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Abstract— We address the problem of robust state recon-
struction for discrete-time nonlinear systems when the actuators
and sensors are injected with (potentially unbounded) attack
signals. Exploiting redundancy in sensors and actuators and
using a bank of unknown input observers (UIOs), we propose
an observer-based estimator capable of providing asymptotic
estimates of the system state and attack signals under the
condition that the numbers of sensors and actuators under
attack are sufficiently small. Using the proposed estimator, we
provide methods for isolating the compromised actuators and
sensors. Numerical examples are provided to demonstrate the
effectiveness of our methods.

I. INTRODUCTION

Networked Control Systems (NCSs) are firmly embedded
in many aspects of our daily lives. Compared with traditional
control systems, NCSs bring a number of advanges such as
low installation/maintenance cost, reduced weight/volume,
remote diagnosis/control. Recently, security of NCSs has
become a main concern as wireless communication networks
might serve as new access points for malicious agents trying
to deteriorate the functionality of systems. According to the
2015 US security report, the number of of cyberattacks on
critical infrastructure has increased 3,000% from 2009 to
2015. In particular, transportation, energy and water has been
their main target, which might lead to catastrophic fatalities,
financial loss, and threaten national security. It follows that
we need strategic mechanisms for attack identification and
mitigation on NCSs.

In [1]- [20], several security-related research problems for
linear control systems have been investigated. In general,
analysis tools are provided for quantifying how different
classes of cyberattacks degrade system performance; reaction
strategies are given to identify and mitigate their effect on
the system dynamics. There are quite few results addressing
the nonlinear case, although many engineering systems are
nonlinear in nature. In [21], the authors design algorithms for
sensor attack detection and state estimation for uniformly
observable continuous-time nonlinear systems. In [22], the
authors provide a compressed sensing-based estimation al-
gorithm for nonlinear power systems under sensor attacks.

This work was supported by the SUG-NAP Grant (No. M4082268.050)
of Nanyang Technological University, Singapore

1 The authors are with the School of Mechanical and Aerospace Engineer-
ing, Nanyang Technological University, Singapore. Emails: {tianci.yang,
lyuchen, chao.huang}@ntu.edu.sg

2 The author is with the Department of Mechanical Engineer-
ing, Eindhoven University of Technology, The Netherlands. Email:
c.g.murguia@tue.nl

3 The author is with the Department of Electrical and Electronic Engi-
neering, University of Melbourne, Australia. Email: dnesic@unimelb.edu.au

In [23], we provide an estimation framework for general
nonlinear systems under sensor attacks.

In this manuscript, we extend our idea in [24], where an
unknown input multi-observer estimator is designed for lin-
ear time-invariant systems under sensor and actuator attacks,
and consider using UIOs as a tool to solve the problem
of secure estimation, attack reconstruction and isolation for
discrete-time nonlinear systems in the presence of sensor and
actuator attacks. We first consider the case when the system
has nu actuators and all of which are potentially attacked
by an adversary and only a subset of its ny sensors are
under attack. Using a bank of complete UIOs as the main
ingredient, we construct an estimator capable of providing
robust state estimates independent of the actuator and sensor
attack signals. The main idea of designing the estimator is
the following. Each complete UIO in the bank assumes all
inputs are unavailable and is driven by different subsets of
sensors. Thus, if the sensors are attack-free, these complete
UIOs produce stable estimation errors. For every pairs of
complete UIOs, we compute the largest difference between
their estimates. If a pair of complete UIOs are driven by
healthy sensors, then these complete UIOs produce the
smallest difference between their estimates and provide good
estimates of the system states. Then, we assume complete
UIOs are not available, however, partial UIOs which can es-
timate the system states when some inputs are unknown exist
and only a subset of actuators and sensors are under attack.
We use a bank of partial UIOs as the main ingredient to
construct an estimator capable of providing robust estimates
of the system state despite the occurrence of actuator and
sensor attacks. The main idea of our approach is as follows.
Each partial UIO in the bank assumes a different set of inputs
are unavailable and is driven by different subsets of sensors.
Thus, if the inputs assumed to be unknown by the UIOs
include all the attacked ones and the sensors are attack-free,
these UIOs produce attack-free estimates. We compute the
largest difference between the estimates given by every pair
of partial UIOs in the bank. If the inputs assumed to be
unknown by a pair of UIOs include all the attacked ones
and the sensor measurements they use for estimation are
attack-free, then these UIOs produce the smallest difference
between their estimates and provide good estimates of the
system states. Next, we propose a method for isolating false
data injection actuator and sensor attacks once an estimate
of the system state is obtained.

