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Abstract

This paper is concerned with the problem of designing agents able to dynamically select information from multiple data
sources in order to tackle tasks that involve tracking a target behavior while optimizing a reward. We formulate this problem
as a data-driven optimal control problem with integer decision variables and give an explicit expression for its solution. The
solution determines how (and when) the data from the sources should be used by the agent. We also formalize a notion of
agent’s regret and, by relaxing the problem, give a regret upper bound. Simulations complement the results.

I. INTRODUCTION

The problem of designing agents able to tackle tasks by using data coming from multiple sources is attracting much
research attention. Learning algorithms with multiple simulators in the loop [1], robots navigating via maps from other
robots [2] and the sharing economy [3] are a few examples that involve making decisions based on the crowdsourcing of
information [4]. For these crowdsourcing agents, which craft their actions from mutually excluding options, a number of key
questions arise: is it possible to optimally orchestrate the use of the sources? And can performance be rigorously quantified?
Positively answering these questions would have intriguing implications, highlighting the possibility of designing agents that
can optimally perform tasks by re-using different datasets. In this context, this paper presents an optimal decision making
strategy that allows an agent to switch between the sources in order to tackle certain tasks. Moreover, we define and quantify
the regret of the agent that uses our strategy.

Related Work: in [4], we formalized the so-called crowdsourcing control problem (CCP) as a finite-horizon data-driven
optimal control problem. Results on data-driven control include [5]–[7], which take a behavioral systems perspective, [8], that
presents an approach to compute minimum-energy controls for linear systems, [9]–[11] which introduce algorithms inspired
from MPC, [12], where a data-driven design approach is devised for stabilizable Lipschitz systems. We also recall here [13]
which, by leveraging an approach that can be traced back to [14], seeks to synthesize control policies from demonstration
datasets for systems with actuation constraints and the recent [15], which discusses some of the key challenges of extracting
control relevant information from large amounts of data. Recently, it has been shown that data-driven control can benefit
from the use of properly patched data from multiple sources [16]. In the context of learning systems, a Multi-Fidelity
Reinforcement Learning (RL) algorithm, enabling an agent to build a policy by sampling from different datasets, has been
introduced/analyzed in [1] and, in e.g. [17], [18], it has been also shown that state-of-the-art RL algorithms can improve
their performance if these are trained on multiple, heterogeneous, offline datasets.

Contributions: we consider the problem of designing agents able to dynamically choose between multiple sources in
order to fulfill tasks that involve tracking a target behavior while optimizing a reward function. We formulate this problem
as a data-driven, integer, optimal control problem. For this problem: (i) we formalize the problem as a data-driven control
problem. This leads to an optimal control formulation with integer decision variables; (ii) by relaxing the problem, we find
an explicit expression for its optimal solution. The solution determines, at each time step, which source should be picked by
the agent; (iii) finally, we formalize a notion of regret w.r.t. an oracle and give a regret upper bound. The oracle is obtained
by relaxing the original control problem. This leads to an infinite-dimensional convex problem that we also solve explicitly.
Our results are complemented via simulations.

While the results of this paper are inspired by the ones presented in [4], our paper extends this in several ways. First,
differently from [4], here the formalization of the control problem leads to study an optimization problem with integer
decision variables. Second, we find an optimal solution for the problem considered here and actually prove that this solution
coincides with a non-optimal solution from [4]. Moreover, we introduce a notion of regret and give a regret upper bound.
This leads to an infinite-dimensional convex problem that was not considered in [4] and, as a result, our regret analysis
cannot obtained with the results from [4].

Mathematical Preliminaries: sets are in calligraphic and vectors in bold. Consider the measurable space (X ,Fx), where
X ⊆ Rd (X ⊆ Zd) and Fx is a σ-algebra on X . We denote a random variable on (X ,Fx) by X and its realization by
x. The probability density (mass) function or pdf (pmf ) of a continuous (discrete) X is denoted by p(x) and D is the
convex subset of pdfs/pmfs. When we take the integrals (sums) involving pdfs (pmfs) we always assume that these exist.
The expectation of a function h(·) of the continuous variable X is Ep[h(X)] :=

∫
h(x)p(x)dx, where the integral is

over the support of p(x) - for discrete variables the integral is replaced with the sum. The joint pdf (pmf) of two random
variables, X1 and X2, is p(x1,x2) and the conditional pdf (pmf) of X1 w.r.t. X2 is p (x1|x2). Countable sets are denoted
by {wk}k1:kn , where wk is a set element and k1 : kn is the closed set of consecutive integers between index k1 and kn. We
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also let p0:N := p(x0, . . . ,xN ), pk:k := pk(xk) and pk|k−1 := pk(xk|xk−1). Also: (i) functionals are denoted by capital
calligraphic characters with arguments in curly brackets; (ii) the internal product between tensors is 〈·, ·〉; (iii) likelihoods
have the arguments in square brackets. The Kullback-Leibler (KL) divergence of p := p(x) w.r.t. q := q(x), with p absolutely
continuous with respect to q, is DKL (p||q) :=

∫
p ln (p/q) dx (for discrete variables the integral is replaced by the sum).

