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Abstract— For discrete-time systems, flatness is usually de-
fined by replacing the time-derivatives of the well-known
continuous-time definition by forward-shifts. With this defini-
tion, the class of flat systems corresponds exactly to the class of
systems which can be linearized by a discrete-time endogenous
dynamic feedback as it is proposed in the literature. Recently,
verifiable necessary and sufficient differential-geometric condi-
tions for this property have been derived. In the present contri-
bution, we make an attempt to take into account also backward-
shifts. This extended approach is motivated by the one-to-one
correspondence of solutions of flat systems to solutions of a
trivial system as it is known from the continuous-time case. If
we transfer this idea to the discrete-time case, this leads to an
approach which also allows backward-shifts. To distinguish the
classical definition with forward-shifts and the approach of the
present paper, we refer to the former as forward-flatness. We
show that flat systems (in the extended sense with backward-
shifts) still share many beneficial properties of forward-flat
systems. In particular, they still are reachable/controllable,
allow a straightforward planning of trajectories and can be
linearized by a certain subclass of dynamic feedbacks.

I. INTRODUCTION

In the 1990s, the concept of flatness has been intro-
duced by Fliess, Lévine, Martin and Rouchon for nonlin-
ear continuous-time systems (see e.g. [1] and [2]). Flat
continuous-time systems have the characteristic feature that
all system variables can be parameterized by a flat output
and its time derivatives. This leads to a one-to-one corre-
spondence of solutions of a flat system to solutions of a
trivial system with the same number of inputs. Flat systems
form an extension of the class of static feedback linearizable
systems and can be linearized by an endogenous dynamic
feedback. Their popularity stems from the fact that many
physical systems possess the property of flatness and that
the knowledge of a flat output allows an elegant solution to
motion planning problems and design of tracking controllers.

For nonlinear discrete-time systems, flatness is usually
defined by replacing the time-derivatives of the well-known
continuous-time definition by forward-shifts. More precisely,
the flat output is a function of the state variables, input
variables, and forward-shifts of the input variables. Con-
versely, the state- and input variables can be expressed as
functions of the flat output and its forward-shifts. This point
of view has been adopted in [3], [4] and [5]. With this
definition, the class of flat systems corresponds exactly to
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the class of systems which can be linearized by a discrete-
time endogenous dynamic feedback as it is proposed e.g. in
[6]. Recently, verifiable necessary and sufficient differential-
geometric conditions have been derived in [7] and [8].
Furthermore, in [9] it has been shown that in the two-input
case even a transformation into a certain normal form is
always possible.

In this contribution, we focus solely on the one-to-one
correspondence of solutions of flat systems to solutions of a
trivial system (arbitrary trajectories that need not satisfy any
equation) with the same number of inputs, as it is known
from the continuous-time case. For discrete-time systems,
this would mean that the flat output may depend both
on forward- and backward-shifts of the system variables.
Conversely, the state- and input variables could be expressed
as functions of both forward- and backward-shifts of the
flat output. To distinguish the usual definition of [3], [4]
and [5] with forward-shifts from the alternative approach
of the present paper, we refer to the former as forward-
flatness. A special case of this alternative definition has
already been suggested in [10], where the flat output may
depend also on backward-shifts of the input variables but
not on backward-shifts of the state variables. To justify
our alternative approach, we show that flat systems (in the
extended sense with backward-shifts) still share many benefi-
cial properties of forward-flat systems. In particular, we show
that they still are reachable (and hence controllable) and
allow a straightforward planning of trajectories to connect
arbitrary points of the state space. Furthermore, we show that
they can be linearized by a dynamic feedback which shares
the beneficial properties of the class of continuous-time
endogenous feedback. With respect to the classical dynamic
feedback linearization problem, the following inclusions
hold: (static feedback linearizable systems) ⊂ (forward-flat
systems) ⊂ (flat systems) ⊂ (dynamic feedback linearizable
systems). We show that for single-input and linear systems
the properties of flatness, forward-flatness and static feedback
linearizability are equivalent, and present an example which
shows that the class of forward-flat systems is a strict subset
of the class of flat systems in the extended sense.