The paper is organized as follows. In Section II, two types
of UIO-based estimators are given. In Section III, a method
for isolating actuator and sensor attacks are proposed. Illus-
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trative examples are presented to illustrate the performance
of the estimators, the method of isolating attacks. Finally, we
give concluding remarks in Section IV.

Notations: We denote the set of real numbers by R, the
set of natural numbers by N, and Rn×m the set of n ×m
matrices for any m,n ∈ N. For any vector v ∈ Rn, we
denote vJ the stacking of all vi, i ∈ J , J ⊂ {1, . . . , n},
|v| =

√
v>v, and supp(v) = {i ∈ {1, . . . , n} |vi 6= 0}. We

denote the cardinality of a set S as card(S). The binomial
coefficient is denoted as

(
a
b

)
, where a, b are nonnegative

integers. We denote a variable m uniformly distributed in
the interval (a, b) as m ∼ U(a, b). A continuous function
α : [0, a)] → [0,∞)] is said to belong to class K if it is
strictly increasing and α(0) = 0 [25]. Similarly, a continuous
function β(r, s) belongs to class KL if, for fixed s, the
mapping β(r, s) belongs to class K with respect to r and,
for fixed r, the mapping β(r, s) is decreasing with respect
to s and β(r, s)→ 0 as s→∞ [25].

II. ESTIMATION

Consider a discrete-time nonlinear system under sensor
and actuator attacks:

x+ =f(x) +B(u+ au),

y =h(x) + ay,
(1)

where state x ∈ Rn, output y ∈ Rny , known input u ∈ Rnu ,
vector of actuator attacks au ∈ Rnu , au = (au1, . . . , aunu)>,
i.e., aui(k) = 0 for all k ≥ 0 if the i-th actuator is attack-
free; otherwise, aui(ki) 6= 0 for some ki ≥ 0 and can be
arbitrarily large, and vector of sensor attacks ay ∈ Rny , ay =
(ay1, . . . , ayny

)>, i.e., ayi(k) = 0 for all k ≥ 0 if the i-
th sensor is attack-free; otherwise, ayi(ki) 6= 0 for some
ki ≥ 0 and can be arbitrarily large. Let B have full column
rank, Wu ⊆ {1, . . . , nu} denote the unknown set of actuators
under attack, and Wy ⊂ {1, . . . , ny} be the unknown set of
sensors under attack. We assume the following.

Assumption 1 The sets of attacked actuators
and sensors remain constant over time, i.e.,
Wu ⊂ {1, . . . , nu} ,Wy ⊂ {1, . . . , ny} are
constant (time-invariant) and supp(au(k)) ⊆ Wu,
supp(ay(k)) ⊆Wy , for all k ≥ 0.

A. Complete Unknown Input Observers

We first treat au in (1) as an unknown input to system (1)
and consider an observer of the form:

x̂+
Js

= fJs(x̂Js , u, y
Js , (yJs)+), (2)

where x̂Js is the observer state and fJs : Rn × Rnu ×
Rcard(Js)×Rcard(Js) → Rn denotes some nonlinear function.
Define eJs = x̂Js − x. System (2) is a complete unknown
input observer for system (1) if, for all au ∈ Rnu , and
aJsy (k) = 0, ∀k ≥ 0, there exist a KL-function βJs(·, ·),
such that:

|eJs(k)| ≤ βJs(|eJs(0)|, k), (3)

for all eJs(0) ∈ Rn and k ≥ 0.

Let q be the largest integer such that for each yJs ∈
Rcard(Js) with Js ⊂ {1, . . . , ny} and card(Js) ≥ ny − 2q >
0, a complete UIO of the form (2) satisfying (3) exists.

Assumption 2 There are at most q sensors attacked by an
adversary, i.e.,

card(Wy) ≤ q < ny
2
, (4)

where q denotes the largest integer such that for all Js ⊂
{1, . . . , ny} with card(Js) ≥ ny − 2q, a complete UIO (2)
exists for any yJs ∈ Rcard(Js).

