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Abstract—Given a class of (bio)Chemical Reaction Networks
(CRNs) identified by a stoichiometric matrix S, we define as
dual reaction network, CRN∗, the class of (bio)Chemical Reaction
Networks identified by the transpose stoichiometric matrix S>.
We consider both the dynamical systems describing the time
evolution of the species concentrations and of the reaction rates.
First, based on the analysis of the Jacobian matrix, we show
that the structural (i.e., parameter-independent) local stability
properties are equivalent for a CRN and its dual CRN∗. We also
assess the structural global stability properties of the two dual
networks, analysing both concentration and rate representations.
We prove that the existence of a polyhedral (or piecewise-linear)
Lyapunov function in concentrations for a CRN is equivalent to
the existence of a piecewise-linear in rates Lyapunov function for
the dual CRN∗; in fact, if V is a polyhedral Lyapunov function
for a CRN, the dual polyhedral function V ∗ is a piecewise-linear
in rates Lyapunov function for the dual network. We finally
show how duality can be exploited to gain additional insight into
biochemical reaction networks.

Index Terms—Biological systems; Systems biology; Lyapunov
methods

I. INTRODUCTION

WE adopt a duality perspective to perform the structural
stability analysis of (bio)chemical reaction networks

[6], [14], [16], [18], [19], [20]. A property is structural
if it is satisfied by all the systems belonging to a class,
characterised by a structure, regardless of parameter values
[10] (as opposed to robust properties, which only need to be
preserved under large parameter variations). The structural
analysis of Chemical Reaction Networks (CRNs) [18], [19],
[20] has provided fundamental results, such as the celebrated
zero-deficiency theorem and one-deficiency theorem [16] and a
lot of subsequent work [5], [13], [21]. In particular, structural
stability is investigated in [7], [8], [9] for a wide class of
(bio)chemical reaction networks, under the sole requirement
of monotonic reaction rates; the nonlinear system equations
are absorbed into a linear differential inclusion and then the
piecewise-linear, i.e., polyhedral [11], Lyapunov function (if
any) certifying the structural stability of the class of systems is
computed through an iterative algorithm. The complementary
class of piecewise-linear in rates Lyapunov functions has been
proposed in [1], [2], [3], [4] for the stability analysis of
chemical reaction networks.

Here, we propose the concept of dual chemical reaction
network. Given a chemical reaction network with stoichiomet-
ric matrix S ∈ Zn×m, involving n species and m reactions,
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its dual network has stoichiometric matrix S> ∈ Zm×n, and
thus involves m species and n reactions. We credit Famili
and Palsson for proposing the compound map, associated with
−S> [15]; however, the equivalence stability results we obtain
for the dual network, associated with S>, cannot be obtained
for the compound map in [15].

Our main results establish the equivalence between the
structural stability properties of a CRN and its dual CRN∗:
• a CRN is structurally locally stable within its stoichiomet-

ric compatibility class (S-LSSC) if and only if its dual
CRN∗ is S-LSSC;

• the existence of a piecewise-linear Lyapunov function
(PLF) for a CRN is equivalent to the existence of a
piecewise-linear in rates Lyapunov function (PLF in rates)
for its dual CRN∗;

• in particular, if V is a PLF for a CRN, then the dual
function V ∗ is a PLF in rates for its dual CRN∗.

Concluding examples show the application of duality results
to the structural stability analysis of biochemical networks.

II. DUAL CRNS AND DUAL STRUCTURES

We consider general (bio)chemical reaction networks corre-
sponding to nonlinear systems of the form

ẏ = Sg̃(y) + g0, (1)

where y ∈ Rn
+ is the state vector of species concentrations,

g̃(y) ∈ Rm
+ is the vector of reaction rate functions and g0 ≥ 0

is a vector of constant influxes; S ∈ Zn×m is the stoichiomet-
ric matrix, whose Sij entry represents the net amount of the ith
species produced or consumed by the jth reaction, excluding
the contribution of constant influxes. Therefore, Sij < 0 if the
ith species is involved in the jth reaction as a reagent, while
Sij > 0 if the ith species is a product of the jth reaction.

