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Abstract—This letter describes a method for estimating regions
of attraction and bounds on permissible perturbation amplitudes
in nonlinear fluids systems. The proposed approach exploits
quadratic constraints between the inputs and outputs of the non-
linearity on elliptical sets. This approach reduces conservatism
and improves estimates for regions of attraction and bounds
on permissible perturbation amplitudes over related methods
that employ quadratic constraints on spherical sets. We present
and investigate two algorithms for performing the analysis: an
iterative method that refines the analysis by solving a sequence of
semi-definite programs, and another based on solving a general-
ized eigenvalue problem with lower computational complexity,
but at the cost of some precision in the final solution. The
proposed algorithms are demonstrated on low-order mechanistic
models of transitional flows. We further compare accuracy and
computational complexity with analysis based on sum-of-squares
optimization and direct-adjoint looping methods.

Index Terms—Region of attraction, transitional fluid flows,
quadratic constraints.

I. INTRODUCTION

ENVIRONMENTAL disturbances can cause fluid flows to
transition from a low-skin-friction laminar state to a high-

skin-friction turbulent state when the Reynolds number (Re)
is sufficiently large. Yet, precisely predicting the onset of
transition is notoriously difficult, even in the simplest of
geometries [1]–[3]. An ability to reliably estimate if and
when transition will arise is directly related to the problem of
identifying the region of attraction (ROA) of the system. To
this end, in this work we investigate systems-theoretic analysis
methods for estimating the ROA of a laminar equilibrium
flow and for determining associated bounds on permissible
perturbation amplitudes for remaining in this ROA.

Recent efforts for nonlinear stability analysis of the in-
compressible Navier-Stokes equations (NSE) have exploited
a Lur’e decomposition [4] of the system dynamics into a
feedback interconnection between the non-normal linear dy-
namics and quadratic energy-conserving nonlinearity. Such
approaches include dissipation inequalities [5], passivity anal-
ysis [6], and sum-of-squares (SOS) optimization [7], all of
which generalize the classical energy-based methods of hy-
drodynamic stability theory [1], [8]. Methods for the analysis
of systems with quadratic nonlinearities have also been pro-
posed in prior works [9], [10]; however, these methods scale
combinatorially with the state dimension, prohibiting their use
on high-dimensional fluids systems.

Most recently, a series of studies have proposed exploiting
quadratic constraints (QCs) between the inputs and outputs of

the nonlinearity to conduct global and local stability analysis
with reduced-complexity [11]–[13]. The trade off for this
computational expediency is a larger degree of conservatism
in estimating the ROA and associated bounds on permis-
sible perturbation amplitudes relative to more computation-
ally demanding methods, such as SOS [7] and direct-adjoint
looping (DAL) [3]. The QC formulation in [13] reduces
conservatism compared to the approach in [12], but some
conservatism remains because of a restriction to spherical sets.

In this work, we generalized the QCs presented in [11], [12]
and [13] to arbitrary ellipsoidal sets. As we will show, these
new QCs reduce conservatism and improve estimates of both
the ROA and the largest permissible perturbation. We propose
algorithms for performing this analysis: one is an iterative
algorithm that solves a semi-definite program at each iteration
to refine the ROA estimate, and the other is based on solving
a single generalized eigenvalue problem (GEVP). Using the
QCs generalized on ellipsoidal sets, we analyze ROA estimates
and the largest permissible perturbation for system stability;
the inner estimate of the ROA captures this perturbation. As
an example, we will demonstrate our approach on two low-
dimensional mechanistic transitional flow models: the 4-state
Walleffe-Kim-Hamilton (WKH) model of shear flow [14] and
the 9-state model of Couette flow [15]. Finally, we measure
the computational run-time and show that the proposed QC
method obtains improved estimates over previous QC ap-
proaches [12], [13], while reducing computational time over
SOS and DAL methods.

II. PROBLEM FORMULATION

Consider a nonlinear system of the following form:

ẋ(t) = Ax(t) +N(x(t)) (1)

where x(t) ∈ Rn is the state and the state matrix A ∈ Rn×n
is Hurwitz. The nonlinearity N : Rn → Rn is assumed to be
a quadratic function of the form:

N(x) =

x
TQ1x

...
xTQnx

 (2)

where Q1, . . . , Qn ∈ Rn×n are symmetric (but not necessarily
sign definite) matrices. Moreover, the nonlinearity is assumed
to be lossless: xTN(x) = 0 ∀ x ∈ Rn. This lossless property is
observed in the nonlinear terms of the incompressible NSE and
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other reduced-order models that mimic transitional flows [15],
[16].

