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Abstract— We consider the problem of zeroing an error
output of a nonlinear discrete-time system in the presence
of constant exogenous disturbances, subject to hard convex
constraints on the input signal. The design specification is
formulated as a variational inequality, and we adapt a forward-
backward splitting algorithm to act as an integral controller
which ensures that the input constraints are met at each time
step. We establish a low-gain stability result for the closed-
loop system when the plant is exponentially stable, generalizing
previously known results for integral control of discrete-time
systems. Specifically, it is shown that if the composition of the
plant equilibrium input-output map and the integral feedback
gain is strongly monotone, then the closed-loop system is
exponentially stable for all sufficiently small integral gains. The
method is illustrated via application to a four-tank process.

I . I N T R O D U C T I O N

It is a well-known control principle that regulation of an
error signal to zero can be achieved robustly in the presence of
model uncertainty and constant references/disturbances only
through integral feedback control [1]. The presence of control
input constraints however presents challenges to traditional
integral controller designs; sufficient actuator authority may
not be available to achieve exact regulation for all refer-
ences/disturbances, and dynamic performance is sometimes
degraded through the so-called wind-up phenomenon [2].

There are two broad approaches for accomodating lim-
ited actuator authority. The explicit approach is to directly
include input constraints into the design, as done in receding-
horizon control [3], bounded integral control [4], and in
other nonlinear/adaptive approaches [5]. A more traditional
approach is to first design ignoring the actuator limits, and
subsequently augment or retro-fit the design in order to
improve performance in the presence of saturation; this
category would include both classic and modern anti-windup
design [6], [7], and reference modification [8], [9].

Returning now to the fundamentals of integral control, a
commonly encountered case in practice is that the system
one wishes to control is complex, and limited dynamic model
information is available, but it is however known that the
system is stable (possibly achieved via a stabilizing controller
design). A general and well-established design philosophy
is that asymptotic tracking and disturbance rejection can
be guaranteed by adding a supplementary integral control
loop, and that the closed-loop stability will be guaranteed if
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the integral gain is sufficiently low; a famous and widely-
deployed example of this design philosophy is the tuning of
automatic generation control in power systems [10].

For finite-dimensional multi-input multi-output (MIMO)
linear time-invariant (LTI) systems, the fundamental stability
result for this approach is due to Davison [11, Lemma 3]; see
also [12, Theorem 3]. While [11] is in continuous-time, the
key result is identical in the discrete-time case [13]. Consider
the plant model

xk+1 = Axk +Buk +Bww

ek = Cxk +Duk +Dww
(1)

with state x ∈ Rn, control input u ∈ Rm, constant distur-
bance/reference signal w ∈ Rnw , and error output e ∈ Rp; we
associate a sampling period Ts > 0 with (1). Assume that A
is Schur stable, and let G(z) = C(zIn−A)−1B+D denote
the transfer matrix of (1) from u to e. One interconnects the
system (1) with the integral controller

ηk+1 = ηk − Ts

Ti
ek, uk = Kηk, (2)

where K ∈ Rm×p is a gain matrix and Ti > 0 is the integral
time constant. Davison’s low-gain stability result states that
if −G(1)K is Hurwitz stable, then there exists T ?i > 0 such
that the closed-loop system is exponentially stable for all
Ti ∈ (T ?i ,∞). A substantial literature exists on extensions of
this core result to infinite-dimensional linear systems; see [14]
and the references therein. Initial extensions to the continuous-
time nonlinear case were given in [15]. In [16] the author
further generalized these conditions via contraction theory,
and provided a LMI-based procedure to design low-gain
integral controllers for continuous-time nonlinear systems.

Contributions: In this paper we further contribute to the
study of constrained and low-gain integral control. We begin
by proposing that the error-zeroing criteria in the presence
of arbitrary convex input constraints be formulated as a
variational inequality [17]. This leads us to adopt a version
of the projection or forward-backward algorithm [18] as a
novel constrained integral controller. The design is in discrete-
time, and is therefore immediately appropriate for digital
control implementations. While this design explicitly enforces
input constraints at each time instant, it has the following
commonality with more traditional anti-windup approaches:
if the input constraints are not encountered during operation,
the scheme reduces to the classical integral controller (2).
Our main stability result (Theorem 3.1) establishes that the
“low-gain integral control stability principle” described above
also holds for this projected integral controller, which extends
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the main result of [16] to discrete-time nonlinear systems
with input constraints and with our proposed constrained
integral controller. To our knowledge, this constitutes the
first comprehensive analysis of low-gain integral control for
discrete-time nonlinear systems. We illustrate the design by
applying it to the nonlinear quadruple-tank model of [19].

