1 ≥ 0,∀q ∈ Sk if and only if there exists
a positive semidefinite matrix X ∈ R(k+1)×(k+1) that satisfies
the first four constraints defined in (23). Similarly, the same
polynomial p(q) satisfies p(q) ≥ 0,∀q ∈ [0, αq,k] if and only if
there exists a positive semidefinite matrix Z ∈ R(k+1)×(k+1)

that satisfies the last three constraints defined in (23). Then
using the results given in Theorem 3.2 of [17], for a fixed
threshold αq,k, the optimal value of the semidefinite program
in (23) yields the worst-case false alarm rate generated by the
worst-case Pq ∈ Pqk in (13). To ensure that the optimal value
of (23) is equal to the desired false alarm rate A, it suffices
to tune the threshold αq,k using the bisection algorithm 1, to
get α?q,k.

C. Discussion

For k = 1, 2, 3, the solution to (23) can be obtained in
closed-form using Theorem 3.3 of [17] with the corresponding



moments data without explicitly solving the SDP in (23).
For k = 1, 2, we recover the Markov bound and a strictly
improved Chebyshev bound respectively as the solution of
(23). Assuming that δ̂k > 0, α?q,k = (1 + δ̂k)M1

q , the resulting
closed form solutions for the optimal detector threshold α?q,k
for a desired false alarm rate A with k = 1, 2 are summarized
in Table I with C2

M =
M2

q−(M1
q )2

(M1
q )2 and these values can be

used as αu towards computing α?q,k for any k > 2. We omit
the expression for the threshold α?q,3 for the sake of brevity.
Further, the optimal threshold α?q,k is tight for a given Pqk up

k α?
q,k value

1
M1

q

A

2
(

1 +
√

1−A
A CM

)
M1

q

TABLE I: Closed-form solutions for α?q,k with k = 1, 2.

to a tolerance ε > 0 specified by the bisection in Algorithm
1.

The exact detector threshold (which we call α?q) correspond-
ing to Pq is obtained only asymptotically (or equivalently
when true Pq is known exactly). That is,

α?q =

{
limk→∞ α?q,k, if all moments are known,
F−1
q (A), if true Pq, Fq are known.

(24)

However, while determining how many moments are needed to
get a close approximation of the exact threshold is difficult in
general, we find that significant improvements can be obtained
from a small number of moments. Given k moments of qt,
the complexity of this higher-order moment based approach
involves solving the SDP given by (23) with variables X,Z ∈
R(k+1)×(k+1), yr, r = 0, 1, . . . , k. For large k, it is advisable
to use, e.g., the Legendre polynomial basis instead of the
standard polynomial basis for obtaining the moment-based
polynomial in (23) as the former has nice orthogonal properties
that improve numerical stability.

IV. ATTACK-REACHABLE SET BOUNDS

With the attacker assumed to have perfect knowledge of
the system dynamics, the Kalman filter, control inputs, mea-
surements along with read and write access to all the sensors
at each time step, we show that the volume of the attack-
reachable set shrinks with the tightened threshold. We define a
zero-alarm attack, which generates attack sequences so that no
alarms are raised during attack. With Σ

1
2
r being the symmetric

square root of Σr and an attack input δ̄t such that δ̄>t δ̄t ≤ α

(here α = α?q,k), the attack sequence δt = −Cet − vt + Σ
1
2
r δ̄t

guarantees that no alarm is raised. Then, using a static es-
timator feedback ut = Kx̂t with δ̄t, the evolution of the
system dynamics with the joint state ξt = [xt, et]

> with input
ζt = [wt, δ̄t]

> is studied. We define a reachable set of interest,
driven by the ellipsoidally bounded inputs wt and δ̄t, as

Rx =

xt = [In, 0n×n]ξt

∣∣∣∣∣∣∣
ξt+1 = Âξt + B̂ζt,

ξ1 = 0, δ̄>t δ̄t ≤ α,
w>t Σ−1

w wt ≤ w̄, ∀t ∈ N

 ,

(25)

where the noise threshold w̄ obtained using (18) satisfies,

sup
Pw∈Pw

k

Pw(w>t Σ−1
w wt ≤ w̄) = 1−A, (26)

and Â =

[
A+BK −BK

0 A

]
, B̂ =

[
I 0

I −LΣ
1/2
r

]
. Using the

geometric approach presented in [22] with Hi = Aicl−Ai, the
reachable set of states is the Minkowski sum of the following
ellipsoidal bound

Rx,t(w̄, α) =

t−2⊕
i=0

E
(
w̄AiΣwA

i>
)
⊕ E

(
αHiLΣrL

>H>i

)
. (27)

Specifically, theorem 1 of [22] provides us the exact boundary
of Minkowski sum in (27) using an analytical formula. The
following corollary highlights the effects of the tightened
threshold on the size of the reachable set.