It also follows that N(0) = 0. Hence x̄ = 0 is an
equilibrium point of the nonlinear system (1). This is an
asymptotically stable equilibrium point because A is Hur-
witz (see Theorem. 4.5 in [4]). Let φ(t, x(0)) denote the
solution of (1) at time t from the initial condition x(0). The
region of attraction (ROA) for x̄ = 0 is defined as:

R := {x(0) ∈ Rn : φ(t, x(0))→ 0 as t→∞}. (3)

In other words, the ROA is the set of initial conditions for
which the trajectory asymptotically converges back to the
equilibrium point. The equilibrium point x̄ = 0 is globally
asymptotically stable if R = Rn. In general, the equilibrium
point will be locally but not globally asympotitically stable.
The objective is to obtain an inner estimate R̂ of the ROA R,
i.e., to compute a set R̂ ⊂ R.

III. STABILITY ANALYSIS

The stability analysis is based on separating the nonlinearity
from the remaining linear dynamics:

ẋ(t) = Ax(t) + z(t) (4)
z(t) = N(x(t)). (5)

This system can be represented as the Lur’e decomposition
[4] as shown in Figure 1.

ẋ = Ax+ z

N(x)

x

-

z

�

Fig. 1. Lur’e decomposition of nonlinear system.

A. Local Quadratic Constraints

The input-output properties of the nonlinearity can be
bounded using a set of QCs on (x, z). The lossless property
yields the following global QC:[

x
z

]T [
0 I
I 0

] [
x
z

]
= 0 ∀x ∈ Rn, z = N(x). (6)

To study the effects of nonlinearities locally, additional QCs
were formulated in [12] and in [13]. The local QCs in both
of these works were defined on a spherical set. In this work,
we reduce the conservatism of the aforementioned approaches
by generalizing to constraints on an ellipsoidal set. The
next lemma generalizes the result in [13] to provide local
constraints on an ellipsoidal set.

Lemma 1. Let E = ET � 0 be given and define the ellipsoid
Eα := {x ∈ Rn : xTEx ≤ α2}. The nonlinearity N given in

(2) satisfies the following local QC for i = 1, . . . , n:[
x
z

]T [
α2(QiE

−1Qi) 0
0 −eieTi

] [
x
z

]
≥ 0, ∀x ∈ Eα, (7)

where ei ∈ Rn is the ith standard basis vector.

Proof: Note that zT eieTi z = z2i , where zi := xTQix
is the ith entry of z = N(x). Define w := E

1
2x and

Q̂i := E−
1
2QiE

− 1
2 so that zi = wT Q̂iw. The Cauchy-

Schwartz inequality yields the following bound:

z2i ≤ ‖w‖22 · ‖Q̂iw‖22. (8)

Note that ‖Q̂iw‖22 = xTQiE
−1Qix. Moreover, if x ∈ Eα then

‖w‖22 = xTEx ≤ α2. Combining these facts with Eq. (8)
yields z2i ≤ xT [α2(QiE

−1Qi)]x for any x ∈ Eα.
This result corresponds to Lemma 1 in [13] for the special

case E = I . This special case corresponds to a local constraint
on a sphere of radius α. The generalization to local constraints
on arbitrary ellipsoids will be used to improve our estimates
of the ROA.

B. ROA Estimation

We can combine Lyapunov theory with the local QCs from
the previous section in order to compute an inner estimate R̂
for the ROA. Roughly, we will define a Lyapunov candidate
V (x) = xTPx and use the QCs to show that V̇ is negative
definite along the trajectories of Eq. (1) in a neighborhood
of the equilibrium point x̄ = 0. The inner estimate of the
ROA will be given by a sphere of radius R, denoted R̂R :=
{x ∈ Rn : xTx ≤ R2}. The next theorem gives a matrix
inequality condition to estimate the ROA using local QCs.
This is based on a standard Lyapunov result (Theorem 4.1 in
[5]). To simplify notation, define the following matrices that
appear in the QCs:

M0 :=

[
0 I
I 0

]
,Mi(α,E) :=

[
α2(QiE

−1Qi) 0
0 −eieTi

]
.