Notation: Given two vectors x and y, col(x, y) denotes
their vertical concatenation. If P is a symmetric matrix
λmin(P ) and λmax(P ) denote its minimum and maximum
eigenvalues. A function f : X → Rn is Lipschitz con-
tinuous on X ⊆ Rn if there exists L > 0 such that
‖f(x)− f(y)‖ ≤ L‖x− y‖ for all x, y ∈ X .

I I . P R O B L E M F O R M U L AT I O N

A. Plant Model and Assumptions

We consider a plant described by a finite-dimensional
nonlinear time-invariant state-space model

xk+1 = f(xk, uk, w), ek = h(xk, uk, w), (3)

where xk ∈ Rn is the state, uk ∈ Rm is the control input, and
w ∈ Rnw is a constant exogenous signal (reference signals
and/or disturbances). The signal ek ∈ Rp with p ≤ m is an
error output to be driven to zero. As the model (3) would
most commonly arise via discretization of a continuous-time
model, we associate a sampling period Ts > 0 to (3).

For any fixed w, the possible equilibrium state-input-error
triplets (x̄, ū, ē) are determined by the algebraic equations

x̄ = f(x̄, ū, w), ē = h(x̄, ū, w).

To capture the steady-state and dynamic behaviour of (3), we
assume that there exist convex sets X ,U ,W such that

(A1) f and h are continuous in all arguments on X ×U ×W ,
f is continuously differentiable with respect to x and u,
and f , h, ∂f

∂x , and ∂f
∂u are all Lipschitz continuous on

X × U uniformly in w ∈ W;
(A2) there is a class C1 map πx : U × W → X which is

Lipschitz continuous on U ×W such that

πx(u,w) = f(πx(u,w), u, w), (u,w) ∈ U ×W.

(A3) the equilibrium x̄ = πx(u,w) is exponentially stable,
uniformly in (u,w) ∈ U ×W .

Assumptions (A1)–(A3) capture the idea that the plant
model is sufficiently smooth, and converges exponentially
to a locally unique equilibrium when subject to reasonable
constant inputs u and w. The stability property may be
inherent to the system, or may have been achieved through an
initial stabilizing feedback design. While (A1)–(A3) cannot
be expected to generically hold for nonlinear systems, many
practical systems of interest — such as chemical process
dynamics and electric power systems — are internally stable
and/or are stabilized via inner-loop controller designs, and
can hence be expected to satisfy (A1)–(A3). We call

π : U ×W → Rm, π(ū, w) := h(πx(ū, w), ū, w) (4)

the equilibrium input-to-error map, which produces the equi-
librium error ē = π(ū, w) associated with the constant control

Fig. 1: Illustration of constrained error-zeroing specification.

input ū and disturbance w. When applied to the LTI system
(1), (A1)–(A3) simply reduce to A being Schur stable, and
the mapping π becomes

π(ū, w) = G(1)ū+Gw(1)w, (5)

where Gw(z) = C(zIn −A)−1Bw +Dw.

B. Constrained Error-Zeroing Specification

Let C ⊆ U be a closed non-empty convex set which
describes actuator limits. Following (2), the control signal
uk from our new integral controller will be generated as

uk = Kηk (6)

where K ∈ Rm×p is a gain matrix to be designed and
ηk ∈ Rp is the controller state. It follows that the preimage

Γ := {η ∈ Rp | Kη ∈ C}

is also a closed and non-empty convex set. For example, in
applications C is often polyhedral, in which case so is Γ.

Our ideal design objective would be to ensure that for
any disturbance w ∈ W , the error signal ek is asymptotically
driven to zero, and that the input constraint uk ∈ C is satisfied
at all times. As one might expect however, input constraints
may prevent us from exactly zeroing the steady-state error
ē = π(ū, w) for at least some disturbances w ∈ W . We
therefore relax the design objective, and instead seek an
equilibrium value η̄ ∈ Γ for the controller state such that

〈ē, η − η̄〉P = 〈π(Kη̄,w), η − η̄〉P ≥ 0, ∀η ∈ Γ, (7)

where 〈x, y〉P = xTPy is the inner product on Rp induced
by some positive definite matrix P � 0. The inequality (7) is
called a variational inequality [17], and we notate a solution
of the inequality as η̄ ∈ VIP (Γ, π ◦K). Note that if η̄ lies
in the interior of the set Γ, then there exists τ > 0 such
that η = η̄ − τ ē ∈ Γ. The inequality (7) then implies that
−ēTē ≥ 0, implying that ē = 0. In other words, if the input
constraints are strictly feasible, then (7) is an exact error-
zeroing design specification. A geometric interpretation of
(7) uses the normal cone of the set Γ at η̄ ∈ Γ, defined as

NP
Γ (η̄) := {d ∈ Rp | 〈d, η − η̄〉P ≤ 0 for all η ∈ Γ}.

