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Abstract— This letter quantifies the effect of random
model uncertainty on finite horizon linear time-varying
(LTV) systems. Mean and standard deviation field are ap-
proximated with high accuracy and efficiency by a Hilbert
space technique called polynomial chaos expansion (PCE).
The deterministic expansion coefficients of the generalized
Fourier series are determined via orthogonal projection,
also known as Galerkin projection. We propose the projec-
tion of uncertain systems in linear fractional representation
(LFR), which can have computational benefits. The tech-
nique is benchmarked on a two-link robotic manipulator.

Index Terms— Robust control, time-varying systems, un-
certain systems

I. INTRODUCTION

THIS letter considers the probabilistic robustness analysis
of finite horizon linear time-varying (LTV) systems. Such

systems frequently arise in engineering applications, e.g.,
robotic manipulators [1], space launch vehicles [2], or aircraft
[3], [4]. The considered uncertainties are parametric with a
given probability distribution, which allows using theory of
probability and function spaces. As a robustness metric, the
mean and standard deviation from the nominal (unperturbed)
trajectory are considered. Despite well-known advantages, e.g.,
lower conservatism in contrast to a deterministic worst-case
analysis, it should be appreciated that the introduction of
probabilities does not simplify the problem.

Traditionally, sampling-based black-box methods such as
Monte Carlo have been used to tackle the problem. These
methods provide, in general, simple yet slowly convergent
approximations. Hence, they are often not very computation-
ally efficient. More recently, based on the first applications
to (nonlinear) systems and control [5], [6]; polynomial chaos
based methods have sparked interest in probabilistic robust
control, e.g., for stochastic LQR [7], linear parameter-varying
[8], or model predictive [9] control. The theory of polynomial
chaos has been available for quite some time [10]. A brief
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overview of it is given in Section III. Effectively, it exploits the
structure of mappings under uncertainty via orthogonal projec-
tion on polynomial basis functions. Theoretically, polynomial
chaos expansions (PCEs) promise a superior convergence
over sampling-based methods. Still, for many engineering
problems, PCE is computationally expensive.

The chief contribution of this letter is to simplify the PCE
of uncertain LTV systems by applying a linear fractional
transformation (LFT). The LFT separates the deterministic and
stochastic problem parts, yielding a distinct problem structure.
In this structure, the stochastic part is always given by a linear
mapping, i.e., the uncertainty block ∆ from classical robust
control. This significantly reduces the computational effort
required for the PCE of the uncertain system, see Section IV.
The PCE allows for an efficient extraction of the stochastic
moments for a probabilistic robustness analysis of the system’s
response under random model uncertainty.

The effectiveness of the proposed approach is demonstrated
on a two-link robotic manipulator benchmark in Section V.
The benchmark compares both a conventional PCE-based
approach without structure separation and the LFT-based ap-
proach proposed in this letter with classical sampling-based
approaches.

II. NOTATION

The letter follows a standard notation as introduced,
e.g., in [11]–[13]. Let (Ω,F ) be a measurable space and
(Ω,F , µ) a probability space. The set Ω is the sample
space, equipped with σ-algebra F and probability measure
µ. We consider R-valued random variables, i.e., measurable
functions f : (Ω,F ) 7→ (R,G ), with Borel σ-algebra G .
Denote L2(Ω, µ;R) the Hilbert space w.r.t. the inner prod-
uct 〈f, g〉L2 =

∫
Ω
f(ω)g(ω) dµ(ω) = E[fg] containing all

R-valued random variables f with finite induced L2-norm
‖f‖L2 =

√
〈f, f〉L2 < ∞. In favor of highlighting the

association with orthogonality, the expectation E[·] w.r.t. µ is
written as 〈·〉 when appropriate, e.g., 〈f, g〉L2 = 〈fg〉.

