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Abstract—Iterative gradient-based algorithms have been in-
creasingly applied for the training of a broad variety of ma-
chine learning models including large neural-nets. In particular,
momentum-based methods, with accelerated learning guarantees,
have received a lot of attention due to their provable guarantees
of fast learning in certain classes of problems and multiple
algorithms have been derived. However, properties for these
methods hold only for constant regressors. When time-varying
regressors occur, which is commonplace in dynamic systems,
many of these momentum-based methods cannot guarantee
stability. Recently, a new High-order Tuner (HT) was developed
for linear regression problems and shown to have 1) stability
and asymptotic convergence for time-varying regressors and
2) non-asymptotic accelerated learning guarantees for constant
regressors. In this paper, we extend and discuss the results of
this same HT for general convex loss functions. Through the
exploitation of convexity and smoothness definitions, we establish
similar stability and asymptotic convergence guarantees. Finally,
we provide numerical simulations supporting the satisfactory
behavior of the HT algorithm as well as an accelerated learning
property.
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I. INTRODUCTION

GRADIENT-DESCENT constitutes the nerve center of
solutions to several problems in a wide range of fields

such as adaptive control, machine learning, and optimization
[1]–[4]. In adaptive control, reducing the control tracking error
of an uncertain dynamical system as well as learning the
unknown parameters of the system are the underlying goals.
A gradient-descent approach is often employed to realize both
goals, first to obtain a fast convergence of the performance
error and then, to reduce the learning error. In machine
learning, fast and correct training of models such as neural
networks is sought after, which necessitates the reduction of
an underlying loss function using a gradient-based approach.
Optimization approaches require the solution of an augmented
Lagrangian in an expedient manner, through a gradient-descent
method. Given the importance of the fast convergence in
all these problems, there is a need for algorithms that can
lead to an order of magnitude improvement in the speed
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of convergence, both performance and learning errors, while
retaining stability. This paper proposes such an algorithm.

Recently, a class of High-order Tuners (HT) was proposed
in continuous-time [5] for a large class of dynamic systems for
the purpose of estimation of unknown parameters. The estima-
tion problem for this class of systems can be reformulated as
a linear regression problem, where the underlying regressors
correspond to various system variables that can be measured,
including inputs, outputs, and states. Each of these high-order
tuners was shown to result in a stable performance error when
the regressors were time-varying. A variational perspective
was proposed in [5] with a Hamiltonian interpretation as the
unifying framework for this class of high-order tuners. One
of these tuners was extended in [6] for a class of nonlinear
problems where the underlying error model is still based
on linear regression. These high-order tuners are inspired by
earlier work in [7] and [8].

The main motivation of these high-order tuners was to
speed up the performance that could be obtained from gradient
methods. In [9], a discrete-time HT was proposed and was
shown to have two important properties. First, the HT was
shown to have accelerated convergence of performance error
when the regressors are constant, with the rate of convergence
a log factor away from the well known Nesterov’s algorithm
[4]. Second, it was shown to be stable, whether or not the
underlying regressors are constant or time-varying. In contrast,
Nesterov’s algorithm becomes unstable for the time-varying
regressor case. All of these discussions were limited to linear
error models which in turn have a quadratic and homogeneous
loss function.

In this paper, we extend the results of our HT in [9] for
discrete-time systems with convex loss functions and therefore
applicable to a large class of error models. We show both
for the case when the loss function is smooth and convex,
and for the case when it is smooth and strongly convex that
the HT can be guaranteed to be stable. In the first case, we
conclude boundedness of the parameter estimate and that the
loss function reaches its minimum (Theorem 2), while in the
second case, we establish exponential convergence of the pa-
rameter estimate to its true value and exponential convergence
of the loss function towards its minimum (Theorem 3). As
a precursor to both these cases, we consider a HT for a
continuous-time systems with convex functions, and establish
a similar stability result to Theorem 2 (Theorem 1). For ease
of exposition, we repeat the results of [9]. We show through
simulations that our HT leads to an accelerated convergence
of the performance error for a general convex function.