For pdfs/pmfs, DKL
(
p(1)||p(2)

)
measures the proximity of the pair p(1), p(2).

II. THE SET-UP

The agent seeks to craft its behavior by gathering data from a number of sources in order to fulfill a task that involves
tracking a target/desired behavior while, at the same time, maximizing a reward function. In what follows, xk ∈ X is the
state at time step k, d0:N := {x0, . . . ,xN} is the dataset of the target state trajectory for the agent over T := 0 : N and
p(d0:N ) = p(x0, . . . ,xN ). Now, by making the standard assumption that the Markov property holds, we have:

p0:N = p0:0

N∏
k=1

pk|k−1 =: p0:0p1:N |0, (1)

which is termed as target behavior. As noted in [4], the agent behavior can be designed by designing the joint pdf/pmf
π(x0, . . . ,xN ). By letting πk|k−1 := πk(xk|xk−1) we have:

π0:N = π0:0

N∏
k=1

πk|k−1 =: π0:0π1:N |0. (2)

That is, the agent behavior π0:N can be designed by shaping the πk|k−1’s. We let rk : X → R be the reward obtained
by the agent for being in state xk at time k. Hence, the expected reward for the agent that follows the behavior in (2) is
Eπk−1:k−1

[r̃k(Xk−1)] := Eπk−1:k−1

[
Eπk|k−1

[rk(Xk)]
]

= Eπk:k
[rk(Xk)]. We let S := 1 : S be the set of sources that the

agent can use and
{
π

(i)
k|k−1

}
1:N

be the sequence of pdfs/pmfs (i.e. the behavior) provided by the i-th source. While the
sources do not know the target behavior/reward of the agent, we make the following assumption, which, as discussed in [4],
is not restrictive in practice:

Assumption 1: DKL(π
(i)
k|k−1||pk|k−1) < +∞, ∀k, ∀i ∈ S.

Remark 1: situations where the π(i)
k|k−1’s are available to the agent naturally arise in a number of applications. For example,

within the multi-fidelity RL framework, the sources might be simulators available to the agent and each π
(i)
k|k−1 might be

given by the output of the i-th simulator.
Remark 2: in what follows, we use p1:n|0 and π1:n|0 for p(x1, . . . ,xn|x0) and π(x1, . . . ,xn|x0) to make equations more

compact.

III. THE CONTROL PROBLEM AND A LINK WITH THE CCP

Let α(i)
k , i ∈ S, be a weight and αk be the stack of the α(i)

k ’s. Then, the problem of designing agents able to dynamically
choose between different sources in order to track their own target behavior while optimizing the agent-specific reward can
be recast via the following

Problem 1: find the sequence {α∗k}1:N solving

min
{αk}1:N

DKL
(
π1:N |0||p1:N |0

)
−

N∑
k=1

Eπk−1:k−1
[r̃k(Xk−1)]

s.t. πk|k−1 =
∑
i∈S

α
(i)
k π

(i)
k|k−1, ∀k∑

i∈S
α

(i)
k = 1, α

(i)
k ∈ {0, 1}, ∀k.

(3)

In Problem 1 the constraints formalize the fact that, at each k, the agent picks the behavior from one source. The first
term in the cost quantifies the discrepancy between the agent behavior and the target: hence, minimizing this term amounts
to tracking the target behavior. Instead, minimizing the second term in the cost implies maximizing the agent’s expected
reward.

Remark 3: Problem 1 captures situations where an agent needs to pick between (rather than combine) multiple sources.
These situations arise in a number of applications, such as multi-fidelity RL where the agents needs to make its decision
based on the output of different simulators.

Definition 1:
{
π∗k|k−1

}
1:N

is an optimal solution of Problem 1 if π∗k|k−1 :=
∑
i∈S α

(i)
k

∗
π

(i)
k|k−1, with the weights being

an optimal solution of (3).
We now state the CCP from [4] in terms of Problem 1.



Problem 2: the CCP is the relaxation of Problem 1 obtained by replacing, ∀k, α(i)
k ∈ {0, 1} with α(i)

k ≥ 0.
In what follows, we also make use of the following definition

Definition 2:
{
π̃k|k−1

}
1:N

is an approximate solution of the CCP if π̃k|k−1 :=
∑
i∈S α̃

(i)
k π

(i)
k|k−1, with the weights being

the solution of a problem having the same constraints as the CCP and a cost upper-bounding the cost of the CCP.
Finding the optimal solution of the CCP would involve computing, at each k, DKL(

∑
i∈S α

(i)
k π

(i)
k|k−1||pk|k−1). Even for

Gaussians, this computation is analytically intractable and computationally expensive [19], [20]. Hence, in [4] an approximate
solution for the CCP is obtained. Namely:

Lemma 1: consider the CCP. Then
{
π̃k|k−1

}
1:N

, with π̃k|k−1 =
∑
i∈S α̃

(i)
k π

(i)
k|k−1 and

α̃k ∈ arg min
αk

aTk (xk−1)αk

s.t.
∑
i∈S

α
(i)
k = 1, α

(i)
k ≥ 0,

(4)

is an approximate solution of the CCP. In (4), ak(xk−1) := [a
(1)
k (xk−1), . . . , a

(S)
k (xk−1)]T , while

a
(i)
k (xk−1) := DKL

(
π

(i)
k|k−1||pk|k−1

)
− E

π
(i)

k|k−1

[r̄k(Xk)], and r̄k(Xk) is obtained via backward recursion as

r̄k(xk) := rk(xk) + r̂k(xk),

r̂k(xk) = −aTk+1(xk)α̃k+1, r̂N (xN ) = 0.
(5)

Remark 4: the solution of (4) is determined, ∀k, based on ak(xk−1) and hence α̃k depends on xk−1. This dependency
is omitted in what follows for notational convenience.