We study δ as a Rnδ -valued random vector whose entries are
made up of independent random variables. For i = 1, ..., nδ , let
(Ωi,Fi, µi) be a collection of probability spaces. The product
probability space (Ω,F , µ) is defined via Ω = Ω1× ...×Ωnδ ,
F = F1⊗...⊗Fnδ , and µ = µ1⊗...⊗µnδ . Finally, assuming
separability [11], the L2 space over the product probability
space is equivalent to the Hilbert space tensor product, i.e.,
L2(Ω1 × ...× Ωnδ , µ1 ⊗ ...⊗ µnδ ;R) = ⊗nδi=1L

2(Ωi, µi;R).

This article has been accepted for publication in IEEE Control Systems Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LCSYS.2021.3078881

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



III. SPECTRAL METHODS FOR UNCERTAINTY
QUANTIFICATION

This section provides a brief overview of spectral methods
for uncertainty quantification, along the lines of [11], [12]. For
a proper introduction, the reader is referred to the literature.
This letter considers uncertain dynamic systems modeled by
nth order ordinary differential equations (ODEs) over a finite
time horizon t ∈ [0, T ]. Assume the ODE can be written as

0 = f
(

(n)
y (t, δ), ..., y(t, δ),

(m)
u (t), ..., u(t), t, δ

)
y(t = 0) = y0

(1)

with Rny -valued output y(t, δ), a given, deterministic input
u(t) ∈ Rnu , m ≤ n, and random model uncertainty δ ∈
L2(Ω, µ;R). Generally, the initial condition y0 can also be
uncertain, but this is omitted for brevity. Further assume a
unique solution to (1) exists for a given u(t), y0, and for all
values of δ occurring with non-zero probability. Uncertainty
quantification studies the system’s response surface viewed as
a stochastic process, i.e., a function y : [0, T ]×Ω 7→ Rny such
that each y(t, ·) is a random vector for time t ∈ [0, T ].

Spectral methods1 characterize the stochastic process y(t, δ)
in a mathematical fashion similar to Fourier series expan-
sion for periodic time signals of finite energy. In essence,
this breaks down to orthogonal decomposition, i.e., a series
expansion

y(t, δ) =

∞∑
k=0

yk(t)ψk(δ) (2)

with deterministic expansion coefficients yk and a suitable
orthogonal basis {ψk}∞k=0 of L2(Ω, µ;R). Henceforth, func-
tion arguments will be omitted for notational convenience,
when clear from the context. Note that the right-hand side of
(2) assumes independence of the deterministic and stochastic
function spaces [12]. The generalized Fourier coefficients yk,
also referred to as stochastic modes of y, are determined via
the standard Hilbert space orthogonal projection

yk(t) =
〈y, ψk〉
〈ψk, ψk〉

=

∫
Ω
y(t, δ)ψk(δ) dµ(δ)∫

Ω
ψ2
k(δ) dµ(δ)

. (3)

Note that function approximation by the above technique is
analogous to the orthogonal projection of a point p ∈ R3 of
the euclidean space onto a two-dimensional subspace, i.e., a
plane.

Selecting multivariate orthogonal polynomials as a basis for
⊗nδi=1L

2(Ωi, µi;R) results in what is known as generalized
polynomial chaos2 (gPC) expansions. Note that such an or-
thogonal system of multivariate polynomials, which satisfies

ψ0 = 1

〈ψk, ψl〉 = δklE[ψ2
k] ∀k, l ∈ N0

(4)

with Kronecker delta δkl, is yielded simply by taking products
of the univariate orthogonal polynomials for L2(Ωi, µi;R).

1Abstractly speaking, spectral methods can also be applied to uncertainty
quantification of various other types of mathematical models, e.g., algebraic
or partial differential equations.

2The term chaos has nothing to do with chaotic behavior of nonlinear
dynamic systems. According to [11], it is more related to the study of
stochastic processes and originates from the theory of Brownian motion [10].