The paper is organized as follows: In Section II we
introduce the extended concept of flatness with both forward-
and backward-shifts and illustrate it by an example. Subse-
quently, we discuss the special case of single-input systems.
In Section III we first demonstrate the planning of trajec-
tories, prove the reachability of flat systems and apply the
concept to the sampled-data model of an induction motor.
Second, we show that flat systems can be linearized by a
particular subclass of dynamic feedbacks.
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II. DISCRETE-TIME FLATNESS WITH FORWARD- AND
BACKWARD-SHIFTS

Throughout this contribution, we consider time-invariant
discrete-time nonlinear systems in state representation of the
form

xi,+ = f i(x, u) , i = 1, . . . , n (1)

with dim(x) = n, dim(u) = m and smooth functions
f i(x, u). We assume that the systems meet the submersivity
condition, i.e. that the Jacobian-matrix of f with respect to
(x, u) meets

rank(∂(x,u)f) = n . (2)

This condition is necessary for reachability and consequently
also for flatness. However, we want to emphasize that we
do not require rank(∂xf) = n. As mentioned in [6],
this property is always met by systems which stem from
the exact or approximate discretization of continuous-time
systems. However, we want to consider discrete-time systems
in general, no matter whether they stem from a discretization
or not.

A. Equivalence of Solutions

To motivate our trajectory-based approach, we want to
recall that a continuous-time system ẋ = f(x, u) is flat
if there exists a one-to-one correspondence between its
solutions (x(t), u(t)) and solutions y(t) of a trivial system
(sufficiently smooth but otherwise arbitrary trajectories) with
the same number of inputs (see e.g. [2]).

In the following, we attempt to define flatness for discrete-
time systems in exactly the same way. Within this paper, we
call a discrete-time system (1) flat if there exists a one-to-
one correspondence between its solutions (x(k), u(k)) and
solutions y(k) of a trivial system (arbitrary trajectories that
need not satisfy any difference equation) with the same
number of inputs.

x+ = f(x, u) trivial system
↓ ↓

(x(k), u(k))
one-to-one⇐⇒ (y(k))

By one-to-one correspondence, we mean that the values of
x(k) and u(k) at some fixed time step k may depend on
an arbitrary but finite number of future and past values of
y(k), i.e. on the whole trajectory in an arbitrarily large but
finite interval1. Conversely, the value of y(k) at some fixed
time step k may depend on an arbitrary but finite number
of future and past values of x(k) and u(k). Thus, the one-
to-one correspondence of the solutions can be expressed by
maps of the form

(x(k), u(k)) = F (k, y(k−r1), . . . , y(k), . . . , y(k+r2)) (3)

and
y(k) = ϕ(k, x(k − q1), u(k − q1), . . . ,

x(k), u(k), . . . , x(k + q2), u(k + q2))
(4)

1Note that the time derivatives in the continuous-time case provide via
the Taylor-expansion also information about the trajectory both in forward-
and backward-direction.

with suitable integers r1, r2, q1, q2. These maps must satisfy
two conditions. First, in order to ensure the one-to-one
correspondence, the composition of (3) with the occurring
shifts of (4), or vice versa, must yield the identity map.
Second, since the trajectory y(k) of the trivial system is
arbitrary, after substituting (3) into the system equations
(1) they also must be satisfied identically. Because of the
time-invariance of the system (1), within this paper we only
consider maps

(x(k), u(k)) = F (y(k − r1), . . . , y(k), . . . , y(k + r2)) (5)

and

y(k) = ϕ(x(k − q1), u(k − q1), . . . , x(k), u(k), . . . ,

x(k + q2), u(k + q2)) .
(6)

which do not depend explicitly on the time step k.
Remark 1: The number of forward- and backward-shifts

in (5) and (6) can of course be different for the individual
components of y, x and u. Thus, where it is necessary we
will use appropriate multi-indices.