IV. FINDING A SOLUTION TO PROBLEM 1

We now show that the non-optimal solution to the CCP from Lemma 1 is actually the optimal solution for Prob. 1.
Theorem 1: the approximate solution of the CCP given in Lemma 1 is also the optimal solution of Problem 1.

Proof: we first (Step 1) characterize the optimal solution of Problem 1. Then (Step 2) we show that the approximate
solution of the CCP given by Lemma 1 must necessarily coincide with the optimal solution of Problem 1.
Step 1. In what follows we make use of the shorthand notation Jn(π1:n−1|0, p1:n−1|0) to denote DKL

(
π1:n−1|0||p1:n−1|0

)
−∑n−1

k=1 Eπk−1:k−1
[r̃k(Xk−1)]. The chain rule for pdfs/pmfs [4], the linearity of the expectation and the fact thatDKL

(
πN |N−1||pN |N−1

)
depends only on xN−1 imply that the cost in (3) can be re-written as

JN (π1:N−1|0, p1:N−1|0) + Eπ1:N−1|0

[
DKL

(
πN |N−1||pN |N−1

)]
− EπN−1:N−1

[r̃N (XN−1)]

= JN (π1:N−1|0, p1:N−1|0) + EπN−1:N−1

[
DKL

(
πN |N−1||pN |N−1

)]
− EπN−1:N−1

[r̃N (XN−1)]

= JN (π1:N−1|0, p1:N−1|0) + EπN−1:N−1

[
DKL

(
πN |N−1||pN |N−1

)
− r̃N (XN−1)

]
.

Hence, (3) can be formulated as the sum of two sub-problems:

min
{αk}1:N−1

JN (π1:N−1|0, p1:N−1|0)

s.t. πk|k−1 =
∑
i∈S

α
(i)
k π

(i)
k|k−1, k ∈ 1 : N − 1∑

i∈S
α

(i)
k = 1, α

(i)
k ∈ {0, 1}, k ∈ 1 : N − 1,

(6)

and, by letting
cN (xN−1) := DKL

(
πN |N−1||pN |N−1

)
− EπN|N−1

[r̄N (XN )] ,

where we set r̄N (xN ) = rN (xN ):
min
αN

EπN−1:N−1
[cN (XN−1)]

s.t. πN |N−1 =
∑
i∈S

α
(i)
N π

(i)
N |N−1∑

i∈S
α

(i)
N = 1, α

(i)
N ∈ {0, 1}.

(7)



That is, Problem 1 can be approached by first solving (7) and then by taking into account its minimum to solve (6). Also,
the optimal cost of (7) is EπN−1:N−1

[c∗N (XN−1))], where c∗N (xN−1) is the optimal cost obtained by solving:

min
αN

cN (xN−1)

s.t. πN |N−1 =
∑
i∈S

α
(i)
N π

(i)
N |N−1∑

i∈S
α

(i)
N = 1, α

(i)
N ∈ {0, 1}.

(8)

The constraints of (8) imply that its optimal solution is a vector, say α∗N , having all of its elements equal to 0 except
one element, say j∗N , which is equal to 1. Moreover, by evaluating the cost of (8) at each feasible solution, we have that
j∗N ∈ arg minj∈S a

(j)
N (xN−1), where we used the definition of a(j)

k (xk−1) given in Lemma 1. The cost of the sub-problem
in (7) is then EπN−1:N−1

[
aTN (XN−1)α∗N

]
, where the vector aN (xN−1) is defined as in Lemma 1. Now, the fact that the

original problem has been reformulated as the sum of the two sub-problems (6) and (7) implies that the cost of Problem 1
is equal to

JN (π1:N−1|0, p1:N−1|0) + EπN−1:N−1

[
aTN (XN−1)α∗N

]
,

which, by means of the chain rule for pdfs/pmfs and the definition of expectation, can be shown to be equal to

JN (π1:N−1|0, p1:N−1|0) + EπN−2:N−2

[
EπN−1|N−2

[
aTN (XN−1)α∗N

]]
= JN−1(π1:N−2|0, p1:N−2|0) + Eπ1:N−2|0

[
DKL(πN−1|N−2||pN−1|N−2)

]
− EπN−2:N−2

[r̃N−1(XN−2)] + EπN−2:N−2

[
EπN−1|N−2

[
aTN (XN−1)α∗N

]]
= JN−1(π1:N−2|0, p1:N−2|0) + EπN−2:N−2

[
DKL(πN−1|N−2||pN−1|N−2)

]
− EπN−2:N−2

[
EπN−1|N−2

[
rN−1(XN−1)− aTN (XN−1)α∗N

]]
.

