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Abstract—We propose a new method for pure-state and sub-
space preparation in quantum systems, which employs the output
of a continuous measurement process and switching dissipative
control to improve convergence speed, as well as robustness with
respect to the initial conditions. In particular, we prove that the
proposed closed-loop strategy makes the desired target globally
asymptotically stable both in mean and almost surely, and we
show it compares favorably against a time-based and a state-
based switching control law, with significant improvements in
the case of faulty initialization.

I. INTRODUCTION

In the rapidly growing field of quantum science and tech-
nologies, the quest for new reliable and effective techniques
to manipulate systems at the quantum scale is of paramount
importance, and control engineers are actively contributing
to this effort (see e.g. [1] and references therein). Due to
the intrinsic nature of quantum systems, one of the central
resources of classical control design - feedback control -
is particularly difficult to harness. In the last two decades,
great progress has been made in this sense, building on the
foundation of quantum probability and filtering theory [2]–[4],
and arriving to remarkable experimental implementations [5].

In this paper, we combine the advantages offered by
measurement-based feedback with switching control strate-
gies, which allow us to include dissipative control resources in
a systematic way, as opposed to the more typical Hamiltonian
control (see e.g. [6], [7] and [1] for a review). The main
contribution is a switching control strategy for the stabilization
of a target pure state or subspace, where the current dynamics
is selected based on the estimation of the state at the switching
times, and maintained for a given dwell time. Such strategy
guarantees practical stability of the target in mean under min-
imal assumptions (existence of a switching control Lyapunov
function), while under typical control assumptions the stability
is guaranteed both in mean and almost surely.

The paper is structured as follows: Section II defines the
problem of interest and present some theoretical results that
are used in the rest of the paper; Section III discusses the
assumptions under which effective strategies can be derived,
recalls open-loop switching strategies previously introduced in
[8], presents the novel measurement-based, closed-loop control
laws and proves its stability. The analysis of convergence uses
techniques that depart from those based on linear systems
used in [8] and build on specific properties of the stochastic
filtering dynamics [9]. Section IV provides some insights on
the performances of the novel control law by presenting a
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relevant case study and simulation results for the stabilization
of entangled states on networks of two-level systems.

II. PROBLEM DEFINITION

In this article we consider a system described by a finite-
dimensional Hilbert space H. Following the standard in
physics and quantum information science, we shall employ
Dirac’s notation for vectors |ψ〉 ∈ H, and their duals 〈ψ| ∈
H†. Let B(H) denote the set of linear operators on H. The
state of a quantum system is completely described by a density
operator ρ ∈ D(H) = {ρ ∈ B(H) : ρ = ρ† ≥ 0, tr(ρ) = 1}.

We will suppose that the system is controlled with a
series of driving dynamics and that it is subjected to an
homodyne detection measurement. The resulting dynamics is
thus described by processes (ρt)t∈R+

of states associated to
the stochastic master equation (SME) [1], [3]

dρt = Lj(ρt)dt+ GC(ρt)dWt, (1)

where:

Lj(ρt) = −i[Hj , ρt] +DLj
(ρt) +DC(ρt),

DA(ρt) = AρtA
† − 1

2
{A†A, ρt},

GC(ρt) = Cρt + ρtC
† − tr

(
(C + C†)ρt

)
ρt

In equation (1), the term −i[Hj , ρt] + DLj
(ρt) represents

the driving dynamics associated to the Hamiltonian and noise
operators (Hj , Lj). We suppose that a list of possible driving
dynamics is provided and the role of the controller will be
to choose which dynamics to activate. This concept will be
further formalized in the following. The term DC(ρt)dt +
GC(ρt)dWt accounts for the homodyne detection measure-
ment process associated to the fixed noise operator C. For
simplicity we here consider unit detection efficiency, but the
control strategy works with imperfect detection as well. The
process dWt is a Wiener process, adapted to the filtration Ft
[3], and it can be seen as the innovation for the homodyne
measurement output dYt = tr

(
(C† + C)ρt

)
dt+ dWt.