The organization of the paper is as follows. In Section II,
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we present a few preliminaries related to convex functions
as well as the problem statement. In Section III, we focus
on the minimization of smooth convex functions. We first
present existing results related to HT for linear error models
presented in [9]. We then present our first main contribution
of the paper, where we extend the stability properties of these
HT for general convex loss functions, first in continuous time,
and then in discrete-time. In Section IV we present the stability
properties of HT for smooth and strongly convex functions. In
Section V, several numerical examples are discussed which
illustrate the convergence properties of the proposed high-
order tuner.

II. PRELIMINARIES

A. Definitions

The following definitions and properties will be used
throughout this paper, modified from [4], [10].

Definition 1. A continuously differentiable function f is con-
vex if

f (y)≥ f (x)+∇ f (x)T (y− x), ∀x,y ∈ RN . (1)

Definition 2. A continuously differentiable function f is µ-
strongly convex if there exists a µ > 0 such that

f (y)≥ f (x)+∇ f (x)T (y− x)+
µ

2
‖y− x‖2, ∀x,y ∈ RN . (2)

Definition 3. A continuously differentiable function f is L̄-
smooth if there exists a L̄ > 0 such that

f (y)≤ f (x)+∇ f (x)T (y− x)+
L̄
2
‖y− x‖2, ∀x,y ∈ RN . (3)

Corollary 1. A continuously differentiable function f is convex
and L̄-smooth if there exists a L̄ > 0 such that ∀x,y ∈ RN ,

∇ f (x)T (y− x)≤ f (y)− f (x)≤ ∇ f (x)T (y− x)+
L̄
2
‖y− x‖2.

Corollary 2. A continuously differentiable function f is µ-
strongly convex and L̄-smooth if there exists two scalars L̄ ≥
µ > 0 such that ∀x,y ∈ RN ,

µ

2
‖y− x‖2 ≤ f (y)− f (x)−∇ f (x)T (y− x)≤ L̄

2
‖y− x‖2.

For ease of exposition, all convex functions considered in
this paper satisfy Corollary 1, and all strongly convex functions
satisfy Corollary 2.

B. Problem Statement

The focus of this paper is on the minimization problem
defined as

min
θ∈RN

Lk(θ), (4)

where L(θ) is a convex loss function that depends on time-
varying regressors φk, and denotes the value obtained with θ

at iteration k. The goal is to carry out a recursive estimation
of θ ∗, the solution of (4), so that the estimate θk quickly
converges to θ ∗. We provide a solution to this minimization
problem for smooth loss functions in Section III and for
smooth and strongly convex loss functions in Section IV.

III. SMOOTH LOSS FUNCTIONS

A. Quadratic Minimization

We first consider the case when L(θ) is a smooth and
quadratic loss function of θ . Such problems are ubiquitous
in several applications of optimization, estimation, and con-
trol and arise in linear regression problems. The underlying
problem is of the form

yk = θ
∗T

φk (5)

where φk ∈ RN is a regressor that varies with time, yk ∈ R
is a measurable output, and θ ∗ ∈ RN denotes the unknown
parameter and needs to be estimated. Using the structure of the
linear model in (5), an estimator is formulated as ŷk = θ T

k φk,
where ŷk is the output estimate and θk ∈ RN is the parameter
estimate. This leads to a performance error

ey,k = ŷk− yk = θ̃
T
k φk, (6)

where θ̃k = θk−θ ∗. It can be seen that this in turn leads to a
loss function Lk(θk),

Lk(θk) =
1
2

e2
y,k =

1
2

θ̃
T
k φkφ

T
k θ̃k, (7)

that is quadratic in θk ( [9]). The gradient of this loss function
is implementable as ∇Lk(θk) = φkey,k = φkφ T

k θ̃k.
We note that the Hessian of (7), ∇2Lk(θk) = φkφ T

k , can
be bounded as 0 ≤ ∇2Lk(θk) ≤ ‖φk‖2I. Also, we note that
∇Lk(θ

∗) = 0. Therefore, the quadratic loss in (7) is a convex
function, that need not be strongly convex, with a time-varying
and regressor-dependent L̄-smoothness parameter.