As a result, the problem can be split as the sum of:

min
{αk}1:N−2

JN−1(π1:N−2|0, p1:N−2|0)

s.t. πk|k−1 =
∑
i∈S

α
(i)
k π

(i)
k|k−1, k ∈ 1 : N − 2∑

i∈S
α

(i)
k = 1, α

(i)
k ∈ {0, 1}, k ∈ 1 : N − 2,

(9a)

and
min
αN−1

EπN−2:N−2
[cN−1(XN−2)]

s.t. πN−1|N−2 =
∑
i∈S

α
(i)
N−1π

(i)
N−1|N−2∑

i∈S
α

(i)
N−1 = 1, α

(i)
N−1 ∈ {0, 1},

(9b)

with

cN−1(xN−2) := DKL
(
πN−1|N−2||pN−1|N−2

)
− EπN−1|N−2

[r̄N−1(XN−1)] ,

r̄N−1(xN−1) = rN−1(xN−1) + r̂N−1(xN−1)

r̂N−1(xN−1) := −aTN (xN−1)α∗N .

Again, the optimal solution of (9b) is the vector α∗N−1 having all of its elements equal to 0 except element j∗N−1,
which is equal to 1. Moreover, this time we have j∗N−1 ∈ arg minj∈S a

(j)
N−1(xN−2), and the cost of (9b) is given by

EπN−2:N−2

[
aTN−1(XN−2)α∗N−1

]
. By iterating the above arguments, we find that, ∀k ∈ 1 : N − 2, Problem 1 can always

be split as the sum of two sub-problems, where the problem for the last k can be solved by finding:

min
αk

DKL
(
πk|k−1||pk|k−1

)
− Eπk|k−1

[r̄k(Xk)]

s.t. πk|k−1 =
∑
i∈S

α
(i)
k π

(i)
k|k−1∑

i∈S
α

(i)
k = 1, α

(i)
k ∈ {0, 1},



with r̄k(xk) := rk(xk) + r̂k(xk) and r̂k(xk) := −aTk+1(xk)α∗k+1. Hence, the optimal solution of Problem 1 is, ∀k, the
vector α∗k that has all of its elements equal to 0, except one, say j∗k , equal to 1. Moreover, at time step k:

j∗k ∈ arg min
j∈S

a
(j)
k (xk−1). (10)

Step 2. We now consider the approximate solution from Lemma 1, obtained by solving, at each k, the problem in (4). Note
that this is a linear problem with the standard simplex as feasibility domain. Also, note that the vertices of the standard
simplex all have entries equal to 0, except one equal to 1. Hence, the solution of such a problem at each k is the vector, α̃k
having all of its elements equal to 0, except element jk which is equal to 1. Moreover, the element jk solving the problem
in (4) corresponds to the index of the smallest element in the vector ak(xk−1). This is, however, given by (10) and hence,
∀k, jk = j∗k .

V. REGRET ANALYSIS

We define the regret of an agent that follows
{
π̃k|k−1

}
1:N

:
Definition 3: consider the cost functional C

{
π1:N |0

}
:= DKL

(
π1:N |0||p1:N |0

)
−
∑N
k=1 Eπk−1:k−1

[r̃k(Xk−1)]. Then, the
regret of the agent is R̄1:N |0 := C

{
π̃1:N |0

}
− C

{
π̄1:N |0

}
.

In the above definition, π̄1:N |0 is the solution to the following
Problem 3: find the sequence {π̄k|k−1}1:N solving

min
{πk|k−1}1:N

DKL
(
π1:N |0||p1:N |0

)
−

N∑
k=1

Eπk−1:k−1
[r̃k(Xk−1)]

s.t. πk|k−1 ∈ D, ∀k.

(11)

Problem 3 is an infinite-dimensional relaxation of Problem 1 and its solution is an oracle for such a problem.
Definition 4: π̄0:N := π0:0

∏N
k=1 π̄k|k−1 = π0:0π̄1:N |0, is an oracle for Problem 1 if C

{
π̄1:N |0

}
≤ C

{
π̂1:N |0

}
, ∀π̂1:N |0 ∈

D.
That is, by definition, no agent can obtain a better (i.e. lower) cost than the oracle. The next result gives an explicit expression
for the oracle.