If the measurement record is not accessible, the best descrip-
tion of the state evolution can be obtained as the expectation
of (1) over the outcomes of the measurement process. Namely,
defining ρ̂t = E[ρt|Ft], we have that the time evolution of ρ̂t
is described by the Markovian master equation (MME) [10]:

d

dt
ρ̂t = Lj(ρ̂t). (2)

Throughout this work, we will consider the stabilization of
linear subspaces of H, and the relevant particular case of pure
states. Let HS be the target subspace of H. Denoting PS the
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orthogonal projector on HS , we can describe the set of states
whose support is HS or a subspace of HS as

IS(H) = {ρ ∈ D(H) : tr(PSρ) = 1}. (3)

With a slight abuse of terminology, we say that HS is
invariant, stable, or attractive for the dynamics if such is the
supported state-set IS(H). The subspace HS is said globally
asymptotically stable (GAS) for (1):
- in mean if lim

t→∞
||ρ̂t − PS ρ̂tPS ||1 = 0, ∀ρ0 ∈ D(H);

- almost surely (a.s.) if P
(

lim
t→∞

||ρt − PSρtPS ||1 = 0
)

= 1,
∀ρ0 ∈ D(H).

We next summarize some results of [9] that will be of use
to our aims in the following theorem. A Lyapunov function
is a functional V : D(H) → R+ such that: V (ρ) ≥ 0, with
V (ρ) = 0 if and only if ρ ∈ IS(H) and d

dtV (ρ) < 0 for all
ρ /∈ IS(H).

Theorem 1. Consider system (1), with a fixed Lj . A subspace
HS of H is:
• GAS in mean if and only if it is GAS almost surely;
• if GAS in mean if and only if there exists an operator
K ≥ 0 such that V (ρ) = tr(Kρ) is a Lyapunov function.

Remark: These results are the starting point for our analysis
and deserve some explanations: (i) The linear V is associated
with a K such that KR := PSKPS > 0, and the latter matrix
is derived from a (perturbed) Perron-Frobenius eigen-operator
for the dual dynamics, reduced to the complement of the target.
(ii) The equivalence of asymptotic stability in mean and a.s. is
crucially dependent on the fact the target is a subspace, and
not true otherwise. In our main theorem we will use the same
proof idea, applied to switching evolutions.

We shall be interested in sequences of switching times that
are unbounded countable set of times 0, t1, t2, . . . such that
tk − tk−1 > ε for some ε > 0. The assumption tk − tk−1 > ε
for ε > 0 is introduced to prevent chattering: for this reason,
we shall refer to a sequence with the properties above as a non-
chattering. Non-chattering time sequences are essential for
practical implementations, as well as ensuring well-behaved
solution of the SME. This point will not be explicitly discussed
in this work but the proof follows the discussion of [7]. Finally,
we state the control problem of interest.

Switching control problem. Given a target subspace HS
of H and a finite set of generators {Lj}j=1,...,m for model
(1), find a piece-wise constant switching control law j(t) :
[0,+∞) → {1, . . . ,m} that admits a set of non-chattering
switching times, so that HS is made GAS (in mean and/or
almost surely) by selecting Lj(tk) on [tk, tk+1).

III. CONTROL STRATEGIES
In this section, we will first recall two previously proposed

switching techniques, based on open-loop switching, and next
present our closed-loop proposal.

A. Control Assumptions

The following assumption is typically required to prove
convergence of a switching law.

Assumption 1. Each Lindblad generator has the target sub-
spaceHS as invariant , and there exists α ∈ [0, 1]m, ||α||1 = 1
such that HS is GAS in mean for

d

dt
ρ̂t = Lc(ρ̂t) =

m∑
j=1

αjLj(ρ̂t). (4)

We also introduce a second working assumption, which
relaxes Assumption 1 above. Essentially, it requires a linear
control Lyapunov function.

Assumption 2. There exists a linear Lyapunov function V (ρ)
such that ∀ρ /∈ IS(H), ∃j: V (Lj(ρ)) < 0 and ∀ρ ∈ IS(H),
∃j: V (Lj(ρ)) = 0.

One of the key differences between the assumptions is that
the second does not require invariance of the target for each
generator, and is thus weaker, as we argue in the following.

Proposition 1. Assumption 1 implies Assumption 2.