With this, (7) can be equivalently expressed as
−ē = −π(Kη̄,w) ∈ NP

Γ (η̄), as illustrated in Figure
1. The interpretation of Figure 1 is that from the point η̄, any
further attempt to adjust in the direction −ē = −π(Kη̄,w)
would result in constraint violation.



Remark 2.1 (Minimization Interpretation): To see how
else the design specification (7) could arise, suppose that
εk = hε(xk, uk, w) is a measured tracking error of interest
for the system (3), with associated equilibrium mapping
ε̄ = πε(ū, w) defined similar to (4). Consider the steady-state
minimization problem

minimize
ū∈C

J(ε̄) ⇔ minimize
η̄∈Γ

J(πε(Kη̄,w)) (8)

where J : Rp → R is a class C1 convex and positive
definite function. Critical points of this (generally, non-
convex) problem are determined by the inclusion

−KT ∂πε
∂ū

(Kη̄,w)T∇J(πε(Kη̄,w)) ∈ NΓ(η̄). (9)

If we define the error signal ek := KT ∂πε
∂ū (uk, w)T∇J(εk),

then the inclusion (9) is precisely the variational inequality
(7). Thus, the problem of steady-state minimization of a
function of a tracking error can be interpreted as a special
case of the specification (7). This perspective connects our ap-
proach directly with recent ideas in autonomous and feedback-
based optimization; see [20]–[22] for recent contributions. We
note however that this interpretation via minimization is not
necessary; (7) can be directly interpreted as a generalization
of a traditional perfect asymptotic tracking specification. �

C. The Projection (Forward-Backward) Algorithm

The error-zeroing specification (7) is equivalent to the so-
called natural equation [17, Chp. 1.5]

η̄ = ProjPΓ (η̄ − απ(Kη̄,w)) (10)

for any α > 0, where ProjPΓ : Rm → Γ defined as

ProjPΓ (η) = argmin
ν∈Γ

‖η − ν‖P (11)

is the projection operator, which yields the closest point to
η in Γ measured in the norm ‖x‖P =

√
xTPx induced

by P � 0. The equation (10) leads immediately to the
classic projection or forward-backward splitting algorithm
[23, Section 25.3].

ηk+1 = (1− λ)ηk + λProjPΓ (ηk − απ(Kηk, w)) (12)

for solving the variational inequality VIP (Γ, π ◦K), where
λ ∈ (0, 1) is a damping parameter. We summarize some well-
known conditions which ensure exponential stability of the
iteration (12) to a unique equilibrium satisfying (10).

Proposition 2.1: (Equilibrium and Contraction Proper-
ties of Forward-Backward Algorithm) Let w ∈ W . If
η 7→ π(Kη,w) is µ-strongly monotone on Γ with respect to
〈·, ·〉P , i.e., if

〈π(Kη,w)− π(Kη′, w), η − η′〉P ≥ µ‖η − η′‖2P
for some µ > 0 and all η, η′ ∈ Γ, then (12) possesses a unique
equilibrium point η̄ ∈ Γ satisfying (10). If η 7→ π(Kη,w)
is additionally L-Lipschitz continuous on Γ with respect to
the norm ‖ · ‖P , and α is selected such that α ∈ (0, 2µ/L2),
then the following statements hold:

(i) the foward-backward operator

Φ : Γ→ Γ, Φ(η) = ProjPΓ (η−απ(Kη,w)) (13)

is a contraction mapping on Γ, satisfying

‖Φ(η)− Φ(η′)‖P ≤ cfb‖η − η′‖P , η, η′ ∈ Γ,

where cfb =
√

1− 2αµ+ α2L2 ∈ [0, 1).
(ii) the damped forward-backward operator

Φd : Γ→ Γ, Φd(η) = (1− λ)η + λΦ(η)

is a contraction mapping on Γ, satisfying

‖Φd(η)− Φd(η′)‖P ≤ cdfb‖η − η′‖P .

for all η, η′ ∈ Γ, where cdfb = 1− λ(1− cfb) ∈ (0, 1).
Proof: The existence/uniqueness statement is [17, Theo-

rem 2.3.3]. The proof of (i) requires only minor modifications
of the proof of [18, Theorem 12.1.2], in which one uses the
inner product 〈·, ·〉P in place of 〈·, ·〉2 with step size D = 1

αI .
The proof of (ii) then follows immediately from (i).