It is also important to note that the trajectories x(k) and
u(k) are of course not independent. Since (1) must hold at
every time step k, it is obvious that all forward-shifts x(k+j)
with j ≥ 1 of the state variables are determined by x(k) and
forward-shifts u(k+ j−1), j ≥ 1 of the input variables, i.e.

x(k + 1) = f(x(k), u(k))

x(k + 2) = f(f(x(k), u(k)), u(k + 1)) .

...

(7)

Thus, the forward-shifts of the state variables in (6) are
redundant. A similar argument holds for the backward-
direction. Since (1) meets the submersivity condition (2),
there always exist m functions g(x, u) such that the map

x+ = f(x, u) , ζ = g(x, u) (8)

is locally a diffeomorphism and hence invertible2. If we
denote by (x, u) = ψ(x+, ζ) its inverse

x = ψx(x+, ζ) , u = ψu(x+, ζ) , (9)

then all backward-shifts x(k− j) and u(k− j) of the state-
and input variables with j ≥ 1 are uniquely determined by
x(k) and the backward-shifts ζ(k − j), j ≥ 1 of the system
variables ζ defined by (8). This can be seen immediately by
a repeated evaluation of (9), which yields

(x(k − 1), u(k − 1)) = ψ(x(k), ζ(k − 1))

(x(k − 2), u(k − 2)) = ψ(ψ(x(k), ζ(k − 1)), ζ(k − 2)) .

... (10)

Thus, with (7) and (10) the map (6) can be written as

y(k) = ϕ(ζ(k−q1), . . . , ζ(k−1), x(k), u(k), . . . , u(k+q2)) .
(11)

2It should be noted that the choice of g(x, u) is not unique. For systems
with rank(∂xf) = n, we could always choose g(x, u) = u and the
variable ζ would represent the inputs u.



We conclude that in the trajectory-based approach the flat
output (11) is not only a function of x, u and forward-shifts
of u, but also a function of backward-shifts of ζ. Thus, it
extends the usual definition.

Remark 2: It is important to emphasize that the flatness
of the system (1) does not depend on the choice of the
functions g(x, u). Only the representation (11) of the flat
output may differ, while the parameterization (5) of x and
u is not affected. If we would restrict ourselves to sampled
data systems with rank(∂xf) = n, we could always choose
g(x, u) = u. This approach leads to a definition of flatness
as proposed in [10], where the flat output is a function of x,
u, and forward- and backward-shifts of u.

Before we give a precise geometric definition of flatness,
we also want to mention that considering both forward- and
backward-shifts in the parameterizing map (5) is actually not
necessary. Indeed, if there exists a parameterizing map (5)
and a flat output (11), then one can always define a new flat
output as the r1-th backward-shift of the original flat output.3

The corresponding parameterizing map is then of form

(x(k), u(k)) = F (y(k), . . . , y(k + r)) (12)

with r = r1 + r2.4 Thus, without loss of generality, in the
remainder of the paper we assume that the parameterizing
map (5) is of the form (12) and contains only forward-shifts.

B. Geometric Approach

In order to give a concise definition of flatness in-
cluding backward-shifts, we use a space with coordinates
(. . . ζ[−1], x, u, u[1] . . . ), where the subscript denotes the cor-
responding shift. Because of (7) and (10), every point of this
space corresponds to a unique trajectory (x(k), u(k)) of the
system (1). In accordance with (8), we have a forward-shift
operator δ defined by the rule

δ(h(. . . , ζ[−2], ζ[−1], x, u, u[1], . . . )) =

h(. . . , ζ[−1], g(x, u), f(x, u), u[1], u[2], . . . )

for an arbitrary function h. Because of (9), its inverse is
given by the backward-shift operator

δ−1(h(. . . , ζ[−1], x, u, u[1], u[2], . . . )) =

h(. . . , ζ[−2], ψx(x, ζ[−1]), ψu(x, ζ[−1]), u, u[1], . . . ) .