Proof. If Assumption 1 holds, from Theorem 1 we have
that there exists a linear Lyapunov function V (ρ) such that
V (ρ) > 0 for all ρ /∈ IS(H), V (ρ) = 0 for all ρ ∈
IS(H) and V (Lc(ρ)) < 0 for all ρ /∈ IS(H). This means
that we have V (Lc(ρ)) =

∑m
j=1 αjV (Lj(ρ)) < 0 for all

ρ /∈ IS(H), thanks to the linearity of V (ρ). Then, since
αi > 0 and ||α||1 = 1, we have that there exist an index
j∗ = arg minj=1,...,m V (Lj(ρ)) such that V (Lj∗(ρ)) ≤∑m
j=1 αjV (Lj(ρ)) = V (Lc(ρ)) < 0 for any ρ /∈ IS(H).

Finally, since from Assumption 1 we have that every Lindblad
generator leaves HS invariant, we have that ∀j V (Lj(ρ)) = 0,
∀ρ ∈ IS(H).

Proposition 1 will be instrumental to the proof of the main
theorem. It is possible to prove that the converse implication
is not true. For example, consider the following three-level
system in H = span{|0〉 , |1〉 , |2〉}. Let |0〉 〈0| be the target
state, and consider the two following generators:

L1(ρ) : (H1 = 0, L1 = |0〉 〈2|+ |1〉 〈1|+ |2〉 〈2|),
L2(ρ) : (H2 = |0〉 〈2|+ |2〉 〈0| ,

L2 = |0〉 〈1|+ |1〉 〈1|+ |2〉 〈2|).

Notice that the generator L1(ρ) stabilizes the space generated
by span{|0〉 , |1〉}, being the only invariant space for L1

and has trivial dynamics on it [11], but does not make the
target GAS. For the generator L2(ρ), instead, |0〉 is not even
invariant. It is then quite clear that there exists no convex
combination of L1(ρ) and L2(ρ) that makes |0〉 〈0| GAS
in mean. However, by considering V (ρ) = tr(Kρ) with K
the projector on the subspace orthogonal to the target, it is
possible to prove by direct computation that ∀ρ 6= |0〉 〈0|,
V (Lj(ρ)) < 0 for some j and V (Lj(|0〉 〈0|)) = 0 for j = 1, 2.

This shows that Assumption 2 is genuinely more general
than Assumption 1. However, if one requires non-chattering
control strategies, we will argue it only allows for a weaker
stability notion, and convergence in mean.



B. Open-loop strategies: cyclic and state-based switching

The first control strategy we consider is a time-based
solution [8], based on Assumption 1.

Definition 1 (Cyclic switching control law). Given the vector
α that satisfies Assumption 1 for the set of Lindblad dynamics
{Lj}, the cyclic switching control law selects each index j for
a fraction αj of the total cycle period ε > 0.

Note that this control law depends only on the vector α
from Assumption 1, and no information on the initial state
of the system is required. Essentially, for ε → 0 it mimics
the evolution generated by the convex combination (4), and
makes HS GAS in mean. A full proof can be found in [8].
The second control law we recall is also proposed in [8], and
here specialized to the case of a linear Lyapunov function.

Definition 2 (State-based switching control law). Given a set
of Lindblad operators {Lj}, an estimate of the initial state ρ0,
a linear Lyapunov function V (·) that guarantees that HS is
GAS for the system Lc as in (4) and a non-chattering switching
time sequence {tk}, the state-based switching control law is
defined as:

j(t) = arg min
j=1,...,m

V (Lj(ρ̂tk)), ∀t ∈ [tk, tk+1) (5)

where ρ̂tk is the average of the system state at time tk, solution
of the MME.

The original proposal in [8] employed a quadratic function
to show the existence of a non-chattering sequence; in this
case, it follows from Theorem 2 in the following section.

C. Measurement-based switching control

The approach we propose exploits continuous measurements
to have a closed-loop estimate of the current state of the
system, and then apply the state-based switching control law
based on this estimate - as opposed to the MME average state.