Lemma 1 If Assumption 2 is satisfied, among each set of
ny− q sensors, at least ny− 2q > 0 of them are attack-free.

Proof: Lemma 1 follows trivially from Assumption 2. �

Suppose a complete UIO is designed for each set Js ⊂
{1, . . . , ny} with card(Js) = ny − q and for each set
Ss ⊂ {1, . . . , ny} with card(Ss) = ny−2q. Let Assumption
2 be satisfied, there exist at least one set J̄s ⊂ {1, . . . , ny}
with card(J̄s) = ny − q such that aJsy (k) = 0,∀k ≥ 0.
Then, the estimate given by the UIO for J̄s is attack-free,
and the estimates given by the UIOs for any Ss ⊂ J̄s with
card(Ss) = ny − 2q which we denote as x̂Ss

are consistent
with x̂Js . This motivates the following estimation algorithm:
for each set Js with card(Js) = ny − q, we define πJs(k)
as the largest deviation between x̂Js(k) and x̂Ss

(k) that is
given by any Ss ⊂ Js with card(Ss) = ny − 2q, i.e.,

πJs(k) = max
Ss⊂Js:card(Ss)=ny−2q

|x̂Js(k)− x̂Ss
(k)|. (5)

For all k ≥ 0,

σs(k) = arg min
Js⊂{1,...,ny}:card(Js)=ny−q

πJs(k), (6)

for all k ≥ 0, the estimate given by σs(k) is an attack-free
estimate,

x̂(k) = x̂σs(k)(k), (7)

where x̂σs(k)(k) represents the estimates given by σs(k). The
above discussion is summarized as follows.

Theorem 1 Consider system (1), observer (2), and the es-
timator (5)-(7). Let Assumptions 1-2 be satisfied and define
the estimation error e(k) := x̂σs(k)(k) − x(k); then, there
exists a KL-function β̄(·, ·) satisfying:
|e(k)| ≤ β̄(e0, k)

e0 := max
Js : card(Js) = ny − q
Ss : card(Ss) = ny − 2q

{|eJs(0)|, |eSs
(0)|} , (8)

for all k ≥ 0.

Proof: If Assumption 2 is satisfied, there exists at least one
set J̄s with card(J̄s) = ny−q such that aJ̄sy (k) = 0, ∀k ≥ 0;
then, there exists a KL-function βJ̄s(·, ·) such that

|eJ̄s(k)| ≤ βJ̄s(e0, k), (9)



for all e0 ∈ Rn and k ≥ 0. Also for any set Ss ⊂ J̄s with
card(Ss) = ny − 2q, we have aSs

y (k) = 0, ∀k ≥ 0; hence,
there exists a KL-function βSs(·, ·) such that

|eSs
(k)| ≤ βSs

(e0, k), (10)

for all e0 ∈ Rn and k ≥ 0. From the definition of πJ̄s in
(5), we can write the following

πJ̄s(k) = max
Ss⊂J̄s

|x̂J̄s(k)− x̂Ss
(k)|

= max
Ss⊂J̄s

|x̂J̄s(k)− x(k) + x(k)− x̂Ss(k)|

≤|eJ̄s(k)|+ max
Ss⊂J̄s

|eSs
(k)|

(11)

for all k ≥ 0. From (9) and (10), we obtain

πJ̄s(k) ≤ 2β′J̄s(e0, k), (12)

for all e0 ∈ Rn and k ≥ 0, where

β′J̄s(e0, k) := max
Ss⊂J̄s

{
βJ̄s(e0, k), βSs

(e0, k)
}
,

for all k ≥ 0. From (23), πσs(k)(k) ≤ πJ̄s(k). By Lemma 1,
at least one set S̄s ⊂ J̄s with card(S̄s) = ny−2q exists such
that aS̄s

y (k) = 0 for all k ≥ 0, and there exists a KL-function
βS̄s

(·, ·) such that

|eS̄s
(k)| ≤ βS̄s

(e0, k), (13)

for all e0 ∈ Rn and k ≥ 0. From (5), we have that

πσs(k)(k) = max
Ss⊂σs(k)

|x̂σs(k)(k)− x̂Ss
(k)|

≥|x̂σs(k)(k)− x̂S̄s
(k)|.