Likewise, every point of a space with coordinates
(. . . , y[−1], y, y[1], . . . ) corresponds to a unique trajectory
y(k) of a trivial system. Here the shift operators have the
simple form

δy(H(. . . , y[−1], y, y[1], . . . )) = H(. . . , y, y[1], y[2], . . . ) ,

δ−1
y (H(. . . , y[−1], y, y[1], . . . )) = H(. . . , y[−2], y[−1], y, . . . ) .

and β-fold application of δ and δy or their inverses will be
denoted by δβ and δβy , respectively.

3Note that the number of required backward-shifts may differ for the
individual m components of y, see Remark 1.

4Similarly, we may define a new flat output as the q1-th forward-shift of
the original flat output. The resulting flat output is then of the form y(k) =
ϕ(x(k), u(k), . . . , u(k + q)), with q = q1 + q2, and the corresponding
parameterizing map of the form (5).

With these preliminaries, we can give a geometric charac-
terization for the trajectory-based approach to discrete-time
flatness suggested in Section II-A. In accordance with the
literature on static and dynamic feedback linearization for
discrete-time systems, we consider a suitable neighborhood
of an equilibrium x0 = f(x0, u0), see e.g. [11] or [6].
However, we want to emphasize that for many systems the
concept may be useful even if the conditions fail to hold at
an equilibrium.

Definition 1: The system (1) is said to be flat around an
equilibrium (x0, u0), if the n+m coordinate functions x and
u can be expressed locally by an m-tuple of functions

yj = ϕj(ζ[−q1], . . . , ζ[−1], x, u, . . . , u[q2]) , (13)

j = 1, . . . ,m and their forward-shifts

y[1] = δ(ϕ(ζ[−q1], . . . , ζ[−1], x, u, . . . , u[q2]))

y[2] = δ2(ϕ(ζ[−q1], . . . , ζ[−1], x, u, . . . , u[q2]))

...

(14)

up to some finite order. The m-tuple (13) is called a flat
output.

If (13) is a flat output, then the representation of x and u
by the flat output is unique and a submersion of the form5

xi = F ix(y, . . . , y[R−1]) , i = 1, . . . , n

uj = F ju(y, . . . , y[R]) , j = 1, . . . ,m .
(15)

We only sketch the proof of this statement. Since x and u
can be expressed by ϕ, δ(ϕ), . . . , δr(ϕ), also all forward-
shifts of u and all backward-shifts of ζ can be expressed
by . . . , δ−1(ϕ), ϕ, δ(ϕ), . . . . By using the fact that the co-
ordinate functions u, u[1], . . . and ζ[−1], ζ[−2], . . . are func-
tionally independent, it can be shown with basic geometric
concepts that also all forward- and backward-shifts of ϕ must
be functionally independent. The functional independence
of . . . , δ−1(ϕ), ϕ, δ(ϕ), . . . guarantees that (15) is unique.
Based on the identity (x, u) = F (ϕ, δ(ϕ), . . . , δr(ϕ)) it
can be shown that (15) is a submersion. The fact that the
Jacobian matrix ∂(x,u)F (ϕ, δ(ϕ), . . . , δr(ϕ)) results in an
identity matrix implies that the rows of the Jacobian matrix
of F with respect to (y, . . . , y[R]) are linearly independent.
The special structure that Fx is independent of y[R] is a
consequence of the identity δy(Fx) = f(Fx, Fu).

If we restrict ourselves to forward-shifts in the flat output,
then Definition 1 leads to the special case of forward-flatness.

Definition 2: The system (1) is said to be forward-flat, if
it meets the conditions of Definition 1 with a flat output of
the form yj = ϕj(x, u, . . . , u[q2]).