An important step in setting up the feedback loop is the
choice of the measurement operator C, so that the measure-
ment process does not destabilize the target - namely, the target
should be an eigenstate or, more generally, an eigenspace, of
C. A natural choice is to resort again to Theorem 1 and choose
C = K, where K is the matrix of the Lyapunov function
V (ρ) = tr(Kρ) that satisfies Assumption 2 for the set of MME
generators {Lj}. In this way we have that HS ⊆ ker(C) is
naturally satisfied by the construction of K, and also it holds
that V (DK(ρ)) = 0 for all ρ. From now on we will only
consider this choice of C for sake of simplicity. The switching
control law we consider is:

Definition 3 (Measurement-based switching control law).
Given a set of Lindblad operators {Lj}, an estimate of the
initial state ρ0, a V (ρ) = tr(Kρ) that satisfies Assumption 2
for the set {Lj} and a non-chattering switching time sequence
{tk}, the measurement-based switching control law is defined
as:

j(t) = arg min
j=1,...,m

V (Lj(ρtk)), ∀t ∈ [tk, tk+1) (6)

where ρtk is the estimate of the state at tk obtained as the
solution of equation (1).

We will now prove stability of the proposed switching law.

Theorem 2. If Assumption 1 holds, then there exists a non-
chattering time sequence such that the measurement-based
switching control law makes IS(H) GAS in mean and almost
surely.

Proof. We start by proving the existence of a non-chattering
time sequence, then we prove stability in mean, and finally,
we argue that a.s. stability follows from stability in mean and
Theorem 1. If Assumption 1 holds, then by Proposition 1 we
can construct a linear Lyapunov V (ρ) = tr(Kρ) function as in
Assumption 2. Assume V̇ (ρtk) := V (Lj(ρtk)) < 0 and define
t̂ = min{t s.t. V (ρt) ≤ rV (ρtk)} for some r ∈ [0, 1) fixed.
We want to prove that ∃ε > 0 such that t̂ − tk > ε, and that
it does not depend on the state at time tk.

We can then apply the mean value theorem: there exists
s ∈ [tk, t̂] such that V̈ (ρs)(t̂ − tk) = V̇ (ρt̂) − V̇ (ρtk) =
(1 − r)|V̇ (ρtk)|. Since by Assumption 1 all evolutions leave
IS(H) invariant we have that:

|V̇ (ρtk)| = |tr(L†j(K)ρtk)| ≥ |tr(L†C(K)ρtk)|
= |tr(L†C,R(KR)ρR,tk)| ≥ kC,mintr(ρR,tk), (7)

where the R subscript denotes the restriction of the operators
to the complement of the target space and kC,min is the min-
imum absolute value of the eigenvalues of L†C,R(KR), and in
the second line we used Proposition 2.5 of [9]. On the left, we
then have |V̈ (ρs)| = |tr(KL2

j (ρS)| = |tr(KRL2
R,j(ρR,s)| ≤

k̄2,maxtr(ρR,s), where k̄2,max is the maximum absolute value
of the eigenvalues of (L†R,j)2(KR), for all j. Then, since
e(t−tj)LR,j is a trace-non-increasing map for any finite interval
and ρR,t = e(t−tk)LR,jρR,tk , we have tr(ρR,tk) ≥ tr(ρR,t),
∀t ∈ [tk, t̂]. Combining all the above inequalities we obtain:
t̂− tk ≥ (1− r)kC,min/k̄2,max then taking tk+1 ∈ [tk, t̂] we
obtain a non-chattering time sequence such that V̇ (ρt) < 0
∀t ∈ [tk, tk+1]. We will now prove stability in mean. We
shall use a generalized version of Barbalat’s Lemma and in
particular Corollary 1 in [12] to prove stability. We have that
V (ρ) is lower bounded since V (ρ) ≥ 0. By construction,
V̇ (ρ) = V (L(ρ)) is piece-wise continuous, and non-positive
in the time interval for a non-chattering sequence constructed
as above. Moreover, being V (L(ρ)) linear in ρ for any time
interval t ∈ [ti, ti+1), we have that V (ρ) is twice differentiable
in any time interval. Computing the second derivative of V (·)
with respect to time, we get V̈ (ρ) = tr(L†j(K)Lj(ρ)) which
is linear in ρ, hence bounded for all t ∈ [ti, ti+1). Thus all
hypothesis of Corollary 1 in [12] are satisfied, and V̇ (ρ)→ 0
in mean for t → ∞. This proves stability in mean, and that
V (ρt) is a (continuous) positive supermartingale for SME.
Convergence in mean implies L1 convergence to 0; on the
other hand, by bounded supermartingale convergence theorem
V (ρ) converges both in L1 and a.s. to some V∞ (see also proof
of Theorem 1.1 in [9].) Since we know that the L1-limit is 0,
convergence a.s. is also guaranteed. Being V positive on the
complement of the target, V (ρ) = 0 a.s. implies ρ ∈ IS(H)
a.s. as well.