Corollary 5. The volume of the reachable set Rx,t(w̄, α)
shrinks with the tightened threshold α?q,k for all k ≥ 1.
Further, ∀k1, k2 ≥ 1 and k1 < k2, the following inclusion
holds Rx,t(w̄, α?q,k1) ⊇ Rx,t(w̄, α?q,k2).

Proof. Apply (27) with k1, k2 ≥ 1 & k1 < k2

along with α?q,k1 > α?q,k2 (by Lemma 3), to see that
volume(Rx,t(w̄, α?q,k2)) ≤ volume(Rx,t(w̄, α?q,k1)). Inclusion
follows from Minkowski sum with α?q,k1 > α?q,k2 .

V. NUMERICAL SIMULATION

We consider an empirical system under study with the
detector tuned to a false alarm rate A = 0.05 (5%). We
demonstrate here simulation results when the uncertainties are
zero-mean Gaussian. We compare the size of the reachable set
boundary computed using (27) for thresholds α?q,1, α

?
q,2, α

?
q,4.

We assume that the modeler is unaware of the functional form
of the uncertainties and has to arrive at a detector threshold
satisfying the desired false alarm rate. The SDP in (23) was
solved with ε = 10−4 using SOSToolbox in Matlab with
SeDuMi solver.

A =

[
0.84 0.23
−0.47 0.12

]
, B =

[
0.07 −0.32
0.23 0.58

]
, C =

[
1 0
2 1

]
K =

[
1.404 −1.402
1.842 1.008

]
, L =

[
0.0276 0.0448
−0.01998 −0.0290

]
,

Σv = 6Ip,Σw =

[
0.0225 −0.0055
−0.0055 0.0100

]
.

When the noises wt and vt are truly Gaussian, it is evi-
dent from Fig. 2 that the reachable set corresponding to the
thresholds α?q,1 = α?r,2 = 40 is conservative and ensures that
the false alarm does not exceed 5% but this also provides
the attacker with the ability to launch a larger attack. How-
ever, with the knowledge of additional moments, the detector
thresholds α?q,2 = 10.7684, α?q,4 = 9.1315 get tightened with
α?q,4 ≤ α?q,2 ≤ α?q,1 as shown in Fig. 3. Further, this threshold
tightening limits the attacker’s ability to launch a larger attack
which is depicted through the reachable sets corresponding
to the thresholds α?q,1, α

?
q,2, α

?
q,4 as shown in Fig. 2. Subse-

quently, the false alarm rate corresponding to the threshold αχ2

was 5% as expected and with the thresholds α?q,4, α
?
q,2, α

?
q,1, it



Fig. 2: The reachable sets associated with the detector thresh-
olds α?q,1, α

?
q,2, α

?
q,4, αχ2 are shown in orange, green, blue

and magenta colors respectively. It is evident from the size
of the reachable set that given a desired false alarm rate A,
the knowledge of higher-order moments results in a tightened
detector threshold and thereby restricting the attacker’s ability
to launch a larger attack.

Fig. 3: The moment based polynomials in orange, green
and blue bounding their respective indicator functions
1(α?

q,1,∞),1(α?
q,2,∞),1(α?

q,4,∞) in shaded orange, green and
blue colors are shown here. Clearly, α?q,1 is very conservative
and with k = 4, the threshold α?q,4 starts getting closer to the
true threshold αχ2 given by (16).

dropped to 1%, 0.45%, 0% respectively. When noises are truly
multi-variate Laplacian (which has heavier tails than normal
distribution with same mean and covariance), it resulted in
thresholds α?q,1 = 39.83, α?q,2 = 17.23, α?q,4 = 16.54 with
false alarm rates 0%, 0.9%, 1% respectively. Thus, no matter
what distributions satisfying (3), (4) govern the noises wt, vt
respectively, the inclusion of higher-order moments restricts
the attacker’s potential impact through a tightened detector
threshold.

VI. CONCLUSION & FUTURE OUTLOOK

We have proposed a distributionally robust approach to
form the k moments based ambiguity set for the detection
measure data and used it to tune the anomaly detectors for a
desired false alarm rate. We found a detector threshold which
guaranteed that the false alarm rate did not exceed a desired
value using a semidefinite program. We have demonstrated
the effectiveness of our proposed approach with a numerical
example. Further, our approach using higher-order moments

restricted the attacker’s potential impact. Future works include
addressing the problems associated with the data-driven for-
mulation with moment estimation uncertainty and securing
nonlinear cyberphysical systems with distributionally robust
unscented Kalman filter based state estimation.
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