I I I . D A M P E D P R O J E C T E D I N T E G R A L C O N T R O L
A N D L O W- G A I N S TA B I L I T Y R E S U LT

A. Damped Projected Integral Control

We propose adapting the forward-backward splitting algo-
rithm (12) as an integral feedback controller for enforcing
the error-zeroing specification (7). Specifically, we propose
the damped projected integral (DP-I) controller

ηk+1 = (1− λ)ηk + λProjPΓ (ηk − Ts

Ti
ek) (14a)

uk = Kηk (14b)

where Ti > 0 is the integral time constant. We make several
observations regarding (14):

(i) Constrained Error-Zeroing: If (14) is in equilibrium
with the plant (3), then it is immediate from (10) that
η̄ ∈ VIP (Γ, π ◦K), which is precisely the constrained
error-zeroing specification (7).

(ii) Input Constraint Satisfaction & Windup: If ηk ∈ Γ, then
ηk+1 ∈ Γ, since by (14) ηk+1 is a convex combination
of two points in Γ. Therefore, uk = Kηk ∈ C at all
points in time. As a result, (14) will never suffer from
traditional integrator windup, as the controller output
and plant output will always be in agreement. Note
however that, rather than η being conditionally frozen,
the controller state ηk may still change, moving along
the boundary of the set Γ; see [9], [24], [25] for related
ideas in a continuous-time anti-windup design context.

(iii) Reduction to Classical Integral Control: If ηk ∈ Γ and
ηk − Ts

Ti
ek ∈ Γ, then the update (14) reduces to

ηk+1 = ηk − Ts

T ′
i
ek, uk = Kηk (15)

where T ′i = λ/Ti. Thus, when constraints are not
encountered, (14) reduces to the integral controller (2).

(iv) Computation of Projection: The projection in (14) re-
quires the solution of the convex optimization prob-
lem (11), but need only be computed at step k if



ηk− Ts

Ti
ek /∈ Γ. Projections onto many types of constraint

sets are computable in closed-form [26, App. B].
(v) Alternative Controller: The controller (14) is based on

the natural equation associated with the inequality (7).
If one instead uses a skewed natural equation (see [17,
Chp. 1.5]), one can arrive at the alternative update law

ηk+1 = (1− λ)ηk + λProjIrΓ (ηk − Ts

Ti
P−1ek),

where the projection is now with respect to the standard
Euclidean norm. In what follows though, we proceed
with the formulation (14), mostly due to point (iii) above.

B. Low-Gain Stability with DP-I Control

The closed-loop system is the interconnection of the plant
(3) and the controller (14); we can now state our main result.

Theorem 3.1 (Low-Gain Stability with DP-I Control):
Consider the plant (3) under Assumptions (A1)–(A3) with the
DP-I controller (14). Suppose that there exists a matrix P � 0
and constants µ,L > 0 such that η 7→ π(Kη,w) is µ-strongly
monotone and L-Lipschitz continuous on Γ with respect
to 〈·, ·〉P , uniformly in w ∈ W . Define T ?i := TsL

2/2µ.
Then for any Ti ∈ (T ?i ,∞), there exists λ? ∈ (0, 1) such
that for any λ ∈ (0, λ?) and any w ∈ W , the closed-loop
system possesses an exponentially stable equilibrium point
(x̄, η̄) ∈ X × Γ and the pair (ē, η̄) = (π(Kη̄,w), η̄) satisfies
the error-zeroing specification (7).

To interpret the conditions in Theorem 3.1, consider
again the LTI case (5). The condition for strong mono-
tonicity requires that there exist P � 0 satisfying
(G(1)K)TP + PG(1)K � 0, which is equivalent to the
matrix −G(1)K being Hurwitz stable; this is precisely
Davison’s classical condition, as described in Section I. The
main condition required in Theorem 3.1 is that of strong
monotonicity of the mapping η 7→ π(Kη,w). As shown in
[16], the same condition is sufficient for stability of low-gain
integral control applied to continuous-time nonlinear systems
in the absence of constraints; we further refer the reader to
[16, Sec. IV] for a discussion of how this main condition can
be checked computationally via semidefinite programming.