We assume there exists an equilibrium ȳ such that Sg̃(ȳ) +
g0 = 0. Without loss of generality, we can therefore consider
the shifted system with state x = y − ȳ and dynamics

ẋ(t) = S[g̃(x(t) + ȳ)− g̃(ȳ)]
.
= Sg(x(t)).

Then, to analyse the stability of the equilibrium, without
restriction we will consider a model of the form

ẋ(t) = Sg(x(t)), (2)

with no constant influxes g0, and its equilibrium at zero.
Hence, we make the following standing assumptions.
Assumption 1: Function g(0) = 0, hence system (2) admits

an equilibrium x̄ = 0. �



Remark 1: Since we consider the shifted system around the
equilibrium, now set at zero, there is no need to assume that
x and g(x) are componentwise non-negative. �

Assumption 2: All the component functions of vector g(x)
are continuously differentiable. �

Assumption 3: The reaction rate function gj(·) depends on
xi if and only if Sij < 0, and gj = 0 when xi = 0. �

The coexistence of Assumptions 1 and 3 requires that, if
there are no negative entries in the jth column of S, then
gj ≡ 0.

Assumption 3 rules out autocatalytic reactions, such as A −⇀
2A or A+B −⇀ 2B.

Assumption 4: If function gj(·) depends on xi, then
∂gj/∂xi > 0. �

Definition 1: Given a CRN of the form (2), its dual CRN∗

is the system
ż(t) = S>h(z(t)), (3)

where function h satisfies the same assumptions as g, but for
the new stoichiometric matrix S∗ = S>. �

If a CRN has n species and m reactions, then its dual CRN∗

has m species and n reactions.
Uppercase letters denote chemical species and the corre-

sponding lowercase letters denote their concentrations; reac-
tion rate functions are also denoted by lowercase letters.

Example 1: Consider the chemical reaction network CRN
shown in Fig. 1 (left), composed of the chemical reactions:

A+B
p−⇀ C, C +D

q−⇀ E +A, E
r−⇀ B +D.

Species D sequestrates A from the complex C = [AB] in
order to form the new complex E = [BD], which splits again
to release B. The associated dynamical system is

ȧ = −p(a, b) + q(c, d)

ḃ = −p(a, b) + r(e)

ċ = +p(a, b)− q(c, d)

ḋ = −q(c, d) + r(e)

ė = +q(c, d)− r(e)

(4)

where the state vector is [a b c d e]>, the reaction rate
vector is [p(a, b) q(c, d) r(e)]> and the stoichiometric matrix
is

S =


−1 1 0
−1 0 1

1 −1 0
0 −1 1
0 1 −1

 .
Transposing the stoichiometric matrix S yields the dual
system with state vector [p q r]>, reaction rate vector
[a(p) b(p) c(q) d(q) e(r)]> (adopting the same letters,
with swapped role) and stoichiometric matrix S>

ṗ = −a(p)− b(p) + c(q)

q̇ = a(p)− c(q)− d(q) + e(r)

ṙ = b(p) + d(q)− e(r)
(5)

corresponding to the dual CRN∗

P
a−⇀ Q, P

b−⇀ R, Q
c−⇀ P, Q

d−⇀ R, R
e−⇀ Q.

The dual network is associated with a structurally stable mono-
molecular reaction network (where all reactions have the form
X −⇀ Y ): as we will see, this allows us to claim that the primal
network is structurally stable too. �
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Figure 1: The reaction network in Example 1 (left) and its dual (right).

To write the system in reaction rate coordinates (see [1],
[2], [3], [4], as well as [8], and the references therein),
we introduce the rate variable r(t)

.
= g(x(t)). Recall that

g(x̄) = g(0) = 0 in view of Assumption 1. The system of rate
equations is achieved by differentiating d

dtr = ∂g
∂x ẋ = ∂g

∂xSr,
hence

ṙ(t) =
∂g

∂x
Sr(t). (6)

We can define a system of rate equations for the dual network
as well, by considering w(t)

.
= h(z(t)), and we get

ẇ(t) =
∂h

∂z
S>w(t). (7)

Due to the possible presence of conservation laws, any
chemical reaction network of the form (2) evolves in a
positively invariant subspace denoted as stoichiometric com-
patibility class (SC) [14], [16], [18]:

S = Ra[S] = {x : x = Sv, v ∈ Rm},

where Ra[S] is the range, or image, of matrix S. In the original
coordinates, the SC for (1) would be an affine manifold,
S̃(y0) = {y ≥ 0 : y = y0 + Sv, v ∈ Rm}, depending
on the initial conditions y(0) = y0. Since we assumed that
an equilibrium exists for (1), and it is at the origin for the
shifted system (2), we can write S as the linear manifold
above. Our structural analysis allows us to assess the stability
of the equilibrium regardless of the original (pre-translation)
stoichiometric compatibility class and equilibrium value; this
confers an intrinsic robustness with respect to the ubiquitous
noise one encounters in experimental settings.

Definition 2: A system of the form (2) is
• stable in the stoichiometric compatibility class (SSC) if,

for every initial condition of the form x(0) = Sv0, with
v0 ∈ Rm, the state x(t) converges to 0 as t→∞;

• locally stable in the stoichiometric compatibility class
(LSSC) if the linearised system at 0,

ẋ = S

[
∂g

∂x
(x̄)

]
x̄=0

x,

is stable in the stoichiometric compatibility class (which
is the same as for the nonlinear system).

The class of systems of the form (2) is structurally stable, or
locally stable, in the stoichiometric compatibility class (resp.



S-SSC and S-LSSC) if the above conditions hold for arbitrary
vector functions g satisfying our assumptions. �

We now observe that an interesting relation exists between
the structure of a system and the structure of its dual.

To this aim, we define the qualitative class Σ of non-
negative matrices that have positive entries corresponding to
the negative entries of the stoichiometric matrix S and zero
entries elsewhere:

Σ = {M : sign(M) = sign(max{−S, 0})}. (8)

We also define Σ> = {M : M> ∈ Σ}.
For instance, for the class of systems (4) in Example 1,

Σ =

{
M : sign(M) =

[+1 0 0
+1 0 0

0 +1 0
0 +1 0
0 0 +1

]}
.

Let us denote ∂g
∂x

.
= G and ∂h

∂z

.
= H . We notice that

G ∈ Σ>, because the non-zero partial derivatives of g, which
are positive in view of Assumption 4, are associated with the
negative entries of S and correspond to the negative entries
of S> as per Assumption 3 (gj depends on xi if and only if
Sij < 0). Analogously, H ∈ Σ, because hj depends on zi if
and only if S>ij < 0, and all its non-zero partial derivatives are
positive.

Then, we can write the Jacobian of system (2) as

S
∂g

∂x

.
= SG, with G ∈ Σ>, (9)

and the Jacobian of the dual system (3) as

S>
∂h

∂z

.
= S>H, with H ∈ Σ. (10)

III. STRUCTURAL LOCAL STABILITY ANALYSIS

We prove our main result concerning structural local stabil-
ity in the stoichiometric compatibility class.

Theorem 1: System (2) is S-LSSC if and only if its dual
system (3) is S-LSSC. �

Proof: First, notice that (2) is S-LSSC if and only if
SG is Hurwitz in the stoichiometric compatibility class (HSC;
namely, any trajectory originated in the SC converges to zero)
for all G ∈ Σ>. Indeed, given some matrix G ∈ Σ>, we can
always find functions gk, possibly linear, whose derivatives at
zero are equal to the entries of G (cf. also [9], where a similar
construction is proposed). We therefore wish to show that SG
is HSC for all G ∈ Σ> if and only if S>H is HSC for all
H ∈ Σ. Consider rank[S] = r ≤ n and apply a similarity
transformation T such that

TSGT−1 =
[

S̃1 S̃2
0 0

] [
G̃1 G̃2

G̃3 G̃4

]
= M1 =

[
S̃1G̃1+S̃2G̃3 S̃1G̃2+S̃2G̃4

0 0

]
,

where S̃1 and S̃2 have r rows. In the new representation, the
initial conditions in the SC are all vectors of the form [x>1 0]>,
with x1 ∈ Rr and 0 a row vector of n − r zeros. Hurwitz
stability in the SC is equivalent to x1(t)→ 0 for each initial
vector [x>1 (0) 0]>. Structural local stability in the SC is then
equivalent to matrix S̃1G̃1 + S̃2G̃3 being Hurwitz for all G ∈
Σ>.