Remark: For ∆t = tk+1 − tk → 0 the proposed
strategy tends to select each time Lj(t) such that j(t) =
argminjV (Ljρt). While granting the optimal convergence rate
at each time, at least if the estimated state is correct, this
continuous strategy is not practically viable, and could lead to
chattering. Assumption 1, however, allows us to derive non-
chattering switching sequences (and a worst-case exponential
bound using the dominant eigenvalue of LC,R). Hence it is key
to assess how well the proposed strategy fares with respect
to the optimal one with faulty initializations. In the next
sections we shall focus on this, leaving the estimate of the
optimal convergence rate for future work. We next show that
the weaker Assumption 2 is still sufficient to prove practical
stability in mean.

Theorem 3. Assume Assumption 2 to hold for V (ρ) =
tr(Kρ). Then for every ε > 0 there exists a non-chattering
sequence such that the measurement-based strategy stabi-
lizes the ε-“neighborhood” of the target IS,ε = { ρ ∈
D(H)|minσ∈IS ‖ρ−σ‖1 < ε} in mean, and enters it in finite
time.

Proof. First notice that minσ∈IS ‖ρ − σ‖1 =
minσ∈IS tr(|ΠS(ρ − σ)|) + tr(ρR) ≤ 2tr(ρR), with ΠS

the projector on the support of the target. So tr(ρR) ≤ ε/2
implies ρ ∈ IS,ε, and, since V (ρ) < kmaxtr(ρR), we
have Ωε/2kmax

⊆ IS,ε, where we define the sub-level
set Ω` = {ρ|V (ρ) ≤ `}. So it is sufficient to prove that
Ωβ = Ωε/2kmax

is stabilized by the average dynamics.
Consider α < β = ε/2kmax. By Assumption 2, and
since D(H) is compact and V̇ and V̈ are linear in
ρ, there exists δ > 0 such that minj V (Ljρ) < −δ
for all ρ /∈ Ωα, as well as two constants such that
maxρ,j |V (Ljρ)| < M1 and maxρ,j |V (L2

jρ)| < M2. Then,
if we take tk+1 − tk = ∆t < δ/M2 we are guaranteed
that V̇ remains negative for the whole switching interval.
Since V̇ (ρ) < −δ + M2∆t < 0, ∀ρ /∈ Ωα, we have
V (t) ≤ V (tk) + (−δ + M2∆t)(t − tk), and Ωα is reached
in finite time during some interval [t`, t`+1), and so is Ωβ ,
and remain in there until at least t`+1. We next prove that if
we start from Ωα we do not exit Ωβ , making it invariant. To
this aim, it is sufficient to note that if ρt`+1

∈ Ωα, then for
t > t`+1: V (ρt) ≤ α + M1∆t. The right-hand side can be
made arbitrarily small by reducing α and ∆t, so it is always
possible to ensure α+M1∆t ≤ β.

Remark: In this case, the lack of invariance of the target
prevents from guaranteeing non-zero dwell times close to it;
as a consequence, stability in mean is proved towards a set that
does not have limited support, hence convergence a.s. cannot
be established as before.

D. On robustness with respect to initialization errors

The knowledge of the initial condition plays a central role
in determining the effectiveness of the control law, as already
highlighted above. Let suppose that the system has a true initial
state ρ0 but our best estimate on the initial state is ρ0,e. If we
aim to stabilize a pure state, then by a simple majorization
argument (see [8]) it is easy to show that convergence for

the state-based strategy is guaranteed for any initial condition
such that supp(ρ0) ⊆ supp(ρ0,e), even if the switching
generators are selected using the projected evolution of the
wrong state. However, it is not straightforward to estimate how
fast convergence is attained, or what would be the worst-case
scenario.