Lemma 2: the solution of Problem 3 is
{
π̄k|k−1

}
1:N

, with

π̄k|k−1 =
pk|k−1 exp (ρ̄k(xk))∫
pk|k−1 exp (ρ̄k(xk)) dxk

, (12)

where ρ̄k(xk) := rk(xk) + ρ̂k(xk), and

ρ̂k(xk) := lnEpk+1|k [exp(ρ̄k+1(Xk+1))] ,

ρ̄N+1(xN+1) = 0.
(13)

Proof: See the Appendix.
Remark 5: Lemma 1 and Prop. 1 (see next) are stated for pdfs. These results can also be stated for pmfs by replacing

integrals with sums (statements omitted here for brevity).
Regret bound: we now give an upper bound for R̄1:N |0. In doing so, we make use of the following set of assumptions.
Assumption 2: for each i,

{
π

(i)
k|k−1

}
1:N

is the solution of

min
{πk|k−1}1:N

DKL

(
π1:N |0||p

(i)
1:N |0

)
−

N∑
k=1

Eπk−1:k−1

[
r̃

(i)
k (Xk−1)

]
s.t. πk|k−1 ∈ D, ∀k,

(14)

where p(i)
1:N |0 :=

∏N
k=1 p

(i)
k|k−1 and r̃(i)

k (xk−1) = Eπk|k−1

[
r

(i)
k (Xk)

]
are target and reward of the i-th source.

Assumption 2 states that the behavior of the sources is optimal for a task, which is (in general) different from that of the
agent (the cost in (14) is different from the cost in Prob. 1). Any behavior can be formally obtained as a solution of a
problem of the form of (14). Indeed, let π(i)

1:N |0 =
∏N
k=1 π

(i)
k|k−1. Then, this behavior is the solution of a problem of the form

of (14) having p(i)
1:N |0 = π

(i)
1:N |0 and zero reward. Assumption 2 and Lemma 2 imply that the behavior provided by the i-th

source is of the form:

π
(i)
1:N |0 =

N∏
k=1

p
(i)
k|k−1 exp

(
r̄

(i)
k (xk)

)
∫
p

(i)
k|k−1 exp

(
r̄

(i)
k (xk)

)
dxk

, (15)



with r̄(i)
N+1(xN+1) = 0 and:

r̄
(i)
k (xk) = r

(i)
k (xk) + r̂

(i)
k (xk),

r̂
(i)
k (xk) = lnE

p
(i)

k+1|k

[
exp(r̄

(i)
k+1(Xk+1))

]
.

(16)

We let jk be the source picked, at time step k, by an agent that follows
{
π̃k|k−1

}
1:N

. We can now state the following
Assumption 3: ∀k, there exist bounded constants, lk and Lk, such that ∀xk ∈ X , lk ≤ ln(p

(jk)
k|k−1/pk|k−1) ≤ Lk.

Assumption 4: ∀k, there exists a bounded constant, say Rk, such that ∀xk ∈ X ,
∣∣∣r(jk)
k (xk)− rk(xk)

∣∣∣ ≤ Rk.

Remark 6: Asn. 3 implies that the log-likelihood ratio Λ1:N := ln
∏N
k=1 p

(jk)
k|k−1/

∏N
k=1 pk|k−1 is bounded. Asn. 4 is on

the difference between the rewards of the sources and that of the agent. This is fulfilled when e.g. rewards are bounded.
We are now ready to state the following result.

Proposition 1: let Assumption 2 - 4 hold. Then, R̄1:N |0 ≤
∑N
k=1 (Lk − lk + 2Rk).

Proof: the result is proved by obtaining an explicit expression for the regret, which is then upper-bounded by leveraging
Assumption 2 and Lemma 2. The desired bound is finally obtained by means of Assumption 4 and Assumption 3. Following
Def. 3, R̄1:N |0 is given by:

DKL
(
π̃1:N |0||p1:N |0

)
+

N∑
k=1

Eπ̄k−1:k−1

[
Eπ̄k|k−1

[rk(Xk)]
]
−DKL

(
π̄1:N |0||p1:N |0

)
−

N∑
k=1

Eπ̃k−1:k−1

[
Eπ̃k|k−1

[rk(Xk)]
]
. (17)

Note that (using dx1:N as a shorthand notation for dx1 . . . dxN):

DKL
(
π̄1:N |0||p1:N |0

)
:=

∫
π̄1:N |0 ln

π̄1:N |0

p1:N |0
dx1:N

=

∫
π̄1:N |0 ln

π̃1:N |0

p1:N |0
dx1:N +

∫
π̄1:N |0 ln

π̄1:N |0

π̃1:N |0
dx1:N

≥
∫
π̃1:N |0 ln

π̃1:N |0

p1:N |0
dx1:N +

∫ (
π̄1:N |0 − π̃1:N |0

)
ln
π̃1:N |0

p1:N |0
dx1:N

= DKL
(
π̃1:N |0||p1:N |0

)
+

∫ (
π̄1:N |0 − π̃1:N |0

)
ln
π̃1:N |0

p1:N |0
dx1:N ,

where we used the fact that ∫
π̄1:N |0 ln

π̄1:N |0

π̃1:N |0
dx1:N = DKL

(
π̄1:N |0||π̃1:N |0

)
≥ 0.

As a result, the expression in (17) is upper bounded by

−〈π̄1:N |0 − π̃1:N |0, ln
π̃1:N |0

p1:N |0
〉+

N∑
k=1

(Eπ̄k−1:k−1
[r̃k(Xk−1)]− Eπ̃k−1:k−1

[r̃k(Xk−1)]).