By the triangle inequality, we can write

|eσs(k)(k)| =|x̂σs(k)(k)− x(k)|
=|x̂σs(k)(k)− x̂S̄s

(k) + x̂S̄s
(k)− x(k)|

≤|x̂σs(k)(k)− x̂S̄s
(k)|+ |eS̄s

(k)|
≤πσs(k)(k) + |eS̄s

(k)|
≤πJ̄s(k) + |eS̄s

(k)|

(14)

for all k ≥ 0. From (12) and (13), we have

|eσs(k)(k)| ≤ β̄(e0, k), (15)

for all e0 ∈ Rn and k ≥ 0, where

β̄(e0, k) = 3 ·max
{
βS̄s

(e0, k), β′J̄s(e0, k)
}
,

for all k ≥ 0. Inequality (15) is of the form (8) and the result
follows. �

B. Partial Unknown Input Observers

Let B be partitioned as B = [b1, . . . , bi, . . . , bnu
] with

bi ∈ Rn×1 . Then, system (1) can be written as

x+ =f(x) +Bu+ bWu
aWu ,

y =h(x) + ay,
(16)

where we regard the vector of attacks aWu as an unknown
input to the dynamics. The columns of bWu

are all bi such

that i ∈ Wu. Let (q1, q2) be the largest integers such that a
partial unknown input observer of the form

x̂+
Jus

= fJus
(x̂Jus

, u, yJs , (yJs)+), (17)

exists for each bJu and Ju ⊂ {1, . . . , nu} with card(Ju) ≤
2q1 < nu and each yJs with card(Js) ≥ ny − 2q2 > 0,
where columns of bJu are bi, i ∈ Ju, i.e., an unknown input
observer of the form (17) exists for the following system:

x+ =f(x) +Bu+ bJua
Ju
u ,

yJs =hJs(x) + aJsy ,
(18)

with known input u and unknown input aJuu . UIOs of the
form (17) is referred to as partial UIOs for the pair (Ju, Js).
We assume the following.

Assumption 3 At most q1 actuators and q2 sensors are
under attack, i.e.,

card(Wu) ≤ q1 <
nu
2
, (19)

card(Wy) ≤ q2 <
ny
2
, (20)

where q1 and q2 denote the largest integers such that for
any Ju ⊂ {1, . . . , nu} with card(Ju) ≤ 2q1 and Js ⊂
{1, . . . , ny} with card(Js) ≥ ny − 2q2, a partial UIO of
the form (17) exists for the pair (Ju, Js).

Lemma 2 If Assumption 3 is satisfied, for each set of q1

actuators, among all its supersets with 2q1 actuators, at least
one set is a superset of Wu.

Lemma 3 If Assumption 3 is satisfied, among each set of
ny − q2 sensors, at least ny − 2q2 > 0 of them are attack-
free.

Proof: Lemmas 2 and 3 follow trivially from Assumption 3.
�

We say that a UIO exists for each pair (Ju, Js) with
card(Ju) ≤ 2q1 and card(Js) ≥ ny − 2q2, if for Wu ⊆ Ju,
aJsy (k) = 0, and k ≥ 0, there exists a KL-function βJus

(·, ·)
such that

|eJus
(k)| ≤ βJus

(|eJus
(0)|, k), (21)

where eJus
= x̂Jus

− x. We construct a partial UIO for
each pair (Ju, Js) with card(Ju) = q1 and card(Js) =
ny−q2 and for each pair (Su, Ss) with card(Su) = 2q1 and
card(Ss) = ny − 2q2. Then, if Assumption 3 is satisfied,
there exists at least one set J̄u with card(J̄u) = q1 such that
Wu ⊆ J̄u and at least one set J̄s with card(J̄s) = ny − q2

such that aJ̄sy (k) = 0, for all k ≥ 0. Thus, the UIO
for (J̄u, J̄s) provides correct estimate, and the UIOs for
any (Su, Ss) where Su ⊃ J̄u with card(Su) = 2q1 and
Ss ⊂ J̄s with card(Js) = ny − 2q2 provide estimates (de-
notes as x̂Sus