Proof of Theorem 3.1: The proof is based on a composite
Lyapunov construction, and is divided into five steps.

Step #1 — Equilibrium and Error Equations: Let w ∈ W
and set α := Ts/Ti. Equilibria (x̄, η̄) are characterized by

x̄ = f(x̄, ū, w), η̄ = ProjPΓ (η̄ − αē)
ē = h(x̄, η̄, w), ū = Kη̄.

(16)

If such an equilibrium exists, then necessarily η̄ ∈ Γ, and
hence ū = Kη̄ ∈ C. Given any such ū, it follows from (A2)
that the first equation in (16) can be solved for x̄ = πx(ū, w);
together, (A2)/(A3) imply that x̄ is isolated. Eliminating x̄
and ē, we obtain the reduced equilibrium equation

η̄ = ProjPΓ (η̄ − απ(Kη̄,w)) = Φ(η̄) = Φd(η̄) (17)

which is equivalent to the error-zeroing specification (7).
Since η 7→ π(Kη,w) is µ-strongly monotone on Γ uniformly

in w, and Γ is closed, convex, and non-empty, VIP (Γ, π ◦K)
admits a unique solution [17, Theorem 2.3.3]. We conclude
that the closed-loop system possess a unique equilibrium
point (x̄, η̄) ∈ X ×Γ with ē = h(x̄,Kη̄, w) = π(Kη̄,w) and
control ū = Kη̄ ∈ C. Consider the change of state variable

ξk := xk − πx(Kηk, w).

With this, the dynamics (3),(14) become

ξk+1 = f(ξk + πx(Kηk, w),Kηk, w)− πx(Kηk+1, w)

ek = h(ξk + πx(Kηk, w),Kηk, w)

ηk+1 = (1− λ)ηk + λProjPΓ (ηk − αek),
(18)

and the equilibrium point of interest is (ξ, η) = (0, η̄).

Step #2 — Analyzing the Slow Dynamics: Let
Vs(η) = ‖η − η̄‖2P . Using Φ and Φd from Proposition 2.1,
we compute that

Vs(ηk+1)
1
2 = ‖(1− λ)ηk + λProjPΓ (ηk − αek)− η̄‖P

= ‖(1− λ)ηk + λΦ(ηk)− η̄
+ λ(ProjPΓ (ηk − αek)− Φ(ηk))‖P

= ‖Φd(ηk)− Φd(η̄)

+ λ(ProjPΓ (ηk − αek)− Φ(ηk))‖P
≤ cdfb‖ηk − η̄‖P + λ‖δ‖P

where δ = ProjPΓ (ηk − αek)− Φ(ηk) and cdfb is defined in
Proposition 2.1. To bound ‖δ‖P we compute that

‖δ‖2P = ‖ProjPΓ (ηk − αek)− ProjPΓ (ηk − απ(Kηk, w))‖2P
≤ α2‖ek − π(Kηk, w)‖2P
= α2‖h(ξk + πx(Kηk, w),Kηk, w)

− h(πx(Kηk, w),Kηk, w)‖2P
≤ α2λmax(P )L2

h‖ξk‖22
where Lh is the Lipschitz constant of h. Combining the
above, with ∆Vs = Vs(ηk+1)− Vs(ηk), one finds that along
trajectories of (18) it holds that

∆Vs ≤ (c2dfb − 1)‖ηk − η̄‖2P + λmax(P )L2
hα

2λ2‖ξk‖22

+ 2λmax(P )
1
2αLhλcdfb‖ηk − η̄‖P ‖ξk‖2

= ζTkQsζk

where ζk = col(‖ξk‖2, ‖ηk − η̄‖P ) and

Qs =

[
q1λ

2 q2λ
q2λ c2dfb − 1

]
,

q1 = λmax(P )α2L2
h

q2 = αλmax(P )1/2Lhcdfb.

Step #3 — Bounding ‖ηk+1 − ηk‖P : We compute using
the triangle inequality that

‖ηk+1 − ηk‖P ≤ ‖ηk+1 − Φd(ηk)‖P
+ ‖Φd(ηk)− ηk‖P .