Assumption 2 and Lemma 2 imply that the behaviors from the sources are of the form (15) - (16). Hence we get that
−〈π̄1:N |0 − π̃1:N |0, ln

π̃1:N|0
p1:N|0

〉 equals

∫ (
π̃1:N |0 − π̄1:N |0

)ln

∏N
k=1 p

(jk)
k|k−1∏N

k=1 pk|k−1

+

N∑
k=1

r̄
(jk)
k (xk)

 dx1:N −
∫ (

π̃1:N |0 − π̄1:N |0
) N∑
k=1

r̂
(jk)
k−1(xk−1)dx1:N ,

thus implying that (17) is upper bounded by

〈π̃1:N |0 − π̄1:N |0,Λ1:N 〉+ Eπ̃1:N|0

[
N∑
k=1

r̄
(jk)
k (Xk)

]
+

N∑
k=1

Eπ̄k:k
[rk(Xk)]− Eπ̄1:N|0

[
N∑
k=1

r̄
(jk)
k (Xk)

]

−
N∑
k=1

Eπ̃k:k
[rk(Xk)] + Eπ̄1:N|0

[
N∑
k=1

r̂
(jk)
k−1(Xk−1)

]
− Eπ̃1:N|0

[
N∑
k=1

r̂
(jk)
k−1(Xk−1)

]
.

(18)



Moreover, linearity of the expectation together with the fact that r̄(jk)
k (·) only depends on the state at time step k implies

that:

Eπ̃1:N|0

[
N∑
k=1

r̄
(jk)
k (Xk)

]
=

N∑
k=1

Eπ̃1:N|0

[
r̄

(jk)
k (Xk)

]
=

N∑
k=1

Eπ̃k:k

[
r̄

(jk)
k (Xk)

]
.

Likewise, we have:

Eπ̄1:N|0

[
N∑
k=1

r̄
(jk)
k (Xk)

]
=

N∑
k=1

Eπ̄k:k

[
r̄

(jk)
k (Xk)

]
;

Eπ̄1:N|0

[
N∑
k=1

r̂
(jk)
k−1(Xk−1)

]
=

N∑
k=1

Eπ̄k−1:k−1

[
r̂

(jk)
k−1(Xk−1)

]
;

Eπ̃1:N|0

[
N∑
k=1

r̂
(jk)
k−1(Xk−1)

]
=

N∑
k=1

Eπ̃k−1:k−1

[
r̂

(jk)
k−1(Xk−1)

]
.

These relationships, together with (18) and the first relationship in (16), lead to the following upper bound for R̄1:N |0:

〈π̃1:N |0 − π̄1:N |0,Λ1:N 〉+

N∑
k=1

Eπ̃k:k

[
r

(jk)
k (Xk)− rk(Xk)

]
+

N∑
k=1

Eπ̄k:k

[
rk(Xk)− r(jk)

k (Xk)
]

+

N∑
k=1

(
Eπ̃k:k

[
r̂

(jk)
k (Xk)

]
− Eπ̄k:k

[
r̂

(jk)
k (Xk)

])
+

N∑
k=1

(
Eπ̄k−1:k−1

[
r̂

(jk)
k−1(Xk−1)

]
− Eπ̃k−1:k−1

[
r̂

(jk)
k−1(Xk−1)

])
.

(19)

Now, the sums in the last two lines of (19) can be recast as Eπ̄0:0

[
r̂

(j0)
0 (X0)

]
− Eπ̃0:0

[
r̂

(j0)
0 (X0)

]
. Since (see Def. 4) the

agent and the oracle have the same initial pdf/pmf, then this means that (19) equals

〈π̃1:N |0 − π̄1:N |0,Λ1:N 〉+

N∑
k=1

Eπ̃k:k

[
r

(jk)
k (Xk)− rk(Xk)

]
+

N∑
k=1

Eπ̄k:k

[
rk(Xk)− r(jk)

k (Xk)
]
.

Prop. 1 follows by noticing that, for such expression: (i) from Assumption 4, the sums are upper bounded by 2
∑N
k=1Rk;

(ii) from Assumption 3, 〈π̃1:N |0 − π̄1:N |0,Λ1:N 〉 ≤
∑N
k=1 (Lk − lk).

VI. NUMERICAL EXAMPLE

We consider the scenario of Fig. 1, where a connected car (i.e. the agent) travels within a geographic area and has access
to multiple navigation services. The services come from different providers and each of them returns a different navigation
strategy. We now make use of our results to design a mechanism enabling the agent to dynamically choose which service
to follow in order to fulfill a navigation task. The road network we consider is the one of Fig. 1. We set N = 8 and the
agent wishes to reach node 24 from node 0. We let xk ∈ X := 0 : 24 be the position of the agent on the graph at time
step k, while the target behavior is given by the pmfs pk|k−1 = pk(xk|xk−1), which might e.g. describe the preferred route
of the passengers (see Fig. 2). These pmfs can be obtained from past trips via e.g. the algorithm of [21], [22]. The agent
has access to 3 navigation services/sources and each provides a navigation strategy through the pmfs π(i)

k|k−1’s, i = 1 : 3
(see Fig. 2). These pmfs are the optimal solution of a problem of the form of Problem 3 having the reward set to 0. Hence,
following Lemma 2, we have for each k that π(i)

k|k−1 = p
(i)
k|k−1 (the pmfs p(i)

k|k−1’s are the target behavior/route for the i-th
service)1.
We implemented a Python script which, given the destination of the agent, returns: (i) the solution to Problem 1, i.e.{
π∗k|k−1