It is well known that stable parameter estimation and control
can be enabled by utilizing a normalized gradient descent
method given by [11, Chapter 3]:

θk+1 = θk− ᾱ∇ f̄k(θk), 0 < ᾱ < 2, (8)

where f̄k(·) is the normalized loss function defined as

f̄k(θk) =
Lk(θk)

Nk
, (9)

and Nk = 1 + ‖φk‖2 is a normalizing signal. Note that
∇2 f̄k(θk) = ∇2Lk(θk)/Nk ≤ I, and therefore (9) is a 1-smooth
convex function. We refer the reader to [11, Chapter 3] for
details of stability and convergence.

Rather than such a first-order tuner in (8), second-order
tuners were proposed in [9] for the same discrete-time regres-
sion problem in (5) (and in [5] for continuous-time problems
with linear parameterization), and shown to lead to stability
and accelerated convergence of the performance error ey,k. This
high-order tuner is summarized below as Algorithm 1.



Algorithm 1 HT Optimizer for Linear Regression

1: Input: initial conditions θ0, ϑ0, gains γ , β

2: for k = 0,1,2, . . . do
3: Receive regressor φk, output yk
4: Let Nk = 1+‖φk‖2, ∇Lk(θk) = φk(θ

T
k φk− yk),

∇ f̄k(θk) =
∇Lk(θk)

Nk
,

θ̄k = θk− γβ∇ f̄k(θk)
5: θk+1← θ̄k−β (θ̄k−ϑk)
6: Let ∇Lk(θk+1) = φk(θ

T
k+1φk− yk),

∇ f̄k(θk+1) =
∇Lk(θk+1)

Nk
7: ϑk+1← ϑk− γ∇ f̄k(θk+1)
8: end for

B. Extension to General Smooth Convex Minimization

We present the first set of main results of this paper in
this section, which addresses (4) for the case when L(θ) is a
smooth convex function of θ . We propose a high-order tuner
(HT) for the adjustment of θk. This HT is similar to Algorithm
1, but with the distinction that the normalizing signal Nk is
chosen as

Nk = 1+Hk, (10)

where
Hk = max

{
λ : λ ∈ σ

(
∇

2Lk(θ)
)}

, (11)

and σ
(
∇2Lk(θ)

)
denotes the spectrum of the Hessian matrix

of the loss function Lk.
Algorithm 2 HT Optimizer for Convex Loss Functions

1: Input: initial conditions θ0, ϑ0, gains γ , β

2: for k = 0,1,2, . . . do
3: Receive regressor φk,
4: Compute ∇Lk(θk) and let Nk = 1+Hk,

∇ f̄k(θk) =
∇Lk(θk)

Nk
,

θ̄k = θk− γβ∇ f̄k(θk)
5: θk+1← θ̄k−β (θ̄k−ϑk)
6: Compute ∇Lk(θk+1) and let

∇ f̄k(θk+1) =
∇Lk(θk+1)

Nk
,

ϑk+1← ϑk− γ∇ f̄k(θk+1)
7: end for
Algorithm 2 implies that at each k, in addition to the first

moment, ∇Lk which is evaluated both at θk and θk+1, we
also have access to the second moment, Hk, as well, in the
form of (11). In many engineering problems, the underlying
model includes prior information regarding the causality of the
loss function [12]. Both the first and second moment may be
functions of the regressor, with ∇Lk = g(φk), and Hk = h(φk),
where φk is the value of the regressor during iteration k. The
prior information may then imply that g(·) and h(·) are known
functions, allowing Algorithm 2 to be implemented at each k.
If these functions are poorly known, then conservative choices
have to be made in the implementations of ∇Lk and Hk. For
example, the second moment can be chosen as Hk = L̄ where
L̄ is the smoothness parameter of Lk.

As many of the tools and methods adopted for proving
stability have their origins in continuous time, we first address
the counterpart of Algorithm 2 in continuous time and its
stability property.

1) Continuous time stability: The problem under consider-
ation is the determination of θ ∗, which is the solution of

min
θ(t)∈RN

Lt(θ(t)), (12)

where Lt(θ(t)), is the loss function obtained with θ(t) at
iteration t, which varies continuously. This problem has been
studied in detail in [5] for linear models that are static and
dynamic, with a unifying variational perspective. A class of
HT tuners was proposed in continuous-time, all of which were
shown to be stable. In what follows, we extend the stability
results in [5] for a general model that leads to a convex loss
function.