) that are consistent with x̂Jus
. This motivates

the following estimation strategy: for each (Ju, Js) with
card(Ju) = q1 and card(Js) = ny − q2, we define πJus(k)
as the largest deviation between x̂Jus(k) and x̂Sus(k) that is
given by any (Su, Ss) where Su ⊃ Ju with card(Su) = 2q1



and Ss ⊂ Js with card(Ss) = ny − 2q2, i.e.,

πJus
(k) := max

Su⊃Ju,Ss⊂Js
|x̂Jus

(k)− x̂Sus
(k)|. (22)

for all k ≥ 0, and

(σu(k), σs(k)) = arg min
Ju,Js

πJus
(k); (23)

then, we say that the estimate given by (σu(k), σs(k)) is a
correct estimate, i.e.,

x̂(k) = x̂σus(k)(k), (24)

where x̂σus(k)(k) denotes the estimate indexed by
(σu(k), σs(k)). The above discussion is summarized
in the following.

Theorem 2 Consider system (1), observer (17), and the
estimator (22)-(24). Let Assumption 3 be satisfied and define
the estimation error e(k) = x̂σus(k)(k) − x(k); then, there
exists a KL-function β̄(·, ·) satisfying:

|e(k)| ≤ β̄(e0, k)

e0 := max
(Ju, Js)
(Su, Ss)

{|eJus
(0)|, |eSus

(0)|} , (25)

for all e0 ∈ Rn, k ≥ 0.

Proof: If Assumption 3 is satisfied, there exist at least one set
J̄u with card(J̄) = q1 such that J̄u ⊃Wu and at least one set
J̄s with card(J̄s) = ny − q2 such that aJ̄sy (k) = 0,∀k ≥ 0,
then, there exist a KL-function βJ̄us

(·, ·), such that

|eJ̄us
(k)| ≤ βJ̄us

(e0, k), (26)

for all e0 ∈ Rn and k ≥ 0. Also for any set Su ⊃ J̄u with
card(Su) = 2q1 and Ss ⊂ J̄s with card(Ss) = ny−2q2, we
have Su ⊃ Wu and aSs

y (k) = 0 ∀k ≥ 0, hence there exist a
KL-function βSus

(·, ·), such that

|eSus
(k)| ≤ βSus

(e0, k), (27)

for all e0 ∈ Rn and k ≥ 0. Recalling the definition of πJ̄us

from (22), we have that

πJ̄us
(k) = max

Su⊃J̄u,Ss⊂J̄s
|x̂J̄us

(k)− x̂Sus
(k)|

= max
Su⊃J̄u,Ss⊂J̄s

|x̂J̄us
(k)− x(k) + x(k)− x̂Sus

(k)|

≤|eJ̄us
(k)|+ max

Su⊃J̄u,Ss⊂J̄s
|eSus(k)|

(28)

for all k ≥ 0. From (26) and (10), we obtain

πJ̄us
(k) ≤ 2β′J̄us

(e0, k), (29)

for all e0 ∈ Rn and k ≥ 0, where

β′J̄us
(e0, k) := max

Su⊃J̄u,Ss⊂J̄s

{
βJ̄us

(e0, k), βSus(e0, k)
}
,

for all k ≥ 0. Recall from (23) that πσus(k)(k) ≤ πJ̄us
(k).

From Lemmas 2, 3, we know that there exist at least one
set S̄u ⊃ σ(k) with card(S̄u) = 2q1 and at least one set
S̄s ⊂ J̄s with card(S̄s) = ny − 2q2 such that S̄u ⊃Wu and

aS̄s
y (k) = 0 for all k ≥ 0, and there exist a class KL-function
βS̄us

(·, ·), such that

|eS̄us
(k)| ≤ βS̄us

(e0, k), (30)

for all e0 ∈ Rn and k ≥ 0. From (22), there is a fact that

πσus(k)(k) = max
Su⊃σu(k),Ss⊂σs(k)

|x̂σus(k)(k)− x̂Sus
(k)|

≥|x̂σus(k)(k)− x̂S̄us
(k)|.

From the triangle inequality we have that

|eσus(k)(k)| =|x̂σus(k)(k)− x(k)|
=|x̂σus(k)(k)− x̂S̄us

(k) + x̂S̄us
(k)− x(k)|

≤|x̂σus(k)(k)− x̂S̄us
(k)|+ |eS̄us

(k)|
≤πσus(k)(k) + |eS̄us

(k)|
≤πJ̄us

(k) + |eS̄us
(k)|

(31)

for all k ≥ 0. From (29) and (30), we have

|eσus(k)(k)| ≤ β̄(e0, k), (32)

for all e0 ∈ Rn and k ≥ 0, where

β̄(e0, k) = 3 ·max
{
βS̄us

(e0, k), β′J̄us
(e0, k)

}
.