The same arguments for S>H lead to a partition

M2 =

[
Ŝ1Ĥ1 + Ŝ2Ĥ3 Ŝ1Ĥ2 + Ŝ2Ĥ4

0 0

]
and structural local stability in the SC is equivalent to matrix
Ŝ1Ĥ1 + Ŝ2Ĥ3 being Hurwitz for all H ∈ Σ. Since the two
upper-left blocks of M1 and M2 have size r, both matrices
have n− r zero eigenvalues.

Matrices M1 and M2 have the same eigenvalues as SG
and S>H , respectively, or equivalently the same eigenvalues
as SG and H>S (by transposition). Matrix SG (respectively
S>H) is structurally Hurwitz in the SC if and only if, for
every G ∈ Σ> (respectively H ∈ Σ), it has precisely n − r
zero eigenvalues and r eigenvalues with negative real part.

Since G and H> have the same structure (G,H> ∈ Σ>),
we can always pick H = G>. The proof is concluded by
recalling that SG and H>S = GS share the same non-zero
eigenvalues (just take GSx = λx 6= 0, hence SG(Sx) =
λ(Sx) 6= 0), which have a negative real part.

The structural local stability of the primal/dual class of
systems can be assessed via convex optimisation, parametric
Lyapunov functions or deficiency theory [12], [14], [16].

Example 2: Consider the CRN in Example 1. Its dual
CRN∗ is mono-molecular and has a weakly diagonally dom-
inant Jacobian, hence structural local stability in the SC is
guaranteed for both the dual and the primal system. �

IV. JACOBIAN DECOMPOSITION AND DUALITY

We recall that the Jacobian of system (2) can always be
decomposed as [7], [9]

SG = B∆C, (11)

for all G ∈ Σ>, where the diagonal matrix ∆, of size q, carries
on the diagonal all the non-zero entries of G. To generate the
constant matrices B and C, the q non-zero partial derivatives
need to be ordered as ∆k = ∂gj/∂xi = Gij > 0, k = 1, . . . q,
so that two indices i(k) and j(k) correspond to each k. Then,
for each k:
• the kth column of B is the jth column of S, j = j(k),
• the kth row of C is e>i , i = i(k),

where e>i is the ith row vector of the canonical basis. The
pair (B,C) captures the system structure, and a given choice
of the diagonal entries of ∆ yields a specific realisation.

The same property holds for the rate representation [8]. We
can associate the linearisation of (6) with matrix

GS = E∆F, (12)

where the constant matrices E and F (after ordering the non-
zero partial derivatives ∆k = ∂gj/∂xi = Gij > 0) are formed
as follows:
• the kth column of E is ej , j = j(k),
• the kth row of F is S>i , the ith row of S, i = i(k),

where ej is the jth column vector of the canonical basis. Now
the system structure is captured by the pair (E,F ).

In the sequel we assume that the order of the partial
derivatives in ∆ is the same for both representations (in
concentrations and in rates).



Example 3: Consider the CRN associated with equations
ȧ = −ga(a)− gac(a, c)
ḃ = ga(a)− gbc(b, c)
ċ = ga(a)− gac(a, c)− gbc(b, c)

(13)

corresponding to the general model (2) with x = [a b c]>,

S =

−1 −1 0
1 0 −1
1 −1 −1

 , g(x) =

 ga(a)
gac(a, c)
gbc(b, c)

 .
By ordering the partial derivatives as ∆1

.
= ∂ga/∂a, ∆2

.
=

∂gac/∂a, ∆3
.
= ∂gac/∂c, ∆4

.
= ∂gbc/∂b, ∆5

.
= ∂gbc/∂c, the

system structure is captured by the B∆C decomposition with
matrices

B =
[−1 −1 −1 0 0

1 0 0 −1 −1
1 −1 −1 −1 −1

]
and C =

[
1 0 0
1 0 0
0 0 1
0 1 0
0 0 1

]
,

while the E∆F decomposition has matrices

E =
[

1 0 0 0 0
0 1 1 0 0
0 0 0 1 1

]
and F =

[−1 −1 0
−1 −1 0

1 −1 −1
1 0 −1
1 −1 −1

]
.