One of the high-order tuners among the class of continuous-
time algorithms proposed in [5] is given by

ϑ̇(t) =− γ

Nt
∇Lt(θ(t)), (13a)

θ̇(t) =−β (θ(t)−ϑ(t)). (13b)

where Nt = 1+Ht , where Ht is the continuous-time equivalent
of (11) and was shown to be stable for linear regression
models. Yet another tuner was proposed in [5] with the signal
Nt appearing in the numerator rather than the denominator,
subsequently expanded in [6] for a class of nonlinearly pa-
rameterized systems that has an equivalent model that can be
linearly parameterized. The stability property of the HT in
(13a)-(13b) is summarized in Theorem 1.

Theorem 1. For a continuously differentiable convex loss
function L, the continuous time HT in (13a)-(13b), with
β > 2γ > 0, ensures that V = 1

γ
‖ϑ − θ ∗‖2 + 1

γ
‖θ − ϑ‖2 is

a Lyapunov function.

Proof. First, consider the following expression for smooth and
convex functions [10, Lemma 3.5]:

Lt(θ)−Lt(θ
∗)+

1
2L̄t
‖∇Lt(θ)‖2 ≤ ∇Lt(θ)

T
θ̃ . (14)

Using (13), (14) and γ ≤ β/2, the time derivative of V
may be bounded as V̇ ≤ 1

Nt
{−2(Lt(θ)−Lt(θ

∗))− 2
γ
β‖θ −

ϑ‖2 −
[

1√
L̄t
‖∇Lt(θ)‖−2

√
L̄t‖θ −ϑ‖

]2

} ≤ 0. Thus it can

be concluded that V is a Lyapunov function with (ϑ −
θ ∗) ∈ L∞ and (θ −ϑ) ∈ L∞. Integrating V̇ from t0 to ∞:∫

∞

t0 (L(θ)−L(θ ∗))/Ntdt ≤−
∫

∞

t0 V̇ dt =V (t0)−V (∞)<∞, thus
L(θ)−L(θ ∗) ∈L1∩L∞.

2) Discrete time stability: We now proceed with the stabil-
ity property of the HT Algorithm 2.

Theorem 2. For a continuously differentiable L̄k-smooth
convex loss function Lk(·), Algorithm 2, with 0 < β < 1
and 0 < γ ≤ β (2−β )

8+β
, ensures that V = 1

γ
‖ϑ − θ ∗‖2 + 1

γ
‖θ −

ϑ‖2 is a Lyapunov function. It can also be shown that
limk→∞ Lk(θk+1)−Lk(θ

∗) = 0.

Proof. First, through convexity and smoothness definitions, as
well as the structure of the HT, one can obtain the following
upper bound:

Lk(ϑk)−Lk(θ̄k) = Lk(ϑk)−Lk(θk+1)+Lk(θk+1)−Lk(θ̄k)



(1),(3)
≤ ∇Lk(θk+1)

T (ϑk−θk+1)+
L̄k

2
‖ϑk−θk+1‖2

+∇Lk(θk+1)
T (θk+1− θ̄k)

(15)

Alg. 2
≤ ∇Lk(θk+1)

T (ϑk− θ̄k)+
L̄k

2
‖ϑk− (1−β )θ̄k−βϑk)‖2

(16)

Lk(ϑk)−Lk(θ̄k)

≤−∇Lk(θk+1)
T (θ̄k−ϑk)+

L̄k

2
(1−β )2‖θ̄k−ϑk‖2.

(17)

Similarly, we obtain:

Lk(θ̄k)−Lk(ϑk)

≤ ∇Lk(θk)
T (θ̄k−ϑk)+

L̄kγ2β 2

2N 2
k
‖∇Lk(θk)‖2.