The class of forward-flat systems has already been an-
alyzed in detail in the literature, see e.g. [3], [4] and [5].
In [7], it has been shown that every forward-flat system

5The multi-index R = (r1, . . . , rm) of (15) contains the number
of forward-shifts of each component of the flat output which is needed
to express x and u. The abbreviation y[R] denotes the components
y[R] = (y1

[r1]
, . . . , ym

[rm]
), and the integer r indicates the maximum

number of forward-shifts that appear in the parameterization (15), i.e.
r = max(r1, . . . , rm).



can be decomposed into a smaller dimensional forward-
flat subsystem and an endogenous dynamic feedback by a
suitable state- and input-transformation. Thus, a repeated
decomposition allows to check whether a system is forward-
flat or not. In [8], this test has been formulated in terms
of certain sequences of distributions, similar to the test for
static-feedback linearizability in [11]. Thus, the property
of forward-flatness can be checked in a computationally
efficient way. For flat systems that are not forward-flat, the
decomposition procedure as stated in [7] necessarily fails in
one step, likewise the test as proposed in [8].

In the following, we present a simple academic example
that is flat according to Definition 1 but not forward-flat. In
fact, the test for forward-flatness stated in [8] fails already
in the first step. Hence, the example already shows that the
class of forward-flat systems is indeed a strict subset of the
class of flat systems.

Example 1: Consider the system

x1,+ = u1

x2,+ = u2

x3,+ = x3 + x1u2 + x2u1 .

(16)

With the choice ζj = gj(x, u) = xj for j = 1, 2, the
combined map (8) forms a diffeomorphism and we claim
that the system has a flat output of the form

y = (ζ1[−1], x
3 − x2ζ1[−1]) . (17)

In order to prove that the system is flat, we need to show
that x and u can be expressed by (17) and its forward-shifts.
A repeated application of the shift operators to (17) yields
the set of equations

y1 = ζ1[−1] ,

y1[1] = x1 ,

y1[2] = u1 ,

y1[3] = u1[1] ,

y2 = x3 − x2ζ1[−1] ,

y2[1] = x3 + x2u1 ,

y2[2] = x3 + x2u1 + u2(x1 + u1[1]) ,

which can be solved for x1, x2, x3, u1, u2, ζ1[−1] and u1[1],

x1 = y1[1] , u1 = y1[2] , ζ1[−1] = y1 ,

x2 =
y2[1]−y

2

y1
[2]

+y1
, u2 =

y2[2]−y
2
[1]

y1
[3]

+y1
[1]

, u1[1] = y1[3] .

x3 =
y1y2[1]+y

1
[2]y

2

y1+y1
[2]

,

(18)

Hence, the system (16) is flat with a flat output (17) and the
corresponding parameterization (15) contained in (18).

We conclude this section with the following result for the
special case of single-input systems.

Theorem 1: For single-input systems (1) with m = 1,
the properties flatness, forward-flatness, and static feedback
linearizability are equivalent.

Proof: The implication static feedback linearizability
⇒ forward-flatness ⇒ flatness follows directly from the
corresponding definitions. For the other direction, consider a
general flat output

y = ϕ(ζ1[−q1], . . . , ζ
1
[−1], x, u

1, . . . , u1[q2]) (19)

of a system with m = 1 input. Since the forward-shifts
of (19) are independent of ζ1[−q1], (19) would be the only
function in the parameterization (15) depending on this
variable. Thus, ζ1[−q1] could not cancel out and accordingly
(19) itself must not be present in the parameterization
(15). Repeating this argumentation shows that (15) can only
contain forward-shifts of (19) which are already independent
of ζ1[−q1], . . . , ζ

1
[−1]. However, the first such forward-shift of

(19) is obviously a forward-flat output

y = ϕ(x, u1, . . . , u1[q2]) . (20)

A similar argumentation shows that (20) can actually only
depend on x, and u1 only appears in the n-th forward-
shift. Otherwise, the forward-shifts of u could not cancel out
and a parameterization (15) would not be possible. Thus,
(20) is a linearizing output in the sense of static feedback
linearizability.