(9)

Theorem 1. Let E = ET � 0, α > 0, ε > 0 be given. If
∃P = PT ∈ Rn×n, R > 0, and ξ0, . . . , ξn ∈ R such that:[
ATP + PA P

P 0

]
+ ξ0M0 +

n∑
i=1

ξiMi(α,E) �
[
−εI 0

0 0

]
(10)

1

α2
E � P � 1

R2
I (11)

ξi ≥ 0 for i = 1, . . . , n (12)

then R̂R ⊂ R.

Proof: Define the Lyapunov function V (x) := xTPx.
Note that 1

α2E � P implies P � 0. Multiply (10) on the



left/right by
[
x(t)T z(t)T

]
and its transpose to obtain:

d

dt
V (x(t)) + ξ0

[
x(t)
z(t)

]T
M0

[
x(t)
z(t)

]
+

n∑
i=1

ξi

[
x(t)
z(t)

]T
Mi

[
x(t)
z(t)

]
≤ −ε‖x(t)‖22.

The second term with ξ0 and M0 is equal to zero due to the
global lossless property of N(x). Here, the scalar term ξ0
can be either positive or negative. While the quadratic terms
with ξi and Mi (i = 1 to n) are each non-negative for any
x(t) ∈ Eα by Lemma 1 and ξi ≥ 0. Thus x(t) ∈ Eα implies
d
dtV (x(t)) ≤ −ε‖x(t)‖22.

The constraint 1
α2E � P implies that if V (x) ≤ 1 then

xTEx ≤ α2, i.e., {x ∈ Rn : V (x) ≤ 1} ⊂ Eα. Hence x̄ = 0
is locally asymptotically stable and the level set {x ∈ Rn :
V (x) ≤ 1} is contained in the ROA R (Theorem 4.1 in [4]).
Finally, the constraint P � 1

R2 I implies that if xTx ≤ R2,
then V (x) ≤ 1. This yields the desired set containment:

R̂R ⊂ {x ∈ Rn : V (x) ≤ 1} ⊂ R.

This theorem provides an inner estimate of the ROA char-
acterized by a sphere of radius R. A convex optimization can
be used to compute the largest feasible R for given values
of (E,α, ε). Define λ := 1

R2 and note that maximizing R
is equivalent to minimizing λ. Equations (10)-(12) are linear
matrix inequalities (LMIs) in variables (P, ξ, λ). The following
optimization is a semidefinite program (SDP):

λ∗ := min
P,ξ,λ

λ subject to (10)− (12). (13)

An SDP is convex and the global optimum λ∗ can be computed
efficiently using freely available solvers [17], [18]. The radius
R∗ = 1√

λ∗ provides the largest spherical inner estimate of the
ROA for the given local QC region (E,α) and ε > 0. The
parameter ε > 0 is chosen to be a “small” positive number to
ensure V̇ < 0. This term can be dropped if Eq. (10) is feasible
with a strict inequality.

The main issue with this numerical method is that it
requires the choice of the local QC region in terms of the
ellipsoidal shape E and size α. If E = I , then the QCs are
enforced on a sphere of radius α as shown in Figure 2. A
small value of α will restrict the size of both the Lyapunov
function level set and the spherical ROA inner estimate. On
the other hand, a large value of α may cause the SDP to
be infeasible. This occurs because the QC bounds on N(x)
become more conservative (less tight) for larger local regions.
A one-dimensional line search can be used to compute the best
value of α for a given local ellipsoid shape E. For example,
the SDP in Eq. (13) can be solved with E = I on a grid
of values {α1, . . . , αf}. Each solution yields an inner ROA
estimate with radius R∗(αi). The best αi is the one that yields
the largest inner ROA estimate: maxiR

∗(αi).
We can further improve on this inner ROA estimate by

exploiting the shape of the ellipsoid as specified by E. Unfor-

tunately Equations (10)-(12) are non-convex in (P, ξ,R,E, α).
The first approach, denoted Algorithm A, iteratively updates
the ellipsoid shape based on the Lyapunov function obtained
from the previous iterate.

Algorithm A:
1) Initial Estimate: Define Mi(α,E) using E(1) = I .

Find the best α(1) for the given local QCs E(1). Let
(P (1), ξ(1), R(1)) be the corresponding solutions of the
SDP with (E(1), α(1)).

2) Refinement: Align the local QC set with the Lyapunov
function solution: E(2) = P (1). Find the best α(2) for
the updated local QCs E(2). Let (P (2), ξ(2), R(2)) be the
corresponding solutions of the SDP with (E(2), α(2))

3) Iterate: Repeat the refinement step with E(i+1) = P (i) to
yield (α(i), P (i), ξ(i), R(i)). This can be performed a fixed
number of iterations or until the radius R(i) converges.