The main motivation for selecting orthogonal polynomials is
as follows. In practice, due to finite computational resources,
the infinite series expansion (2) needs to be truncated to

K + 1 =
(nδ + d)!

nδ!d!
=

(
nδ + d

d

)
(5)

terms, i.e., a finite orthogonal basis consisting of multivariate
polynomials with maximum total degree d. Thus, y ≈ ŷ =∑K
k=0 ykψk, and there will be a truncation error orthogonal

to span{ψ0, ..., ψK}, which is known to converge in the mean
square sense [14]

lim
K→∞

‖y − ŷ‖L2 = 0. (6)

Furthermore, apart from the above limit, function approx-
imation by orthogonal polynomial expansions improves ex-
ponentially as the smoothness of y increases. This appeal-
ing property is known as spectral convergence. In order to
elaborate, the notion of a Sobolov space needs to be defined.
Denote Hk(Ω, µ;R) the Sobolov space consisting of all ran-
dom variables f such that all j = 0, ..., k (weak) derivatives
djf
dωj ∈ L

2(Ω, µ;R). The Sobolev inner product and norm are
〈f, g〉Hk =

∑k
j=0〈

djf
dωj ,

djg
dωj 〉L2 and ‖f‖Hk =

√
〈f, f〉Hk .

Now the spectral convergence theorem for Legendre polyno-
mials can be stated, which are the orthogonal polynomials
for the uniform measure. A similar result can be shown for
classical orthogonal polynomials, see [11].

Theorem 1 (Spectral convergence of Legendre polynomial
expansions [11]). For all f ∈ Hk(Ω, µ;R), there exists a
constant Ck ≥ 0 that may depend upon k but is independent
of d and f such that

‖f−Πdf‖L2 =
∥∥∥f− d∑

i=0

〈f, ψi〉
〈ψ2
i 〉

ψi

∥∥∥
L2
≤ Ckd−k‖f‖Hk (7)

where ψi are orthogonal Legendre polynomials for µ = 1/2
on Ω = [−1, 1]

Thus, regularity of the function to be approximated in-
creases the convergence rate in mean square. On the other
hand, discontinuities can degrade convergence due to Gibbs-
type phenomena, see [12].

In addition to promising convergence properties, orthogo-
nality of the PCE allows to derive explicit expressions for
the statistical moments. For a stochastic process y(t, δ), this
implies, e.g., mean field

E[y(t, δ)] = 〈ψ0,

∞∑
k=0

yk(t)ψk〉 = y0(t), (8)

covariance

C(t, t′) = E
[(
y(t, δ)− y0(t)

)(
y(t′, δ)− y0(t′)

)T ]
= 〈

∞∑
k=1

yk(t)ψk

∞∑
l=1

yl(t
′)Tψl〉

=

∞∑
k=1

yk(t)yk(t′)T 〈ψ2
k〉,

(9)
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and variance

V[y(t, δ)] =

∞∑
k=1

yk(t)yk(t)T 〈ψ2
k〉. (10)

There are generally two approaches to determine the
stochastic modes (3): intrusive and non-intrusive methods.
Non-intrusive approaches treat the model (1) as a black-box
and numerically compute the integral 〈y, ψk〉 using realiza-
tions of δ, e.g., via deterministic Gaussian quadrature, Monte
Carlo (MC) or quasi-MC integration. In contrast, intrusive
methods rely on the Galerkin approach to project the model
equations on the orthogonal basis spanned by ψk, yielding a
(K+1)-times expanded system of generally coupled equations
for the stochastic modes yk. The latter approach is pursued in
this letter.

IV. POLYNOMIAL CHAOS EXPANSION OF UNCERTAIN
LTV SYSTEMS

A. Galerkin Projection of Uncertain LTV Systems in
Descriptor Form

For t ∈ [0, T ], consider an uncertain LTV system in
descriptor (implicit) form

E(t, δ)ẋ(t, δ) = A(t, δ)x(t, δ) +B(t, δ)u(t)

y(t, δ) = C(t, δ)x(t, δ) +D(t, δ)u(t)

x(t = 0) = x0

(11)

with Rnx -valued state vector x(t, δ), input u(t) ∈ Rnu ,
and Rny -valued output y(t, δ). Note that u(t) is a given,
deterministic time signal, e.g., a certain control law. Assume
that each E,A,B,C,D is a known continuous mapping for
all [0, T ]×Ω to a real matrix of appropriate dimension. Next,
provided the mass matrix E has full rank for all [0, T ] × Ω,
the aim is to apply Galerkin projection in order to determine
the stochastic modes of the mappings x(t, δ) and y(t, δ).