(32) is of the form (25) and the result follows. �

C. An Application Example

Consider the nonlinear system:

x+ =Ax+ f(x) +B(u+ au),

y =Cx+ ay,
(33)

with matrix C ∈ Rny×n and nonlinear function f : Rn →
Rn satisfying the following Lipschitz condition:

|f(x1)− f(x2)| ≤ γ|x1 − x2|,∀x1, x2 ∈ Rn, (34)

where γ > 0 denotes the Lipschitz constant. Consider a
complete UIO of the form:

x̂+
Js

=ĀJs x̂Js + B̄Jsu+ f̄Js(x̂Js) +KJs(yJs − CJs x̂Js)

+ B̄Js(yJs)+,
(35)

where KJs ∈ Rn×card(Js) is the observer gain. Let HJs :=
(CJsB)−1

left, ḠJs := I − BHJsC
Js , ĀJs := ḠJsA, B̄Js =

ḠJsB, and f̄Js(·) = ḠJsf(·). If for all Js ⊂ {1, . . . , ny}
with card(Js) ≥ ny − 2q, it is satisfied that rank(CJsB) =
nu; then, complete UIOs can be designed using the tools
given in [26] for all yJs with card(Js) ≥ ny−2q. Using the
estimation strategy (5)-(7) and Theorem 1, we can conclude
that (8) is satisfied for all e0 ∈ Rn and k ≥ 0. If ny−2 < nu;
then, complete UIOs cannot be designed for any yJs with
card(Js) = ny − 2 using the design methods given in [26].
Then, in that case, consider partial UIOs of the form:

x̂+
Jus

=ĀJus x̂Jus + B̄Jusu+ f̄Jus(x̂Jus)

+KJus(yJs − CJs x̂Jus) + b̄Jus(yJs)+.
(36)

Let HJus
:= (CJsbJu)−1

left, ḠJus
:= I − bJuHJus

CJs ,
b̄Jus

:= bJuHJus
, ĀJus

:= ḠJus
A, B̄Jus

:= ḠJus
B,



0 2 4 6 8 10 12 14 16 18
-10

-5

0

5

10

0 2 4 6 8 10 12 14 16 18

Time Step

-10

-5

0

5

Fig. 1. The estimation x̂ converges to the true states x when
au1, au2, ay2 ∼ U(−1, 1). Legend: x̂ (grey), true states (black)

and f̄Jus
(·) := ḠJus

f(·). If for all Ju ⊂ {1, . . . , nu},
card(Ju) ≤ 2q1, and Js ⊂ {1, . . . , ny}, card(Js) ≥
ny − 2q2, it is satisfied that rank(CJsbJu) = rank(bJu) =
card(Ju); then, partial UIOs can be designed using the
method given in [26], for all (Ju, Js) with card(Ju) ≤
2q1, card(Js) ≥ ny − 2q2. Under Assumption 3, using
the estimation strategy (22)-(24) and Theorem 2, we can
conclude that (25) is satisfied for all e0 ∈ Rn and k ≥ 0.

Example 1. Consider the nonlinear system under sensor
and actuator attacks:

x+ =

[
0.2 0.5
0.2 0.7

]
x+

[
0.5 sinx1

0.5 sinx2

]
+

[
1 0
0 1

]
(u+ au),

y =

[
1 1 3 4
1 1 2 1

]>
x+ ay.

(37)

Using the method given in [26], a complete UIO can be
designed for each yJs with card(Js) ≥ 2. Therefore, we have
q = 1. We let Wu = {1, 2}, which means both actuators are
under attack, and Wy = {2}, which means the 2-nd sensor is
compromised. We let (u1, u2) ∼ U(−5, 5), (au1, au2, ay2) ∼
U(−10, 10). Then, we design a complete UIO for each Js ⊂
{1, 2, 3, 4} with card(Js) = 3 and each Ss ⊂ {1, 2, 3, 4}
with card(Ss) = 2. Therefore,

(
4
3

)
+
(

4
2

)
= 10 complete

UIOs are designed in total, which are all initialized at [0, 0]
>.