Fig. 2. 2-D visualization of a spherical local region for the QCs corresponding
to E = I and α > 0 (yellow), Lyapunov function level set {x ∈ Rn :
xTPx ≤ 1} (red), and ROA inner estimate RR (purple).

The optimal solutions from the first step (P (1), ξ(1), R(1))
are also feasible for the second step when α(2) = 1. The
reason is that the constraint 1

α2E ≤ P in Eq. (11) holds
with equality when using (P,E, α) = (P (1), P (1), 1). Hence
the inner estimate of ROA cannot shrink at the second step:
R(2) ≥ R(1). Repeating this process gives a monotonically
non-decreasing sequence of spherical inner estimates for the
ROA: R(i+1) ≥ R(i). Note that each step of the iterative
method has roughly the same computational cost as the first
step. We have to solve one SDP for each value of αi.

The second approach, denoted Algorithm B below, effec-
tively performs only a single refinement of the local shape
parameter E. This restriction allows the single refinement
step to be formulated as a generalized eigenvalue prob-
lem (GEVP) (see Eq. (19) in [12]). This will typically reduce
the computational cost, but possibly yield more conservative
results (smaller estimates for R̂R) as compared to Algo-
rithm A. To formulate Algorithm B, first decompose the
quadratic constraint matrix in Eq. (9) into two matrices as
follows:

Mi(α,E) = α2

[
QiE

−1Qi 0
0 0

]
︸ ︷︷ ︸

ME
i

+

[
0 0
0 −eieTi

]
︸ ︷︷ ︸

Me
i

. (14)



Algorithm B fixes both the shape E = P (1) and Lyapunov
function P = P (1). This aligns both the local QC ellipsoid
shape E with the level sets of the Lyapunov function. The local
regions for both are parameterized as {x ∈ Rn : xTP (1)x ≤
α}. A sub-problem is to find the largest local region α over
which the local quadratic constraints are valid and V̇ (x(t)) <
0. This is formulated by the following optimization:

min
γ,ξ0,...,ξn

γ

subject to ξi ≥ 0 (for i = 1 to n)[
ATP + PA P

P 0

]
+ ξ0M0 +

n∑
i=1

ξiM
e
i ≺ γ

n∑
i=1

ξiM
E
i ,

(15)

where γ = −α2 and ξi (i = 0 to n) are Lagrange mul-
tipliers for the global and local constraints respectively. It
is emphasized that P = P (1) is fixed and not a decision
variable in the optimization. This is a GEVP [19] in variables
α2, ξ0, . . . , ξn. This one GEVP gives the largest level set α∗

defined by P = P (1) over which the local quadratic constraints
are valid and V̇ (x(t)) < 0. Let λmax(P (1)) denote the largest
eigenvalue of P (1). Note that the sphere R̂R is contained in
{x ∈ Rn : xTP (1)x ≤ α∗2} if and only if R ≤ α∗√

λmax(P (1))
.

Thus we can directly compute the largest radius of the inner
ROA estimate R̂R from the optimal α∗. This leads to our
second method to estimate the ROA.

Algorithm B:
1) Initial Estimate: Define Mi(α,E) using E(1) = I .

Find the best α(1) for the given local QCs E(1). Let
(P (1), ξ(1), R(1)) be the corresponding solutions of the
SDP with (E(1), α(1)).

2) Maximize Level Set: Fix P = E = P (1) and solve the
GEVP in Eq. (15) to obtain the maximal level set α∗.

3) Maximize ROA Inner Estimate: Select R∗ =
α∗√

λmax(P (1))
.

As a test, we apply algorithm A on the 2-D example in
[10]. We obtain an inner approximation for the ROA of
R∗ = 2.6877 while [10] reports a box of [−1, 1]×[−2, 2]. Our
disk and the box have areas of 22.69 and 8.00, respectively.

IV. NUMERICAL EXAMPLE

We evaluate the proposed analysis methods on two low-
order mechanistic models of transitional flows that were used
to demonstrate the QC analysis method in [13]: the 4-state
Waleffe-Kim-Hamilton (WKH) model [16] and the 9-state
reduced-order model of a plane Couette flow [15]. Both
models have the form in Eq. (1), with non-normal linear
dynamics and a quadratic lossless nonlinearity. We note that
the linear dynamics’ matrix is parameterized by the Reynolds
number Re: i.e., A = A(Re). Additional details on the specific
models used here can be found in [13].