(18)

Flipping the signs in (17) and using (18) we obtain:

∇Lk(θk+1)
T (θ̄k−ϑk)

− L̄k

2
(1−β )2‖θ̄k−ϑk‖2

− L̄kγ2β 2

2N 2
k
‖∇Lk(θk)‖2 ≤ ∇Lk(θk)

T (θ̄k−ϑk)

(19)

Using Algorithm 2, (14), (19), setting γ ≤ β (2−β )
8+β

, and
defining ∆Vk :=Vk+1−Vk, it can be shown that

∆Vk ≤
1

Nk
{−2(Lk(θk+1)−Lk(θ

∗))} ≤ 0. (20)

Collecting ∆Vk terms from t0 to T , and letting T → ∞, it
can be seen that Lk(θk+1)− Lk(θ

∗) ∈ `1 ∩ `∞ and therefore
limk→∞ Lk(θk+1)−Lk(θ

∗) = 0.

Remark 1. The main idea behind the use of the Hessian in Nk
stems from the fundamental property of convex functions (see
(14)) for continuous-time and (17) and (18) for discrete-time
cases) that are most relevant to establish the underlying Lya-
punov functions (Theorem 1 for continuous-time and Theorem
2 for discrete-time). That is, convexity of a function allows
an important inequality that connects its first-order moment
(involving gradients) with its second-order moment (involving
Hessians). This inequality in turn necessitates normalization
that involves Hessian in the loss function.

Remark 2. It should be noted that the proof of Theorem 2
is highly nontrivial. In particular, the derivation of (20) was
enabled through a careful deployment of properties of convex
functions. In particular, the inequality (17) was arrived at
using the smoothness property and the convexity property of
convex functions in (15), and the specific structure of the high-
order tuner in (16). All these three components were equally
central in deriving (17) and (18) and therefore the final step in
(20). It should be noted that unlike this convex case considered
in this paper, the result in [9] relied on the fact that the
gradient is linear in ||θk||. Such a property does not hold in
the current context. It is only through the use of properties of
general convex functions were we able to establish (20).

IV. SMOOTH AND STRONGLY-CONVEX LOSS FUNCTIONS

In the previous section we addressed the case when the
loss function L(θ) was smooth and convex in θ and derived
stability properties of HT in both continuous and discrete-
time in Theorems 1 and 2, respectively. In this section, we
consider loss functions L(θ) that are smooth and strongly
convex, restrict our attention to discrete-time problems, and
propose the same HT as in Algorithm 2. In addition to deriving
stability properties, we also show that Algorithm 2 leads to
an accelerated convergence of L(θk) to zero with constant
regressors, i.e. φk ≡ φ .

A. Quadratic Minimization

As in Section III, we first consider the simple case when
L(θ) is quadratic in θ , which is given by (7). As L(·) is only
convex and not strongly-convex, a regularizing term is added
to the normalized loss function (9) as in

fk(θk) =
Lk(θk)

Nk
+

µ

2
‖θk−θ0‖2, (21)

where µ > 0 is a regularization constant and θ0 is the initial
condition of the estimate [9]. It can be seen that f is a (1+µ)-
smooth and µ-strongly convex function since µI≤∇2 fk(θk)≤
(1+µ)I. The optimal solution of fk(·) is defined as θ ∗ε , i.e.:
∇ fk(θ

∗
ε ) = 0.

Remark 3. Algorithm 1 can be applied in this setting by
simply replacing ∇ f̄k(θk) with the gradient of (21), i.e.:
∇ fk(θk) =

∇Lk(θk)
Nk

+µ(θk−θ0). See [9] for further details.

B. Minimization of Smooth and Strongly Convex Functions

We now address the problem when L is a smooth and
strongly convex function. We first present the stability property
of the HT and then its accelerated convergence.

1) Discrete time stability:

Theorem 3. For a continuously differentiable L̄k-smooth and
µ-strongly convex loss function Lk(·), Algorithm (2), with
0 < β < 1 and 0 < γ ≤ β (2−β )

16+β+µ
ensures that V = 1

γ
‖ϑ −

θ ∗‖2 + 1
γ
‖θ − ϑ‖2 is a Lyapunov function. It can also be

shown that limk→∞(Lk(θk+1)−Lk(θ
∗)) = 0. Furthermore, for

constant regressors, with Nk =N , Vk ≤ exp(−µCk)V0, where
C = γβ

4N .