When considering the SME, in the case of a non-exact
estimate of the initial condition, the evolution of the true state
is still described by model (1). Then, by using the fact that
the output signal Yt is independent of how we model the state,
we obtain the evolution of the estimated state:

dρt,e = Lj(ρt,e)dt+ GC(ρt,e)dW̃t, (8)

dW̃t = dWt + tr[(C + C†)(ρt − ρt,e)]dt. (9)

It is important to highlight that, while dWt is a Wiener process,
dW̃t is not, as it presents a drift term. This complicates the
study of the stability and convergence of the filter: some useful
results are provided in [13], [14]. In particular, for homodyne-
detection SMEs as in our case, it is known that the filter
is stable, and the measurement outcomes estimate converge,
namely tr[(C + C†)(ρt − ρt,e)] → 0 in mean. For extremal
eigenvalues of C, as in our case, this directly implies that
attaining stabilization for the estimate also implies stabiliza-
tion of the actual state, and vice-versa. If the measurement
effect is small with respect to the drift (e.g. we consider λC
for a positive, sufficiently small λ) then the SME behavior is
well approximated by the MME, and robustness is inherited
whenever supp(ρ0) ⊆ supp(ρ0,e). General convergence of the
density operator is harder to obtain, and may not always be
granted. When Assumption 1 holds, the target is invariant and
tr(ρ̂R,t) = tr(PRρ̂t) is decreasing, for both the actual and the
estimated state. This implies that the SME dynamics are stable
and the two evolutions do not diverge in mean.

It goes beyond the scope of this work to analyze what are the
conditions under which the switching law stabilizes both. we
tested initialization robustness numerically finding good results
in all simulations. What is affected by faulty initialization, in
general, is the convergence speed and we will exhibit some
evidence in the next section. Being the measurement-based
control law a true closed-loop solution, we expect it to have
a faster convergence than its open-loop counterpart, with the
state estimate getting more accurate using the measurements
and converging to the true state faster.

IV. APPLICATION TO MULTIPARTITE ENTANGLEMENT
GENERATION: GRAPH STATES

In this section, we test the performance of the proposed
control law in stabilizing an entangled state of a network of
qubits (two-dimensional systems). We focus on the case of
graph states: these are of practical interest [15] and offer a
highly symmetric structure on which we can rely upon to
design our control, which we briefly recall in the follow-
ing. Let us consider a graph G = (V, E) with |V| = n.
Each node of the graph j ∈ V is associated to a qubit:
H =

⊗n
a=1Ha, dim(Ha) = 2 ∀a. Each edge (i, j) ∈ E

describes the interaction between two adjacent qubits, this
interaction is described by the operator U(j,k). We will assume
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Figure 1: Results of the two simulations scenarios described in paragraphs IV-A1 and IV-A2. Only the trajectories of the true
state of the system are here reported (not the estimated one).

that U(j,k) acts as the generalized controlled-Z gate acting on
the qubits j and k. Thus we have U(j,k) = CZ(j,k) ⊗ I

(j,k)

with CZ = diag(1, 1, 1,−1). The product of all such unitary
matrices, UG =

∏
(j,k)∈E U(j,k) can be seen as a global

unitary, or in quantum computation terms a quantum circuit,
which is used to map a factorized states with respect to the
original qubit subsystems into entangled states, called graph
states. A more comprehensive description of these states and
their open-loop stabilization can be found in [16], [17].