We begin by using the GEVP in Eq. (15) to estimate the size
α∗ of the ROA over a range of Re. This is done by applying
steps 1 and 2 of Algorithm B. Figures 3(a) and 3(b) show the

results of this analysis (light blue) for the WKH and 9-state
Couette flow models, respectively. These results are compared
against ROA estimates based on the quadratic constraints
proposed in Liu and Gayme [13] (green) and those proposed
in Kalur, Seiler, and Hemati [12] (red). This comparison
indicates that the ROA estimate based on refinement of the
local QC region in steps 1 and 2 of Algorithm B leads to less
conservative estimates on α∗. Of note here is that although the
Liu & Gayme analysis reduces the conservatism in the analysis
relative to the Kalur, Seiler, & Hemati analysis, the formulation
based on ellipsoidal sets reduces conservatism relative to both
of these methods by a substantially larger degree for both
mechanistic models.

5 10 15 20 25

10
-2

10
-1

(a) WKH Model

100 120 140 160 180 200

10
-2

(b) 9-state Couette Flow Model

Fig. 3. The ellipsoidal constraints using step 1 and 2 of algorithm B shows
significant improvement in region of attraction (ROA) estimates.

Next, we apply Algorithm A and Algorithm B to estimate
the inner approximation R∗ as a function of Re. This analysis
is equivalent to computing a bound on the permissible per-
turbation amplitude, or sphere of “safe” initial conditions. In
Figure 4, the radius of the largest R̂R is denoted as R∗ and is
obtained from solving Algorithm A and compared with SOS
and DAL estimates for the WKH and 9-state Couette flow
models, respectively. The DAL method solves a variational
problem for the nonlinear optimal perturbation, which is used
as a benchmark for comparison. The SOS analysis uses the
toolbox available in [20]. To solve Eq. (13) for the WKH



model and 9-state models, we use 200 logarithmically spaced
values of α between 10−5 and 101. We compute the ROA
estimate using the largest radius obtained on this grid, i.e.,
R∗ := maxiR(α∗i ). The results in Figure 4 show that the
ellipsoidal sets improve the estimates of R̂R compared to the
spherical sets given in [12], [13]. This is true even at the
initial iterate, which yields improvements of approximately
4 times and 2.5 times for the WKH and 9-state models, re-
spectively. Additional refinement iterations improve the results
even further. However we set the tolerance for convergence to
10−4, and also observe only a marginal improvement after
three iterations of Algorithm A (gray curve). For the 9-state
model, there is an improvement factor of roughly 2.4 and
3.3 using Algorithm A (blue curve) over the QC methods
of Liu & Gayme and Kalur, Seiler & Hemati. Additionally,
the improvement factor of R∗ is ≈ 3.38 using Algorithm A
as compared to the other two QC constraints for the WKH
model.

5 10 15 20 25

10
-2

10
0

(a) WKH Model

100 120 140 160 180 200
10

-4

10
-3

10
-2

10
-1

(b) 9-state Couette Flow Model

Fig. 4. The inner estimates of ROA obtained using Algorithm A show
improved estimates compared to methods based on spherical sets.

In Figure 4, we also compare the results obtained using
Algorithm A with SOS and DAL methods. We find that each
iteration of Algorithm A reduces the conservatism of the QC
estimates, but the inner estimate is still conservative relative
to the SOS and DAL methods. More specifically, the largest
radius R∗ obtained from the SOS (black dashed curve) method

and Algorithm A with 1 iteration (blue curve) differ by an
average factor of ≈ 2.45 and ≈ 6.1 for the WKH and 9-
state models, respectively. The differences in the R∗ estimates
become even greater for the DAL approach, with the DAL
estimates (magenta curve) being larger by a factor of ≈ 3.5
and ≈ 23 than the Algorithm A estimates for the WKH
and 9-state models, respectively. We note that SOS and DAL
methods provide superior estimates of R∗ because both of
these methods use precise information of the nonlinearity and
exact equations of motion. This is in contrast to the QC-
based approaches, whereby only input-output properties of the
nonlinear terms are used.

Next, we assess estimates of R∗ using Algorithm B (see
Figure 5). The second step in Algorithm B avoids the com-
putationally demanding step of solving over a grid of α, as
is required in Algorithm A. Instead, Algorithm B directly
determines the best α for the given shape E and Lyapunov
energy matrix P , and thus provides an efficient “one-shot”
approach to estimate R∗. Since Algorithm B does not fa-
cilitate further iterations, in general it provides conservative
results as compared to Algorithm A. However, Algorithm B
substantially reduces conservatism to prior formulations of
the QC analysis presented in [12], [13]. In Figure 5, it can
be seen that estimates from Algorithm A and B differ by a
factor of roughly 1.16—on average—for the 9-state Couette
flow model. Although not reported here, we made similar
observations in our analysis of the WKH model, where the
difference was roughly a factor of 1.06 between Algorithm A
and B estimates of R∗.