Proof. As L(θ) is strongly convex in θ , we utilize inequality
(2) rather than (1) which leads us to the following:

∇Lk(θk+1)
T (θ̄k−ϑk)−

L̄k

2
(1−β )2‖θ̄k−ϑk‖2

− L̄kγ2β 2

2N 2
k
‖∇Lk(θk)‖2 +

µ

2
β

2‖θ̄k−ϑk‖2

+
µ

2
‖θk−ϑk‖2 ≤ ∇Lk(θk)

T (θ̄k−ϑk)

(22)

Using Algorithm 2, (14), (22), setting γ ≤ β (2−β )
16+β+µ

and defining
∆Vk :=Vk+1−Vk it can be shown that

∆Vk ≤
1

Nk
{−(Lk(θk+1)−Lk(θ

∗))− γβ µ

4
Vk} ≤ 0. (23)

This establishes that V is a Lyapunov function.



Collecting ∆Vk terms from t0 to T , and letting T → ∞, it
can be seen that Lk(θk+1)− Lk(θ

∗) ∈ `1 ∩ `∞ and therefore
limk→∞ Lk(θk+1)−Lk(θ

∗) = 0. Furthermore, from the bound
on ∆Vk, Vk+1 ≤

(
1−µ

γβ

4Nk

)
Vk. Finally, collecting terms, and

for constant regressors, Nk = N :

Vk ≤
(

1−µ
γβ

4N

)k

V0 ≤ exp(−µCk)V0. (24)

Remark 4. Very similar to the proof of Theorem 2, here
too, we employed properties of convex functions. The main
distinction between the two theorems is the strong convexity
of L. This property allows us to obtain a bound for ∆Vk as in
(23), and therefore (24).

2) Accelerated learning for constant regressors: Since φk ≡
φ , it can be shown that in the quadratic minimization problem,
the underlying gradient of f in (21) is linear in θ and therefore
satisfies the property

a∇ f (θk)+b∇ f (θk−1) = ∇ f (aθk +bθk−1) (25)

for any constants a and b. Together with the hyperparameters
γ and β chosen as β̄ = 1−β and ᾱ = γβ , the property (25)
allows Algorithm (1) along with (21) to be reduced to a form

θk+1 = νk− ᾱ∇ f (νk),

νk+1 = (1+ β̄ )θk+1− β̄ θk.
(26)

Equation (26) coincides with Nesterov’s algorithm for strongly
convex functions [4, Equation 2.2.22]. This in turn allows us
to derive the following accelerated convergence property for
the case when L is quadratic in θ :

Theorem 4 (Modified from [10, Theorem 3.18]). For
a L̄-smooth and µ-strongly convex function f , the iter-
ates {θk}∞

k=0 generated by (26) with θ0 = ν0, ᾱ = 1
L̄ ,

κ = L̄/µ , and β̄ = (
√

κ − 1)/(
√

κ + 1), satisfy f (θk) −
f (θ ∗) ≤ L̄+µ

2 ‖θ0 − θ ∗‖2 exp
(
− k√

κ

)
, and therefore if k ≥⌈√

κ log
(
(L̄+µ)‖θ0−θ∗‖2

2ε

)⌉
then f (θk)− f (θ ∗)≤ ε .

Proof. Refer to [10, Page 290-293].

For the general case of a strongly convex function L,
the superposition property (25) is no longer valid. Therefore
Nesterov’s method of estimating sequences is no longer ade-
quate. The convexity property in Definition 2 can be suitably
leveraged to lead to the following inequality [13]:

µ‖x− y‖ ≤ ‖∇ f (x)−∇ f (y)‖ ≤ L̄‖x− y‖, (27)

Based on (27), we propose the following conjecture on an
accelerated convergence property of Algorithm 2.

Conjecture 1. For a contnuously differentiable smooth and
strongly convex function L̄, and for constant regressors, the it-
erates {θk}∞

k=0 generated by Algorithm 2 satisfy a convergence
rate of O(log(1/ε)).

In summary, the main results of the paper can be found
in Sections III and IV in the form of Theorems 1, 2, and 3.
Theorems 1 and 2 demonstrated the stability property of HT

when the underlying loss function was smooth and convex,
while Theorem 3 presented the stability property of HT when
the loss function is smooth and strongly convex.