Galerkin projection breaks down to inserting the gPC ex-
pansions of δ, x, y, multiplying the equation by each ψk for
k = 0, ...,K, and averaging, i.e., calculating the scalar product
[11]. Thus, denoting

xTi (t)Ψ(δ) := [xi,0(t), ..., xi,K(t)]


ψ0

ψ1(δ)
...

ψK(δ)



yTi (t)Ψ(δ) := [yi,0(t), ..., yi,K(t)]


ψ0

ψ1(δ)
...

ψK(δ)


(12)

〈E(t, ·)

 ẋ
T
1 (t)
...

ẋTnx(t)

ΨΨT 〉 = 〈A(t, ·)

 x
T
1 (t)
...

xTnx(t)

ΨΨT 〉+ 〈B(t, ·)u(t)ΨT 〉, 〈

 x
T
1 (0)

...
xTnx(0)

ΨΨT 〉 = 〈x0ΨT 〉

〈

 y
T
1 (t)

...
yTny (t)

ΨΨT 〉 = 〈C(t, ·)

 x
T
1 (t)
...

xTnx(t)

ΨΨT 〉+ 〈D(t, ·)u(t)ΨT 〉

(13)

the gPC expansion of the ith component of x(t, δ) and
y(t, δ), respectively, a deterministic system of equations for
the expansion coefficients can be derived as follows. Inserting
(12) in (11), multiplying by ΨT , and taking the expectation
yields the linear matrix differential equation (13) displayed at
the bottom of the page. References [7] and [15] show that it
is convenient to concatenate the PCE coefficients vertically

X(t) =
[
xT1 (t), ..., xTnx(t)

]T ∈ R(K+1)nx

Y (t) =
[
yT1 (t), ..., yTny (t)

]T ∈ R(K+1)ny
(14)

such that the transposition of (13) can be vectorized [using
vec(ABC) = (CT ⊗A)vec(B)] to

E(t)Ẋ(t) = A(t)X(t) + B(t)u(t)

Y (t) = C(t)X(t) +D(t)u(t)
(15)

with deterministic initial condition X(0) = x0 ⊗ 〈Ψ〉 and

E(t) = 〈E(t, ·)⊗ (ΨΨT )〉,
A(t) = 〈A(t, ·)⊗ (ΨΨT )〉, B(t) = 〈B(t, ·)⊗Ψ〉,

C(t) =
(
Iny ⊗ 〈ΨΨT 〉

)−1〈C(t, ·)⊗ (ΨΨT )〉,

D(t) =
(
Iny ⊗ 〈ΨΨT 〉

)−1〈D(t, ·)⊗Ψ〉.

(16)

Note that the gPC expansion of δ still needs to be inserted in
(16), which has been omitted for better readability.

While (15) is generally an approximation to the stochastic
dynamics (11) due to truncation, the projection integrals in
(16) are assumed to be computable exactly, e.g., via Gaussian
quadrature. However, based on the dependency on δ, this can
be a difficult task, see e.g. [12] for a detailed treatment of
common nonlinearities. To illustrate, if the dependency on δ
is polynomial with maximum total degree dδ , a multiplication
tensor of order dδ+2 needs to be computed in order to calcu-
late the inner products. In general, these multiplication tensors
will have (K + 1)dδ+2 entries [11]. Note that multiplying
the state equation in (11) by E−1(t, δ) in order to obtain
an explicit system representation complicates the projection
integrals.