Remark 3: With Theorem 1, the question whether flatness
is preserved under exact discretization can be reduced to the
question whether static feedback linearizability is preserved
for single-input systems. However, as shown in [12] by a
counterexample, this is in general not true. A practical non-
linear system which remains flat under exact discretization
is e.g. the wheeled mobile robot discussed in [6].

III. TRAJECTORY PLANNING AND DYNAMIC FEEDBACK
LINEARIZATION

In this section, we show that flat systems (in the extended
sense with backward-shifts) still allow straightforward tra-
jectory planning and dynamic feedback linearization.

A. Trajectory Planning

The popularity of differentially flat systems is mainly due
to the fact that the knowledge of a flat output allows an
elegant solution to motion planning problems. In this section,
we show that also discrete-time flat systems according to
Definition 1 allow a straightforward planning of trajectories.

Usually the motion planning problem consists in finding
trajectories (x(k), u(k)) that satisfy the system equations (1)
and some initial and final conditions

(x(ki), u(ki)) = (xi, ui) , (x(kf ), u(kf )) = (xf , uf ) ,

with kf > ki. For flat systems, this task can be formulated
in terms of trajectories y(k) for the flat output. Since every
trajectory y(k) corresponds to a solution of (1), it remains
to require that the trajectory y(k) meets

(xi, ui) = F (y(ki), y(ki + 1), . . . , y(ki + r))

(xf , uf ) = F (y(kf ), y(kf + 1), . . . , y(kf + r)) .
(21)

If we assume that kf > ki + r holds, then since the
parameterization (15) is a submersion, the set of equa-
tions (21) can be solved independently for 2(n + m)
values of y(ki), . . . , y(kf + r).6 The remaining values of

6For certain parameterizations the assumption kf > ki + r may be
relaxed. It would be sufficient to require that the integer kf is large enough,
such that (21) can still be solved for arbitrary 2(n+m) values of the set
y(ki), . . . , y(kf + r).



y(ki), . . . , y(kf + r) can be chosen arbitrarily, and thus
the trajectories y(k) are in general not unique.7 Once the
trajectories y(k) are determined, the corresponding state- and
input-trajectories are also uniquely determined by

(x(k), u(k)) = F (y(k), y(k + 1), . . . , y(k + r)) ,

for k = ki, . . . , kf . Since this procedure allows to connect
any two points of the state space (locally, where the system
is flat), we immediately get the following result.

Theorem 2: Flat systems according to Definition 1 are
locally reachable.

With Theorem 2 and the fact that every reachable linear
system can be transformed into Brunovsky normal form, we
get the following corollary.

Corollary 1: For linear time-invariant systems the prop-
erties flatness, forward-flatness and static feedback lineariz-
ability are equivalent.

To illustrate the practical applicability of discrete-time flat-
ness, in the following we present a simulation result for the
sampled-data model of an induction motor. Similar to [13],
we compute a feedforward control which transfers the rotor
speed between two stationary set-points. However, instead
of the classical approach to sample and hold a feedforward
control obtained from the continuous-time model, we directly
compute a discrete-time feedforward control based on an
implicit Euler-discretization of the system.