}
1:N

, by implementing the backward recursion of Lemma 1; (ii) the route obtained by sampling, at each k, from

π∗k|k−1; (iii) the cost, C
{
π∗1:N |0

}
(the expression for C {·} is in Def. 3). We now consider two cases. First, the agent reward

is set to 0. This reward captures situations where the agent only wishes to track the target behavior (e.g. the preferred route).
This yields the pmfs (and hence the routes) of Fig. 3 - top panels. The corresponding cost, i.e. C

{
π∗1:N |0

}
, is equal to 0

1All pmfs, together with full size versions of the figures are given at https://tinyurl.com/24ns3joy. Code available upon request.

https://tinyurl.com/24ns3joy


and, from Prop. 1, we get R̄1:N |0 = 0. In our second set of simulations, we use the reward of Fig. 2. As shown in the
bottom panels of Fig. 3, since node 11 is now favored over node 18 (due to e.g. risks/traffic associated to the latter node),
the agent deviates from its target and the resulting route avoids node 18. The corresponding cost is C

{
π∗1:N |0

}
= 1.57

while, by means of Prop. 1, we have that R̄1:N |0 ≤ 27.32, with this non-zero bound, due to the discrepancy between the
target/rewards of the agent and these of the sources.

VII. CONCLUSIONS

We considered the problem of designing agents that are able to dynamically choose between different data sources in
order to tackle tracking tasks. We formulated the problem as a data-driven control problem and this led to study an integer
optimal control problem. After finding the optimal solution, which determines how the use of the different sources should
be orchestrated by the agent, we formalized a notion of regret. Then, by solving a relaxation of the control problem, we
gave a regret upper bound. The results were complemented via simulations on a connected cars scenario.

APPENDIX

Proof of Lemma 2: we first show that Problem 3 can be decomposed into a sequence of sub-problems, which can be
solved via backward recursion. Then, the expression for the optimal solution is obtained by explicitly solving the sub-
problems. We use Jn

{
π1:n−1|0, p1:n−1|0

}
to denote DKL

(
π1:n−1|0||p1:n−1|0

)
−
∑n−1
k=1 Eπk−1:k−1

[r̃k(Xk−1)]. Following the
same reasoning used to prove Theorem 1, we find that (11) can be formulated as the sum of:

min
{πk|k−1}1:N−1

JN
{
π1:N−1|0, p1:N−1|0

}
s.t. πk|k−1 ∈ D, k ∈ 1 : N − 1,

(20)

and
min

πN|N−1

EπN−1:N−1

[
DKL

(
πN |N−1||pN |N−1

)
− r̃N (XN−1)

]
s.t. πN |N−1 ∈ D.

(21)

We can then approach Problem 3 by solving (21) and then by taking into account its solution to solve (20). Moreover, the
minimum of the above problem is EπN−1:N−1

[c̄N (XN−1))], where c̄N (xN−1) is the optimal cost of:

min
πN|N−1

CN
{
πN |N−1

}
s.t. πN |N−1 ∈ D,

(22)

CN
{
πN |N−1

}
:= DKL

(
πN |N−1||pN |N−1

)
− r̃N (xN−1). We also note that (22) is convex with a strictly convex twice

differentiable (w.r.t. the decision variable) cost functional and we now find its minimizer by imposing the first order stationarity

Fig. 1: a connected car has access to multiple navigation services/sources to navigate within a grid-like area.



Fig. 2: routes sampled from the pk|k−1’s (top-left) and π(i)

k|k−1’s (top-right). Routes from the sources are highlighted with different colors
(online). Bottom panel: reward used in our second set of numerical experiments - node 18 is penalized, while 11 is favored.

conditions on its Lagrangian

L
(
πN |N−1, λN

)
:=

∫
πN |N−1

(
ln

(
πN |N−1

pN |N−1
− ρ̄N (xN )

))
dxN + λN

(∫
πN |N−1dxN − 1

)
,

where ρ̄N (xN ) := rN (xN ) + ρ̂N (xN ), with ρ̂N (xN ) = 0, and λN is the Lagrange multiplier corresponding to the only
constraint of the problem in (22). By imposing the stationarity condition with respect to πN |N−1 we get that the optimal
solution π̄N |N−1 must satisfy

ln
π̄N |N−1

pN |N−1
− ρ̄N (xN ) + 1 + λN = 0,

which then yields

π̄N |N−1 = pN |N−1
exp(ρ̄N (xN ))

exp(1 + λN )
.

The Lagrange multiplier λN can be found by imposing the stationarity condition of the Lagrangian with respect to λN . By
imposing such a condition we get

exp(1 + λN ) =

∫
pN |N−1exp(ρ̄N (xN ))dxN .

Hence:

π̄N |N−1 =
pN |N−1 exp (ρ̄N (xN ))∫
pN |N−1 exp (ρ̄N (xN )) dxN

.