B. Galerkin Projection of Uncertain LTV Systems in
Linear Fractional Representation

Instead, if the uncertain system (11) can be written as a
linear fractional transformation — which is always possible if
δ enters rationally [16] — Galerkin projection can be applied
to the linear fractional representation (LFR) of the system. As
depicted in Fig. 1, assume (11) can be transformed into the
interconnection of a nominal system Gẋ(t, δ)

v(t, δ)
y(t, δ)

 =

AG(t) Bw(t) Bu(t)
Cv(t) Dvw(t) Dvu(t)
Cy(t) Dyw(t) Dyu(t)

x(t, δ)
w(t, δ)
u(t)

 (17)
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with an isolated uncertain part

w(t, δ) = ∆(δ)v(t, δ). (18)

Analogous to robust control theory [16], ∆(δ) denotes a
random diagonal matrix

∆(δ) =

δ1Im1 0
. . .

0 δnδImnδ

 (19)

generated by repetition of each δi with multiplicity mi such
that n∆ =

∑nδ
i=1mi. Note that writing the system in explicit

form causes no extra difficulties (in contrast to the previous
section), since the inverse and multiplication of LFTs are
straightforward to compute [16].

G

∆

uy

wv

Fig. 1. Linear fractional representation of an uncertain LTV system

In addition to (14), denote

W (t) =
[
wT1 (t), ..., wTn∆

(t)
]T ∈ R(K+1)n∆

V (t) =
[
vT1 (t), ..., vTn∆

(t)
]T ∈ R(K+1)n∆

(20)

the expansion coefficients of w and v. Since the nominal
system (17), i.e., G in Fig. 1, is entirely deterministic, its
stochastic modes are decoupled [as opposed to (15)]Ẋ(t)

V (t)
Y (t)

 =

AG(t) Bw(t) Bu(t)
Cv(t) Dvw(t) Dvu(t)
Cy(t) Dyw(t) Dyu(t)

X(t)
W (t)
u(t)

 (21)

with

AG(t) = AG(t)⊗ IK+1 Bw(t) = Bw(t)⊗ IK+1

Cv(t) = Cv(t)⊗ IK+1 Dvw(t) = Dvw(t)⊗ IK+1 (22)
Cy(t) = Cy(t)⊗ IK+1 Dyw(t) = Dyw(t)⊗ IK+1

and

Bu(t) =
(
Inx ⊗ 〈ΨΨT 〉

)−1(
Bu(t)⊗ 〈Ψ〉

)
= Bu(t)⊗ e1

Dvu(t) =
(
In∆ ⊗ 〈ΨΨT 〉

)−1(
Dvu(t)⊗ 〈Ψ〉

)
= Dvu(t)⊗ e1

Dyu(t) =
(
Iny ⊗ 〈ΨΨT 〉

)−1(
Dyu(t)⊗ 〈Ψ〉

)
= Dyu(t)⊗ e1.

(23)

In fact, these are sparse simple matrices, where 〈Ψ〉 = e1 is
a (K + 1)-dimensional unit vector [1, 0, ..., 0]T . The isolated
uncertain part

W (t) =
(
In∆
⊗ 〈ΨΨT 〉

)−1〈∆⊗ (ΨΨT )〉V (t)

=: ∆ΠV (t)
(24)

∆Π =

Im1
⊗ (〈ΨΨT 〉−1〈δ1ΨΨT 〉) 0

. . .
0 Imnδ ⊗ (〈ΨΨT 〉−1〈δnδΨΨT 〉)

 (25)

is coupled solely via a third-order multiplication tensor [12]
regardless of how δ originally enters (11), since ∆(δ) is
an affine mapping. The special structure of the Galerkin
projection ∆Π is indicated in (25). The decoupling and
simplicity of Galerkin projection applied to uncertain systems
in linear fractional representation stands out compared to the
coupled system of equations derived in the previous section,
where the treatment of rational parameter dependencies is
computationally intensive in general.