Example 2: We consider the reduced-order continuous-
time model of an induction motor discussed in [14], with
the state x = (ω, ψd, ρ), the input u = (id, iq), and the same
constant values µ, τL, J, η,M, np as in [13]. It is well-known
that the continuous-time system possesses a flat output which
consists of the rotor speed ω and the flux angle ρ. Based on
an implicit Euler-discretization given by

1
Ts

(x1,+ − x1) = µx2,+u2 − τL
J

1
Ts

(x2,+ − x2) = −ηx2,+ + ηMu1

1
Ts

(x3,+ − x3) = npx
1,+ + ηM u2

x2,+

(22)

with sampling time Ts, a discrete-time system (1) can be
derived by solving (22) for x1,+, x2,+ and x3,+. The obtained
system is flat in the sense of Definition 1, and with the choice
ζj = gj(x, u) = uj for j = 1, 2, a flat output is given by

y = (x1 + Ts(
τL
J − µx

2ζ2[−1]), x
3 − Ts(npx1 +

Mηζ2[−1]

x2 )) .

This flat output has the beneficial property y[1] = (x1, x3),
i.e., its first forward-shift coincides with the continuous-time
flat output. From the corresponding parametrization (15), a
discrete-time feedforward control has been computed that
transfers the rotor speed between two stationary set-points
like in [13]. Applying the calculated feedforward control
(piecewise constant during the sampling intervals) to the
continuous-time system yields the simulation result shown
in Fig. 1. It can be observed that the reference trajectory is
perfectly tracked.

7Like in the continuous-time case, this property can be very beneficial in
optimal control problems, e.g. minimizing control effort.
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Fig. 1. Open-loop simulation result (Ts = 10ms, as in [13]).

B. Dynamic Feedback Linearization

In the continuous-time framework, flatness is closely re-
lated to the dynamic feedback linearization problem. To be
precise, the class of differentially flat systems is equiva-
lent to the class of systems linearizable via endogenous
dynamic feedback. A continuous-time dynamic feedback ż =
α(x, z, v) with u = β(x, z, v) is said to be endogenous, if
there exists a one-to-one correspondence between trajectories
of the closed-loop system and trajectories of the original
system. As a consequence, z and v can be expressed as
functions of x, u and time derivatives of u.

According to [6], a discrete-time dynamic feedback is
said to be endogenous, if its states z and inputs v can be
expressed as functions of x, u and forward-shifts of u. It
can be shown that the class of discrete-time systems that is
linearizable via endogenous dynamic feedback in the sense of
[6] exactly corresponds to the class of forward-flat systems.
In the following, we show that also for flat systems according
to Definition 1 there always exists a linearizing discrete-
time dynamic feedback. However, in general the required
feedback is not contained within the class of endogenous
dynamic feedbacks proposed in [6].

Theorem 3: A flat system (1) can be linearized by a
dynamic feedback

z+ = α(x, z, v) , u = β(x, z, v) (23)

with the following properties:

(a) The closed-loop system is submersive.
(b) The trajectories of the closed-loop system are in one-

to-one correspondence to the trajectories of the original
system.

Proof: The fact that the parameterizing map (15)
is a submersion implies that also the parameterization Fx
is a submersion. Consequently, there exists a map z =
Fz(y, . . . , y[R−1]), such that the combined map (x, z) =
(Fx, Fz) := Fxz forms a diffeomorphism, with dim(z) =
p ≤ mr − n. We define the map Φ(y, . . . y[R]) given by

x = Fx(y, . . . , y[R−1]) , v = y[R] ,

z = Fz(y, . . . , y[R−1])
(24)

and its inverse Φ̂(x, z, v) given by

(y, . . . , y[R−1]) = F̂xz(x, z) , y[R] = v . (25)



Based on (25), a linearizing dynamic feedback is given by

z+ = δy(Fz) ◦ Φ̂(x, z, v) , u = Fu ◦ Φ̂(x, z, v) , (26)

as we prove next by transforming the closed-loop dynamics

x+ = f(x, Fu ◦ Φ̂(x, z, v))

z+ = δy(Fz) ◦ Φ̂(x, z, v)
(27)

into Brunovsky normal form. With the state-transformation
(x, z) = Fxz(y, . . . , y[R−1]) and the input-transformation
v = y[R] we get