This yields (12) - (13) at k = N . Moreover, the minimum of (22) is given by − lnEpN|N−1
[exp(ρ̄N (XN ))]. From this, the

minimum for (21) is −EπN−1:N−1

[
lnEpN|N−1

[exp(ρ̄N (XN ))]
]
. Next, we solve Problem 3 for the remaining time instants.

Having split Problem 3 as the sum of the sub-problems (20) - (21) implies that its cost functional can be written as

JN
{
π1:N−1|0, p1:N−1|0

}
− EπN−1:N−1

[
lnEpN|N−1

[exp(ρ̄N (XN ))]
]
,



Fig. 3: the agent route (left panels) and the pmfs from which it is sampled (right panels). In the top panels the reward is set to 0, while
in the bottom panels the reward is the one of Fig. 2. The colors (online) for the routes highlight which source is selected at each k by
the agent (the same color code as Fig. 2 is used).

which, (see Property 1 of [23]), is equal to:

JN−1

{
π1:N−2|0, p1:N−2|0

}
− EπN−2:N−2

[r̃N−1(XN−2)] + Eπ1:N−2|0

[
DKL

(
πN−1|N−2||pN−1|N−2

)]
− EπN−1:N−1

[
lnEpN|N−1

[exp(ρ̄N (XN ))]
]
.

Moreover:

−EπN−1:N−1

[
lnEpN|N−1

[exp(ρ̄N (XN ))]
]

= −EπN−1:N−1
[ρ̂N−1(XN−1)]

= −EπN−2:N−1
[ρ̂N−1(XN−1)]

=

∫ ∫
πN−1|N−2 (xN−1|xN−2)πN−2:N−2(xN−2)ρ̂N−1(xN−1)dxN−1dxN−2

= −EπN−2:N−2

[
EπN−1|N−2

[ρ̂N−1(XN−1)]
]
,

and

Eπ1:N−2|0

[
DKL

(
πN−1|N−2||pN−1|N−2

)]
= EπN−2:N−2

[
DKL

(
πN−1|N−2||pN−1|N−2

)]
.

Hence:

− EπN−2:N−2
[r̃N−1(XN−2)] + Eπ1:N−2|0

[
DKL

(
πN−1|N−2||pN−1|N−2

)]
− EπN−1:N−1

[
lnEpN|N−1

[exp(ρ̄N (XN ))]
]

= EπN−2:N−2

[
DKL

(
πN−1|N−2||pN−1|N−2

)
− EπN−1|N−2

[rN−1(XN−1) + ρ̂N−1(XN−1)]
]



Again, this means that the problem can be split as the sum of:

min
{πk|k−1}1:N−2

JN−1

{
π1:N−2|0, p1:N−2|0

}
s.t. πk|k−1 ∈ D, k ∈ 1 : N − 2,

and
min

πN−1|N−2

EπN−2:N−2

[
CN−1

{
πN−1|N−2

}]
s.t. πN−1|N−2 ∈ D,

(23)

with

CN−1

{
πN−1|N−2

}
:=

∫
πN−1|N−2(ln

πN−1|N−2

pN−1|N−2
− ρ̄N−1(xN−1))dxN−1

and ρ̄N−1(xN−1) = rN−1(xN−1) + ρ̂N−1(xN−1).

The minimum for (23) is EπN−2:N−2
[c̄N−1(XN−2))], with c̄N−1(xN−2) being the cost obtained by solving:

min
πN−1|N−2

CN−1

{
πN−1|N−2

}
s.t.πN |N−2 ∈ D.

That is, once the problem at time N is solved, the optimization problem up to N − 1 can be still split as the sum of two
sub-problems with the one at k = N − 1 being independent on the sub-problem up to k = N − 2. The sub-problem at
k = N − 1 has the same structure as (22). Hence, by defining ρ̄N−1(xN−1) = rN−1(xN−1) + ρ̂N−1(xN−1), we have that
its solution is

π̄N−1|N−2 =
pN−1|N−2 exp (ρ̄N−1(xN−1))∫

pN−1|N−2 exp (ρ̄N−1(xN−1)) dxN−1
.

This gives (12) - (13) at k = N − 1. The optimal cost for the sub-problem at k = N − 1 is

−EπN−2:N−2

[
lnEpN−1|N−2

[exp(ρ̄N−1(XN−1))]
]
.

We can then conclude the proof by noticing the following. By iterating the above arguments we find that, at each of the
remaining time steps in 1 : N − 2, Problem 3 can always be split as the sum of two sub-problems, where the last one can
be solved by finding the minimum of:

min
πk|k−1

DKL
(
πk|k−1||pk|k−1

)
− Eπk|k−1

[ρ̄k(Xk−1)]

s.t. πk|k−1 ∈ D,
(24)

and ρ̄k(xk) = rk(xk) + ρ̂k(xk) with ρ̂k(xk) := lnEpk+1|k [exp(ρ̄k+1(Xk+1))]. Hence, the solution of (24) is

π̄k|k−1 =
pk|k−1 exp (ρ̄k(xk))∫
pk|k−1 exp (ρ̄k(xk)) dxk

,

and from this we can draw the desired conclusion.
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