�
The dual chemical reaction network CRN∗ admits the same

types of decomposition, B∗∆∗C∗ and E∗∆∗F ∗, in concen-
trations and in rates.

Numerically, the partial derivatives of a system and of
its dual could be different. However, the numerical values
of the parameters do not affect our parameter-free analysis,
which is focused on the structure: in the sequel, the statement
J = B∆C means that the structure of the system Jacobian is
captured by the matrix pair (B,C), namely that the equality
holds for some (no matter which) ∆ ∈ D, where D is the
family of diagonal matrices, of size q, with positive diagonal
entries. Hence, in the following we will drop the star in ∆∗

and denote by ∆ the generic element of the family D. Then,
the dual decomposition is related to the primal decomposition
as shown next (see Table I).

Theorem 2: Consider the CRN system (2) and its dual
CRN∗ system (3), along with their Jacobian decompositions
with the non-zero partial derivatives ordered in a diagonal
matrix ∆ ∈ D. Then:
• the dual CRN∗ in concentrations has the same structure

as the transpose of the primal CRN in rates:

B∗∆C∗ = F>∆E>, ∆ ∈ D;

• the dual CRN∗ in rates has the same structure as the
transpose of the primal CRN in concentrations:

E∗∆F ∗ = C>∆B>, ∆ ∈ D.

�
Proof: The primal CRN has Jacobian SG = B∆C for

some G ∈ Σ>, while the dual CRN∗ has Jacobian S>H =
B∗∆C∗ for some H ∈ Σ. For the primal rate representation,
GS = E∆F for some G ∈ Σ>, hence S>G> = F>∆E> for
some G> ∈ Σ. This proves the first statement, since H,G> ∈
Σ have the same structure. Also, for the dual system in rates,
HS> = E∗∆F ∗ for some H ∈ Σ. Since G>S> = C>∆B>

for some G> ∈ Σ, the second statement is also proven.

Table I: The duality (transpose) relation among Jacobian representations.

in concentrations: in rates:

CRN: B∆C E∆F

CRN∗: F>∆E> C>∆B>

V. LYAPUNOV NORMS AND DUALITY FOR GLOBAL
STABILITY ANALYSIS

To derive a global stability condition, we first examine the
relation between the representations in concentrations and in
rates. Since g(0) = 0 in view of Assumption 1, if x(t) → 0,
then also r(t) = g(x(t)) converges to zero. Conversely, if we
assume that Sg(x̄) = 0 implies x̄ = 0 (i.e., zero is the only
equilibrium in the SC), then convergence of r = g(x) to zero
implies x(t)→ 0.

Structural convergence of x(t) to zero can be proven by
absorbing system (2) in a differential inclusion. Indeed, the
same matrices (B,C) as in the Jacobian decomposition (11)
can be used to provide a global representation of the system.
Consider the general property

Sg(x) = Sg(x̄) +

[∫ 1

0

J(x̄+ σ(x− x̄))dσ

]
(x− x̄),

where J = ∂
∂x [Sg(x)]. Since J = B∆C in view of (11),∫ 1

0

Jdσ = B

(∫ 1

0

∆dσ

)
C = BD(x)C

for some diagonal D(x) (see [9], [10] for details). We also
define Ĝ(x)

.
=
∫ 1

0
∂g
∂x (x̄+ σ(x− x̄))dσ. Since x̄ = 0, system

(2) admits the equivalent global representation

ẋ(t) = SĜ(x(t))x(t) = BD(x(t))Cx(t),

where matrix D depends on the current state x(t). For our
structural analysis, we drop the dependence of D on x to
consider a generic diagonal matrix D(t) with positive diagonal
entries. The set of solutions of system (2) is always a subset
of the solutions of the differential inclusion [7], [9]

ẋ(t) = SĜ(t)x(t), Ĝ(t) ∈ Σ>, (14)

or equivalently

ẋ(t) = BD(t)Cx(t), D(t) ∈ D. (15)

Therefore, the stability of the differential inclusion implies the
structural stability of (2); note that systems (14) and (15) have
the same stoichiometric compatibility class, because matrices
S and B have the same range.