V. APPLICATION EXAMPLE

The effectiveness of the approach is analyzed in this section.
Fig. 2 displays a two-link planar manipulator also studied in
[17], with origin [1]. The rigid body equations of motion
governing the mechanical system can be derived with the
Lagrange formalism [1][

α+ 2β cos(θ2) γ + β cos(θ2)
γ + β cos(θ2) γ

] [
θ̈1

θ̈2

]
+[

−β sin(θ2)θ̇2 −β sin(θ2)(θ̇1 + θ̇2)

β sin(θ2)θ̇1 0

] [
θ̇1

θ̇2

]
=

[
τ1
τ2

] (26)

where the first term corresponds to the inertial forces, the
second term denotes the Coriolis and centrifugal forces, and
τ = [τ1, τ2]T is the vector of applied torques. The robot’s
mass parameters are

α = I1 + I2 +m1r
2
1 +m2(l21 + r2

2)

β = m2l1r2

γ = I2 +m2r
2
2

(27)

where each link has moment of inertia Ii, mass mi, and length
li. The distance between the ith center of mass and joint is
denoted ri, see Fig. 2.

θ1

l1

r1

y

x

θ2

r2
l2

Fig. 2. Two-link planar manipulator

Deciding on a desired trajectory for the tool center
point depicted in Fig. 3, a nominal reference trajectory
Θ̇∗(t),Θ∗(t), τ∗(t) for t ∈ [0, 5s] and Θ = [θ1, θ2, θ̇1, θ̇2]T is
computed via inverse kinematics [1]. After linearization w.r.t.
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the reference trajectory, a linear quadratic regulator is designed
for the nominal LTV system in order to minimize the quadratic
cost

J = x(T )TFx(T ) +

∫ T

0

x(t)TQx(t) + u(t)TRu(t) dt (28)

with x = Θ−Θ∗, u = τ − τ∗, Q = diag(10, 1, 10, 1), R = I ,
and F = diag(1, 0.1, 1, 0.1). The optimal feedback control
u(t) = −R−1BTP (t)x(t) = K(t)x(t) is yielded by solving
the associated Riccati differential equation [18].

Fig. 3. Reference trajectory

The aim is to quantify the deviation of the closed-loop from
the reference trajectory due to random model uncertainty in
the robot’s mass and inertial properties. Specifically, this is
to be achieved by analysis of mean and standard deviation of
the stochastic linear perturbations x(t, δ) about the reference
trajectory if δ = [I1, I2,m1,m2, r1, r2]T is modeled as a
random vector, where each coordinate is distributed uniformly
about its mean δ̄i with δi ∼ U(0.5δ̄i, 1.5δ̄i). The robot’s mean
parameter values are Ī1 = 0.09 kg·m2, Ī2 = 0.06 kg·m2,
m1 = 3 kg, m2 = 2 kg, r1 = r2 = 0.15 m, and l1 = l2 = 0.3
m.

Three types of algorithms are assessed neutrally for this
task: direct Galerkin projection of the LTV system in descrip-
tor form (DGK, see Section IV-A), Galerkin projection applied
to the LFT system (LFTGK, see Section IV-B), and sampling-
based estimates of mean

〈x(t, δ)〉N =
1

N

N∑
i=1

x(t, δ(i)) (29)

and standard deviation

σ
(
xi(t, δ)

)
=

√√√√ 1

N − 1

N∑
j=1

(
xi(t, δ(j))− 〈xi(t, δ)〉N

)2

.

(30)
All computations are performed using the Julia programming
language [19], on a standard desktop PC with 4 GHz Intel
i7 CPU and 16 GB RAM. For computing the Galerkin
projections, the PolyChaos.jl toolbox [20] is applied. Time
integrations are performed numerically by a fast order 2/3
Rosenbrock solver with automatic differentiation for implicit

systems and an order 5/4 Runge-Kutta method for explicit sys-
tems, each with relative tolerance 10−3 and absolute tolerance
10−6 [21].

Mean and standard deviation field of the LFTGK PCE with
maximum total degree d = 3 are plotted in Fig. 4. The number
of coefficients (5) is K + 1 = 84. The DGK approach yields
identical results (within numerical tolerance).