For all k ≥ 0, (5) − (7) is used to construct x̂(k). The
performance of the estimator is shown in Figures 2-2.

Example 2. Consider the nonlinear system:

x+ =

0.5 0 0.1
0.2 0.7 0
1 0 0.3

x+

0.5 sinx1

0.5 sinx2

0.5 sinx3


+

1 0 1
1 1 0
0 1 1

 (u+ au),

y =

1 1 3 4
3 1 2 1
1 1 1 1

> x+ ay.

(38)
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Fig. 2. The estimation x̂ converges to the true states x when
au1, au2, ay2 ∼ U(−10, 10). Legend: x̂ (grey), true states (black)
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Fig. 3. The estimation x̂ converges to the true states x when au1, ay2 ∼
U(−1, 1). Legend: x̂ (grey), true states (black)

We have ny = 4 and nu = 3; then, ny − 2 < nu and
it can be verified that complete UIOs cannot be designed
for any yJs with card(Js) = 2 using the design methods
given in [26]. Instead, partial UIOs can be designed for each
pair (Ju, Js) with card(Ju) ≤ 2 and card(Js) ≥ 2. We let
q1 = q2 = 1, (u1, u2, u3) ∼ U(−1, 1), Wu = {1}, Wy =
{2}, (au3, ay2) ∼ U(−10, 10). We construct a partial UIO
for each set pair (Ju, Js) with card(Ju) = 1, card(Js) = 3
and each set pair (Su, Ss) with card(Su) = 2, card(Ss) = 2.
Therefore, totally

(
3
1

)
×
(

4
3

)
+
(

3
2

)
×
(

4
2

)
= 30 partial UIOs are

constructed and we initialize them by letting x̂(0) = [0, 0]>.
For all k ≥ 0, (22)-(24) is used to construct x̂(k). We depict
the performance of the estimator in Figures 3-4.

III. ISOLATION OF ATTACKS

The estimate x̂(k) of x(k), provided by the estimator
in Section II-A or the one in Section II-B, can be used
combined with the system dynamics (1), and the known
inputs to asymptotically reconstruct the attack signals. Note
that e = x̂ − x ⇒ x = x̂ − e ⇒ x+ = x̂+ − e+. Then, we
reformulate the system dynamics (1) in terms of e and x̂ as
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Fig. 4. The estimation x̂ converges to the true states x when au1, ay2 ∼
U(−10, 10). Legend: x̂ (grey), true states (black)

follows:
x̂+ = e+ +A(x̂− e) + f(x̂− e) +B(u+ au),

⇓
au = B−1

left(x̂
+ −Ax̂− f(x̂− e))− u−B−1

left(e
+ +Ae),

(39)
where, because B has full column rank, B−1

left denotes the
Moore-Penrose pseudoinverse of B. Similarly, we have

y = Cx+ ay = Cx̂− Ce+ ay,

⇓
ay = y − Cx̂+ Ce.

(40)

We first consider the complete multi-observer in Section II-
A. Suppose the dynamics of the estimation error character-
ized by (5)-(7) is as:

e+ = f1(e, x, ay, a
+
y , au), (41)

where f1 : Rn×Rn×Rny×Rny×Rnu → Rn denotes some
nonlinear function. In Theorem 1, we have proved that e is
asymptotically stable. Therefore, the terms that depend on e
and e+ in the expression for au and ay in (39) and (40),
respectively, vanish asymptotically and hence, the following
formulas:

âu(k) = B−1
left(x̂(k)−Ax̂(k−1)−f(x̂(k−1)))−u(k−1),

(42)
and

ây(k) = y(k)− Cx̂(k), (43)

provide an asymptotically reconstruction of the attack signals
au(k − 1) and ay(k), i.e.,

lim
k→∞

(âu(k)− au(k − 1)) = 0, (44)

and
lim
k→∞

(ây(k)− ay(k)) = 0. (45)

Then, by simply checking the sparsity pattern of âu(k) and
ây(k), we can isolate attacks for sufficiently large k, i.e.,

Ŵu(k) = supp(âu(k)), (46)
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Fig. 5. Estimate of ay when au1, au2, ay2 ∼ U(−1, 1).

and
Ŵy(k) = supp(ây(k)), (47)

where Ŵu(k) represents the set of attacked actuators we
isolate, and Ŵy(k) represents the set of attacked sensors we
isolate. Note that since au is estimated from x̂+ and e+,
there is always at least, one-step delay for actuator attacks
isolation.