V. NUMERICAL SIMULATIONS

In this section, we numerically validate the results of
Theorems 2 and 3, which correspond to convex and strongly
convex functions in discrete-time. We also validate Conjecture
1 in Section IV, which pertains to an accelerated convergence
property of the HT. All simulations have been implemented in
Python and the code is available in the online notebooks [14]
and [15].

The starting point for our numerical experiments is a smooth
convex function defined as

Lk(θ) = log(akebkθ +ake−bkθ ), (28)

where ak and bk are positive scalars and may be time-varying.
This function has a unique minimum at θ ∗ = 0. The gradient
for this loss function can be computed as ∇Lk(θ)= (bk(e2bkθ−
1))/(e2bkθ +1). It is also easy to see that the Hessian is upper-
bounded as ∇2Lk(θ)≤ b2

k .

A. Stability for time-varying regressors

We represent the time-varying regressors in two ways: by
a step change in bk from 7 to 14 at a particular iteration in
Figure 1 and by a sinusoidal change in bk = 14+7sin(200k)
in Figure 2. The normalizing signal Hk is chosen as b2

k , a
conservative choice, as opposed to (11).

In Figures 1(a) and 2(a) the hyperparameter for both smooth
methods is chosen as ᾱ = 1/L̄0. For the High-order Tuner,
we choose β = 0.1 and γ = 1/β , so that the effective step
sizes are comparable for both methods. These experiments
show the stable behavior of HT when the regressors change
and instability for the other two methods. In Figure 1(b) and
2(b) the hyperparameters of the HT are chosen according to
Theorem 2, i.e.: β = 0.1, γ = β (2−β )

8+β
; and the step size ᾱ

is chosen as ᾱ = γβ/N0. Because of the reduction of the
effective step size in this experiment, we run more iterations.
In this case, all methods remain stable. Nevertheless, since the
HT updates its effective step size when the regressors change,
it automatically improves its learning rate compared to the
other methods.

B. Convergence rate for smooth and strongly convex functions
for constant regressors

First, in order to make (28) strongly convex, we include a
regularizing term to the loss function, producing a new smooth
and µ-strongly convex function Lµ as in

Lµ(θ) = log(akebkθ +ake−bkθ )+
µ

2
‖θ −θ0‖2. (29)

It is clear from the structure of (29) that the underlying
problem is nonlinearly parameterized, even while the function
remains strongly convex and smooth. Because of the nonlin-
earity of the gradient of L, Algorithm 2 cannot be reduced
to Nesterov’s method (26). Thus, the accelerated convergence
rate for the loss function in Theorem 4 cannot be directly
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Fig. 1. Stability for time-varying regressors. (a) Step change in bk from 7 to
14 at k = 25. (b) Step change in bk from 7 to 14 at k = 1500.
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Fig. 2. Stability for time-varying regressors with a sinusoidal change in bk .

extended to this case. However, as shown in Figure 3, our
numerical simulation studies show that when Algorithm 2
is applied to the convex loss function (29), it results in the
same accelerated convergence rate as Nesterov’s algorithm
applied to f̄µ(θ) = Lµ(θ)/N . Figure 3 shows the results
when (26) and Algorithm 2 minimize function f̄µ and (29)
respectively, with ak ≡ 1

2 , bk ≡ 1, µ = 10−4 and θ0 = 5. The
hyperparameters for this simulation have been chosen as in
Theorem 4 and β = 1− β̄ and γ = ᾱ/β . It can be seen that both
algorithms result in an equally fast convergence supporting
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Fig. 3. Accelerated learning properties of the HT. Original smooth loss
function gap values at each iteration, and loss function value at θ ∗µ .

Conjecture 1.

VI. SUMMARY

In this paper we have shown that the discrete HT proposed
in [9] is also stable for general convex loss functions. An added
advantage of this HT is an accelerated convergence of the loss
function to zero, as shown in the numerical simulations. We
anticipate that the tools used to prove these results, as well
as the insights gained from this framework, will be useful for
further extensions to problems with nonlinear regression and
nonconvexities.
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