Fig. 4. Mean and standard deviation field of d = 3 LFTGK PCE

The DGK approach from Section IV-A requires computation
of multiplication tensors of order up to 5 in this example,
and the calculation of the Galerkin projection takes about 2
h. Although it is argued by practitioners that these are one-
time reusable computations, this is in contrast to the LFTGK
approach, which merely requires computation of a third-order
multiplication tensor. The Galerkin projection of the uncertain
LFT system has a decoupled special structure detailed in
Section IV-B, such that the computation time is rather low
(less than 1 s).

Table I benchmarks a classical Monte Carlo sampling
strategy with the PCE approaches from Section IV for d ∈
{1, 2, 3}. The sample set dimension of the MC benchmark
is scaled appropriately. As an unbiased reference solution,
a Monte Carlo estimator with Nref = 104 is used. Mean
and standard deviation field error w.r.t. the reference are
denoted by em(t) and eσ(t), respectively, and ‖e(t)‖L∞ =
maxi=1,...,4 supt |ei(t)| is the L∞ signal norm. The last col-
umn shows the required computation time for solving the
associated (system of) equations, excluding the calculation of
inner products for the Galerkin projection. Note that solving
the d = 3 Galerkin projected system of equations takes (less
than) 1 min, whereas Nref = 104 samples require 37 min to
solve. The decoupled structure of the LFT projection can also
here be exploited advantageously in contrast to the coupled
system of equations yielded by the DGK approach.

Fig. 5 performs a consistency check of the d = 3 LFTGK
PCE w.r.t. 3 sampling algorithms: MC, Latin Hypercube
Sampling (LHS), and Sobol’ sequence. Since the highest
variability and largest approximation errors were observed in
x4(t, δ), the maximum (absolute) estimation error over time
is analyzed in this coordinate. The empirical estimates of the
first two statistical moments are compared with the d = 3
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TABLE I
BENCHMARK OF MC AND PCE

Dimension ‖em(t)‖L∞ ‖eσ(t)‖L∞
Comp.
time

DGK d = 1, 1.4× 10−3 1.7× 10−2 1 s
LFTGK K + 1 = 7 2.3× 10−3 1.8× 10−2 1 s

MC N = 7 5.3× 10−2 1.0× 10−1 2 s

DGK d = 2, 1.5× 10−3 1.6× 10−3 11 s
LFTGK K + 1 = 28 2.0× 10−3 2.6× 10−3 6 s

MC N = 50 2.6× 10−2 1.5× 10−2 11 s

DGK d = 3, 1.5× 10−3 4.9× 10−4 60 s
LFTGK K + 1 = 84 1.9× 10−3 1.8× 10−3 16 s

MC N = 250 2.5× 10−3 1.9× 10−3 63 s

PCE as a surrogate for the exact solution. The fact that all
sampling-based estimates converge (up to numerical accuracy)
with roughly N−1/2 — as expected [12] and indicated by the
red line — to the PCE lends confidence to the approach.

In addition, the separate treatment of the deterministic and
stochastic problem parts by the Galerkin approach is partic-
ularly advantageous if only the deterministic part changes.
For example, if a new reference trajectory or controller is
to be analyzed, the PCE can quickly provide an accurate
updated estimate. This has to be contrasted with sampling-
based or non-intrusive methods, which do not exploit the
structure of the problem as the PCE does, and have to repeat
the whole sampling campaign. The LFT Galerkin approach is
able to exploit structure even further, since the LFR relieves
the Galerkin projection of work during the separation of
deterministic and uncertain parts.

VI. CONCLUSION

This letter presented an approach for probabilistic robust-
ness analysis of uncertain LTV systems, which exploits the
structure yielded by a LFT before applying polynomial chaos
theory. The benefits of the approach were illustrated on the
example of a two-link robotic manipulator. Possible future
applications lie, e.g., within the verification and validation
process or online robustness analysis at reduced computational
cost.
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