Next, consider the partial multi-observer estimator given
in Section II-B. Similarly, we also write the attack vector
au and ay as (39) and (40), and use some nonlinear dif-
ference equation to describe the estimation error dynamics
characterized by the estimator (22)-(24), which is given as
follows:

e+ = f2(e, x, ay, a
+
y , au), (48)

where f2 : Rn × Rn × Rny × Rny × Rnu → Rn is a
nonlinear function. In Theorem 2, we have proved that
e is asymptotically stable. Hence, the estimated attack
signals given by (42) and (43) reconstruct the attack signals
asymptotically. By checking the sparsity pattern of âu(k)
and ây(k), we can effectively pinpoint attacked actuators
and sensors using (46) and (47).

Example 3 We consider model (37) in Example 1. We let
q = 1, Wu = {1, 2}, Wy = {2}, (u1, u2) ∼ U(−5, 5),
(au1, au2, ay2) ∼ U(−10, 10), and (x1(0), x2(0)) ∼
N (0, 1). We run

(
4
3

)
+
(

4
2

)
= 10 complete UIOs initialized at

x̂(0) = [0, 0]
>. We reconstruct ay and au from (43) and (42)

in 19 time-steps. The performance of the attack estimation
is shown in Figures 5-8. By checking the sparsity, actuators
1 and 2 and sensor 2 can be isolated as the attacked ones.

Example 4 We consider model (38) in Example 2.
We let q1 = q2 = 1, Wu = {3}, Wy = {2},
(u1, u2, u3) ∼ U(−5, 5), (au3, ay2) ∼ U(−10, 10), and
(x1(0), x2(0), x3(0)) ∼ N (0, 1). We run

(
3
2

)
×
(

4
2

)
+
(

3
1

)
×(

4
3

)
= 30 partial UIOs initialized at x̂(0) = [0, 0]

>. We
reconstruct ay and au from (43)-(42) in 19 time-steps. The
performance is shown in Figures 9-12. By checking the
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Fig. 7. Estimate of ay when au1, au2, ay2 ∼ U(−10, 10).

sparsity of ay and au, actuator 3 and sensor 2 can be isolated
as the attacked ones.

IV. CONCLUSION

Exploiting redundancy in actuators and sensors, we have
addressed and solved the problem of secure estimation and
attack isolation for discrete-time nonlinear systems in the
presence of (potentially unbounded) actuator and sensor
attacks. We use Unknown Input Observers (UIOs) as the
main ingredient for constructing an estimator capable of
asymptotically reconstructing the system states and the attack
signals. We use these estimates to pinpoint attacked actuators
and sensors. Numerical examples are presented to illustrate
the performance of our methods.
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synthesis of secure control systems,” Automatica, vol. 115, p. 108757,
2020.

[19] S. H. Kafash, J. Giraldo, C. Murguia, A. A. Cardenas, and J. Ruths,
“Constraining attacker capabilities through actuator saturation,” in
proceedings of the American Control Conference (ACC), 2017.

[20] C. M. Ahmed, C. Murguia, and J. Ruths, “Model-based attack detec-
tion scheme for smart water distribution networks,” in Proceedings of
the 2017 ACM on Asia Conference on Computer and Communications
Security, pp. 101–113, 2017.

[21] J. Kim, C. Lee, H. Shim, Y. Eun, and J. H. Seo, “Detection of sensor

0 2 4 6 8 10 12 14 16 18
-10

0

10

0 2 4 6 8 10 12 14 16 18
-10

0

10

2 4 6 8 10 12 14 16 18

Time Step

-10

0

10

Fig. 12. Estimate of au when au3, ay2 ∼ U(−10, 10).

attack and resilient state estimation for uniformly observable nonlinear
systems,” no. Cdc, pp. 1297–1302, 2016.

[22] Q. Hu, D. Fooladivanda, Y. H. Chang, and C. J. Tomlin, “Secure
state estimation and control for cyber security of the nonlinear power
systems,” IEEE Transactions on Control of Network Systems, vol. 5,
no. 3, pp. 1310–1321, 2017.

[23] T. Yang, C. Murguia, M. Kuijper, and D. Nešić, “A multi-observer
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