We can analogously prove the convergence in rate coordi-
nates [1], [2], [3], [4], [8], since all the solutions of system
(6) are a subset of the solutions of

ṙ(t) = G(t)Sr(t), G(t) ∈ Σ>, (16)

(again we drop the dependence of G = ∂g/∂x on x), or
equivalently

ṙ(t) = ED(t)Fr(t), D(t) ∈ D. (17)



Table II: The four system representations.

in concentrations: in rates:

CRN: ẋ(t) = BD(t)Cx(t) ṙ(t) = ED(t)Fr(t)

CRN∗: ż(t) = F>D(t)E>z(t) ẇ(t) = C>D(t)B>w(t)

Stability of system (17) implies convergence to zero of the
rate variable r(t).

Analogous representations in concentrations and in rates
hold for the dual CRN∗. The four representations are sum-
marised in Table II.

We now consider Lyapunov norms, according to the follow-
ing definition.

Definition 3: A norm V (x) is a Lyapunov norm if it is non-
increasing along the trajectories of system (15) or (17). If V (x)
is polyhedral, we call it Polyhedral Lyapunov Function (PLF).
�

Remark 2: The existence of a Lyapunov norm is not enough
to ensure asymptotic stability. We also need an assumption on
the partial derivatives: there exist two (unknown) numbers ε,
no matter how small, and µ, no matter how large, such that

0 < ε ≤ Di(t) ≤ µ. (18)

Without this assumption, no robust convergence can be
claimed: for instance, ẋ = −d(t)x(t) does not converge
to zero for all d(t) > 0, even though |x(t)| is decreasing.
Conversely, provided that (18) holds, if the Lyapunov norm is
polyhedral and the differential inclusion is non-singular, then
asymptotic stability is ensured [9]. �

Given a norm V (x), its dual is defined as

V ∗(z) = max
V (x)≤1

x>z.

Given a full-row-rank matrix X , a polyhedral norm can be
defined through a vertex representation as

VX(x) = inf{‖p‖1 : Xp = x}, (19)

while, given a full-column-rank matrix Z, a polyhedral norm
can be defined through a plane representation as

UZ(z) = ‖Zz‖∞. (20)

As shown in [11, Proposition 4.35], a duality relation exists
between (19) and (20):

V ∗X(x) = UZ(z) if Z = X>.

Theorem 3: Consider the four representations in Table II.
The CRN in concentrations (x-system) admits a PLF if and
only if the CRN∗ in rates (w-system) admits the dual PLF;
the same holds for the z-system and the r-system. �

Proof: Given a polyhedral norm V and a matrix A, we
define the matrix measure as

µV (A) = lim
h→0

V (I + hA)− 1

h
,

where V (M) is the induced norm of matrix M . Since
V (M) = V ∗(M>), we have µV (A) = µV ∗(A

>). Assume

that (15) admits a PLF V (x) or, equivalently, that V (x) is a
common PLF for all linear systems with matrix BDC, D ∈ D.
Consider expression (19) for V ; the proof can be also carried
out using (20). Then, for any D ∈ D we must have

BDCX = XP (D)

with µV1(P (D)) ≤ 0 [11]. Transposing both sides yields

X>C>DB> = P (D)>X>

with µV∞(P (D)>) ≤ 0. This implies that the dual norm
V ∗(x) is a PLF for all linear systems with transposed matrix
C>DB>, D ∈ D (see again [11] for details).

Remark 3: Theorem 3 answers the question: which are the
most suitable polyhedral Lyapunov functions to prove the
structural stability of chemical reaction networks, those in
concentrations or those in rates? The answer is a draw: for any
network admitting a PLF in concentrations, there is another
network, the dual, admitting a PLF in rates; and vice versa. �

Polyhedral functions are amenable for efficient computation
[7], [4]. Moreover, it has been shown that there are examples
of networks for which the only possible structural Lyapunov
function is polyhedral [9]; Theorem 3 implies that there are
networks for which piecewise-linear functions in rates [1], [2],
[3], [4] have the same exclusive property.