(y+, . . . , y+[R−1]) = F̂xz ◦
[
f(x, Fu ◦ Φ̂(x, z, v))

δy(Fz) ◦ Φ̂(x, z, v)

]
◦ Φ ,

which can be rewritten as

(y+, . . . , y+[R−1]) = F̂xz ◦
[
f(Fx, Fu)
δy(Fz)

]
. (28)

Since the parameterization (15) satisfies the system equations
identically, by substituting F into δ(x) = f(x, u) we get the
relation δy(Fx) = f(Fx, Fu) and may rewrite (28) as

(y+, . . . , y+[R−1]) = F̂xz ◦
[
δy(Fx)
δy(Fz)

]
.

Due to F̂xz ◦ (δy(Fx), δy(Fz)) = δy(F̂xz ◦ (Fx, Fz)),
and since per definition F̂xz ◦ (Fx, Fz) yields identically
(y, . . . , y[R−1]), the Brunovsky normal form follows as8

(y+, . . . , y+[R−1]) = δy(y, . . . , y[R−1]) = (y[1], . . . , y[R]) .

Since the closed-loop system can be transformed into
Brunovsky normal form, the dynamic feedback (26) pre-
serves both submersivity and reachability, and it remains
to show condition (b). Due to (24) we have a one-to-
one correspondence between trajectories of the closed-loop
system and trajectories of the trivial system. However, the
trajectories of the trivial system are by the definition of
flatness in one-to-one correspondence to the trajectories of
the original system, which completes the proof.
Since two submersive systems (1) with a one-to-one corre-
spondence between their trajectories are either both flat or
non-flat, we get the following corollary.

Corollary 2: Applying a discrete-time dynamic feedback
(23) with the properties (a) and (b) of Theorem 3 does not
affect the flatness of a system (1).

In contrast to a continuous-time endogenous dynamic
feedback, the additional condition (a) is required. Otherwise,
the reachability and hence also flatness could be lost. The
difference to the notion of discrete-time endogenous dynamic
feedback introduced in [6] is that in our case the variables z
and v of (23) may depend on both forward- and backward-
shifts (. . . , ζ[−1], x, u[1], . . . ) of the system variables.

8The multi-index R = (r1, . . . , rm) denotes the length of the individual
chains (yj,+, . . . , yj,+

[rj−1]
) = (yj

[1]
, . . . , yj

[rj ]
) of the Brunovsky normal

form. For flat systems (1) with rank(∂uf) < m, redundant inputs can be
chosen as components of the flat output, and the Brunovsky normal form
of the corresponding extended system has chains of length zero.

Remark 4: In the classical dynamic feedback linearization
problem, the one-to-one correspondence between trajectories
of the closed-loop system and the original system is not
required. Thus, the linearizing output of the closed-loop
system can possibly not be expressed in terms of forward-
and backward-shifts of the original system variables.

IV. CONCLUSION

In this contribution, we have investigated the extension
of the notion of discrete-time flatness to both forward- and
backward-shifts. We have shown that adding backward-shifts
fits very nicely with the concept of one-to-one correspon-
dence of solutions of the original system and a trivial system,
as it is well-known from the continuous-time case. Even with
backward-shifts, reachability and controllability still hold
and trajectories can be planned in a straightforward way.
Furthermore, such systems can be linearized by a particular
subclass of dynamic feedbacks. Thus, from an application
point of view, the basic properties of forward-flat systems are
preserved. Since we expect that the class of flat systems in
the extended sense including backward-shifts is significantly
larger than the class of forward-flat systems, this opens many
new perspectives for practical applications as illustrated by
the presented induction motor. Future research will deal
with the systematic construction of flat outputs and finding
necessary and/or sufficient conditions as they already exist
for forward-flat systems. Another open question, which is
motivated by the continuous-time case, is whether the class
of flat systems is only a subset of or equivalent to the class
of systems linearizable by dynamic feedback, see Remark 4.
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