We consider a particular pure state as our target state
but the procedure that follows can be adapted to any pure
target state. Assume that we want to prepare the state ρG =
UG |+〉 〈+|⊗n U†G. To construct (locality constrained) MME
generators that stabilize ρG we simply construct the local
generators which prepare each factor into ρj = |+〉 〈+| in the
un-rotated basis, extend each generator to the whole system
by tensor product with the identity and then transform these
operators by UG. The operators needed for local stabilization
are thus of the form LG,j = U†G(|+〉 〈−|j ⊗ Ij̄)UG. We
can then create a DLj

(ρ) for each qubit, using these noise
operators. In [17] it is possible to find the proof of the
fact that Dc(ρ) =

∑n
j=1

1
nDLj (ρ) makes ρG GAS for the

model d
dtρt = Dc(ρt). In order to find a Lyapunov function

suitable to our aims we introduce the graph Hamiltonian:
HG = −U†G

(∑
j Xj

)
UG where Xj = σx,j ⊗ Ij̄ and σx,j

represents the Pauli-x matrix acting on the j-th qubit. The
target state ρG may be seen as the unique ground state of
the graph Hamiltonian HG, i.e. ρG is the only state such
that tr(HGρG) = minλi, where λi are the eigenvalues of
HG. This implies that V (ρ) = tr(HGρ) is a valid linear
Lyapunov function. We can thus consider models (1) and (2)
with Lj(ρ) = DLj

(ρ) + DHG
(ρ) and GHG

(ρ) where Lj and
HG are as defined above. The results of [17] imply that any
convex combinations

∑
j αjLj(ρ) makes GAS in mean, and

thus satisfies Assumption 1.

A. Numerical simulations

We will now present two simulations realized on a 5-qubit
system that show the advantages of the proposed method.

Both simulations will have the same graph
(depicted in Figure 2), the same target state
ρG = UG |+〉 〈+|⊗n U†G, and the same true initial condition
ρ0 = UG |− −+ +−〉 〈− −+ +−|U†G. The only difference
between the two simulations will be the estimated initial
condition ρ0,e.

|ψ3〉 |ψ4〉 |ψ5〉

|ψ1〉

|ψ2〉

Figure 2: Graph configuration used in the simulations.

In order to numerically compute the solution of the SME,
we used the method proposed in [14], which we found the
most reliable. Regarding the simulations of the cyclic and the
state-based control laws, we simply used the Euler integration
method.

The two simulations have been run with step length dt =
0.005, number of steps N = 1000, steps between switching
ε = 10, each with 1000 realizations. The results of the two
simulations will be shown as graphs of the trace norm distance
of the true state from the target state 1

2 ||ρt − ρG||1 against
time.

1) Simulation 1: The first estimated initial state we consider
is ρ0,e = 0.5[ρt0 + Id/d]. This introduces an additional
“uniform” uncertainty on the correct initialization of the filter.
From Figure 1a we can observe that the measurement-based
trajectory converges on average with a speed that is similar to
the optimal one when the true initial state is available to both
strategies. Both do improve convergence with respect to cyclic



switching, which does not depend of course on the initial
condition estimate. For the wrong initial condition case, the
measurement-based trajectory improves the convergence with
respect to the state-based one, yet mostly in the central phase
of the evolution. The measurement-based trajectories shown in
Figure 1 are the average obtained from 1000 realizations. The
true trajectories would resemble the dashed ones in Figure 3.
These results already highlight how the performance depends
on the estimated state. This is further illustrated by the next
set of simulations.
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Figure 3: Evolution of the measurement-based trajectory in
Simulation 1. In solid blue the average trajectory over 1000
realizations is shown, the light-blue area shows the average
plus or minus one standard deviation while the dashed lines
represent five typical realizations of the quantum trajectories.

2) Simulation 2: The second estimated initial state we con-
sider is ρ0,e = 0.5[ρt0 + UG |+ +−−+〉 〈+ +−−+|U†G].
This second case has been designed to highlight the strength
of the proposed strategy. In fact, the state is a mixture of
the true state and a state which is not only orthogonal to the
true one but is obtained by flipping single-qubit states, so the
marginal states are also orthogonal. From the results shown
in Figure 1b we can observe that this case is very different
from the previous simulation. In particular, we can notice that
correct initialization still provides the best convergence for
both control laws. However, for the wrong initial condition
case, the state-based trajectory has the same convergence
rate as the cyclic trajectory, while the measurement based-
trajectory provides a noticeable improvement, closer to the
optimal performance. These results reinforce the intuition
that closed-loop control, which can take advantage of the
measurement outcome to obtain a better estimation of the state,
can adapt in real-time and better avoid switching sequences
that are not effective.
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