Remark 4: The result can be generalised to any norm [17]:
if V is a Lyapunov norm for (15), then V ∗ is a Lyapunov
norm for the rate representation of the dual. �

VI. APPLICATIONS AND CONCLUDING DISCUSSION

We discuss in this section some implications of our duality
results and their applicability to gain additional insight into
chemical reaction networks.

First, duality can be exploited to immediately assess the
structural stability of a complex chemical reaction network
by simply inspecting its topology. Let us consider unitary
networks, namely CRNs such that all entries Sij ∈ {−1, 0, 1}.
The next result is proven in [7].

Proposition 1: Assume that, in a unitary CRN, each re-
action affects at most two nodes (species), i.e. there are at
most two non-zero coefficients in each column of S. Then,
the network is structurally stable with ‖x‖1 as a PLF. �
The conditions in Proposition 1 are extremely simple to check,
even for very large CRNs. The same is true for the conditions
in the following new result, which we can prove by adopting
duality.

Proposition 2: Assume that, in a unitary CRN, each node
is affected by at most two reactions, i.e. there are at most two
non-zero coefficients in each row of S. Then, the network is
structurally stable with ‖w‖∞ as a PLF in rates. �

Proof: It follows from Proposition 1 and Theorem 3, since
V∞ = ‖ · ‖∞ is the dual norm of V1 = ‖ · ‖1.

For instance, it can be immediately seen from Fig. 1
(left) that the CRN in Example 1 satisfies the conditions of
Proposition 2, hence it is structurally stable in the SC.



Example 4: The metabolic network

ȧ = −p(a, e)
ḃ = p(a, e)− q(b)
ċ = q(b)− r(f, c)
ḋ = r(f, c)− s(d)

ė = −p(a, e) + r(f, c)

ḟ = −r(f, c) + p(a, e)

(21)

adapted from [22, Chapter 17] has the form (2) with

S =

−1 0 0 0
1 0 0 −1
0 −1 0 1
0 1 −1 0
−1 1 0 0

1 −1 0 0

 .
It can be seen that the SC is identified by the conservation laws
b+ c+ e = constant and e+f = constant, and an equilibrium
exists at zero. The dual network

ṗ = −a(p) + b(q)− e(p) + f(r)

ṙ = −c(r) + d(s) + e(p)− f(r)

ṡ = −d(s)

q̇ = −b(q) + c(r)

(22)

is mono-molecular and satisfies the assumptions of Proposition
2 (there are at most two non-zero entries in each row of S),
hence also the primal network is structurally stable. �

It is interesting to observe that the dual of a reversible
network (such that all reactions are reversible) is not reversible,
and not even weakly reversible according to the definition in
[16]. If the reaction rates are of the mass-action type, i.e. of the
form κambn, these functional expressions are not preserved for
the dual.

Example 5: The dual of the reversible network

2A+B
p−⇀↽−
q
C

r−⇀↽−
s
D

is the non-reversible network

2P
a−⇀ 2Q, P

b−⇀ Q, Q+R
c−⇀ P + S, S

d−⇀ R.

Under mass-action kinetics, the primal has reaction rate func-
tions p = αa2b, q = βc, r = γc, s = δd, while the dual has
reaction rate functions a = εp2, b = ηp, c = µqr, d = νs. �

Very interestingly, duality results can enable us to easily
assess the structural stability of non-unitary networks, for
which computing PLFs is not easy [7].

Example 6: The reversible network in Example 5 is non-
unitary. To study its structural stability in the SC, we can
consider its dual network

ṗ = −2a(p)− b(p) + c(q, r) = −g(p) + c(q, r)

q̇ = +2a(p) + b(p)− c(q, r) = g(p)− c(q, r)
ṙ = −c(q, r) + d(s)

ṡ = +c(q, r)− d(s)

(23)

where g(p)
.
= 2a(p) + b(p). This new network with g(p)

is unitary and satisfies Proposition 2, hence the system is
structurally stable, because it admits a piecewise-linear in rates
Lyapunov function. �

Future research directions are aimed at investigating how the
relation between primal and dual chemical reaction networks
reflects on the structure of other types of graph representations,
such as the Species-Reaction Graph [16], and at exploiting
dual networks to assess properties other than stability.
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