100 120 140 160 180 200
10

-4

10
-3

Fig. 5. The inner estimate of ROA obtained using Algorithm B for the 9-
state model is conservative compared to the refinement using Algorithm A.

Finally, we assess the computational run-time performance
of the various methods investigated in this study. All computa-
tions were performed on an ASUS ROG M15 laptop with Intel
2.6 GHz i7-10750H CPU and a 16 GB RAM. Overall both
Algorithm A and B proposed in this paper require less total
run-time compared to DAL and SOS methods. This savings
becomes especially apparent in analyzing the 9-state model.
Although the SOS and DAL methods yield more accurate
estimates, these methods scale poorly with the state dimension
compared to the QC analysis methods. The SOS method for



TABLE I
TOTAL RUN-TIME AND AVERAGE SOLVER TIME PER ITERATION FOR CALCULATING R∗ BY THE VARIOUS METHODS STUDIED.

Method Run-time to convergence (secs) Avg. solver time for one iteration (secs)
WKH 9-state WKH 9-state

Algorithm A (solver: Mincx Matlab) 2.89 63.48 0.76×10−2 0.15
Algorithm B (solver Mincx & gevp Matlab) 1.85 37.99 2.3×10−2 0.49

DAL 9.82 137.6 8.64 ×10−4 0.18 ×10−2

SOS 116.8 5.82×104 2.9 1.45×103

WKH has a wall-time of about 116.8 seconds as compared
to 5.82 × 104 seconds for the 9-state model. Similarly, the
solver run times for each iteration of WKH model is 2.9
seconds compared to 1.45×103 seconds for the 9-state model.
Thus, in case of the SOS method, roughly doubling the states
results in the total computation time increasing by a factor
of ≈ 500. In contrast, the total run-time of the QC-based
Algorithm A increased by a factor of roughly 20 between
the 4-state WKH model and the 9-state model. For the 9-state
model, when we compare the run-time for Algorithm A to
the SOS method, we see that the QC method is approx 900
times faster. We note that the run-time for the DAL method
appears to increase by a factor of roughly 15 when going from
the 4-state WKH model to the 9-state model, which actually
seems to scale better than even the QC method; however, it
is important to note that the DAL method can be sensitive
to the final simulation time, perturbation size, tolerances, etc.
Thus, tuning the DAL method can be a time intensive process,
especially when system parameters (e.g., Re) are changed. The
time required to tune the DAL process to obtain the precise
estimates reported in this study is not reflected in the times
listed in Table I. Overall, we conclude that the QC-based
Algorithms A and B require less end-to-end time than SOS and
DAL methods, and yield R∗ solutions that are approximately
within one order of magnitude of the SOS and DAL estimates.

V. CONCLUSIONS

In this work, we have proposed an improvement to the
quadratic constraint (QC) framework for nonlinear fluid flow
analysis. This was done by generalizing the local QCs from
spherical sets (proposed in [11]–[13]) to ellipsoidal sets, which
reduced conservatism and improved estimates of the ROA.
Additionally, we proposed and investigated two algorithms
for performing the ROA analysis. The less conservative but
more computationally demanding algorithm—Algorithm A—
iteratively refines the solution by solving a sequence of semi-
definite programs. In contrast, the more computationally ef-
ficient algorithm—Algorithm B—solves a single generalized
eigenvalue problem (GEVP) and yields estimates of the ROA
and permissible perturbation amplitude in a single pass. Both
Algorithms A and B were found to outperform the QC
analysis methods proposed in [12] and [13] in terms of
accuracy. Algorithm B did so at no additional computational
cost over these prior QC-based analysis methods. Both of
the proposed algorithms surpassed prevailing SOS and DAL
methods in terms of computational run-time. Although the

proposed methods did not attain the same degree of accuracy
as the computationally demanding SOS and DAL methods,
both Algorithms A and B estimated results on the same order
of magnitude as DAL and SOS for the models considered here.
It may still be possible to refine the QC method beyond what
we have presented in this study. Future work may benefit from
incorporating additional constraints to refine the proposed QC
analysis even further.
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