(19)

Using our previous calculations, the first term in (19) can be
bounded as
‖ηk+1 − Φd(ηk)‖P = λ‖ProjPΓ (ηk − αek)− Φ(ηk)‖P

= λ‖δ‖P
≤ λαLhλmax(P )1/2‖ξk‖2.



To bound the second term in (19), it follows from Proposition
2.1 and the triangle inequality that

‖Φd(ηk)− ηk‖P = λ‖Φ(ηk)− ηk‖P
= λ‖(ηk − η̄)− (Φ(ηk)− η̄)‖P
≤ λ(1 + cfb)‖ηk − η̄‖P .

(20)

Putting things together we obtain

‖ηk+1 − ηk‖P ≤ λLhαλmax(P )1/2‖ξk‖2
+ λ(1 + cfb)‖ηk − η̄‖P .

(21)

Step #4 — Analyzing the Fast Dynamics: Define the
deviation vector field g : Rn × U ×W → Rn by

g(ξ, u, w) = f(ξ + πx(u,w), u, w)− f(πx(u,w), u, w)

= f(ξ + πx(u,w), u, w)− πx(u,w).

Under Assumptions (A1)–(A3), the conditions of a converse
Lyapunov theorem for exponential stability are satisfied (see
[27, Thm A1]): there exists a set Z containing the origin in
its interior, positive constants c1, c2, c3, c4 > 0, ρf ∈ [0, 1),
and a continuous function

Vf : Z × U ×W → R≥0, (ξ, u, w) 7→ Vf(ξ, u, w)

satisfying the Lyapunov conditions

c1‖ξ‖22 ≤ Vf(ξ, u, w) ≤ c2‖ξ‖22
Vf(g(ξ, u, w), u, w)− Vf(ξ, u, w) ≤ −ρf‖ξ‖22
|Vf(ξ, u, w)− Vf(ξ

′, u, w)| ≤ c3(‖ξ‖2 + ‖ξ′‖2)‖ξ − ξ′‖2
|Vf(ξ, u, w)− Vf(ξ, u

′, w)| ≤ c4‖ξ‖22‖u− u′‖2

for all ξ, ξ′ ∈ Z , all u, u′ ∈ U , and all w ∈ W . Let

∆Vf = Vf(ξk+1, ηk+1, w)− Vf(ξk, ηk, w)

denote the increment of Vf along trajectories of (18). While
we suppress the details due to space limitations1, one
may use the Lyapunov properties to conclude that there
exists r > 0 such that ∆Vf ≤ ζkQfζk holds for all
(ξk, ηk, w) ∈ Br(0)× Γ×W , where

Qf =

[
−ρf + k1λ

2 + (k2 + k6)λ k3λ
2 + (k4 + k7)λ

k3λ
2 + (k4 + k7)λ k5λ

2

]
and where the constants k1 through k7 are positive and
independent of λ.

Step #5 – Putting the Pieces Together: Define the com-
posite Lyapunov candidate V (ξ, η, w) = Vs(η) + Vf(ξ, η, w).
Along trajectories of (18), we combine the previous inequal-
ities to compute that

∆V = V (ξk+1, ηk+1, w)− V (ξk, ηk, w) ≤ ζTkQζk

holds for all (ξk, ηk, w) ∈ Br(0)× Γ×W , where

Q =

[
−ρf + (k1 + q1)λ2 + k̃2λ k3λ

2 + k̃4λ

k3λ
2 + k̃4λ −(1− c2dfb) + k5λ

2

]
1Available in extended version of this paper [27].

and where for compactness we set k̃2 = k2 + k6 and
k̃4 = k4 + k7 + q2. Note that the (1, 1) element of Q is
negative and O(1) as λ→ 02. From Proposition 2.1

1− c2dfb = 2λ(1− cfb)− λ2(1− cfb)2,

with cfb ∈ (0, 1), and therefore the (2, 2) element of
Q is negative and O(λ) as λ → 0. Since the off di-
agonal elements are O(λ) as λ → 0, it is straightfor-
ward to argue that there exists some λ? > 0 such that
Q ≺ 0 for all λ ∈ (0, λ?). It follows that there exists
ε > 0 such that ∆V (ξk, ηk, w) ≤ −εV (ξk, ηk, w) for all
(ξk, ηk, w) ∈ Br(0)× Γ×W . Standard arguments (e.g., [28,
Thm. 13.2] now complete the proof. �

I V. E X A M P L E : F O U R - TA N K P R O C E S S

We illustrate our approach with an application to sampled-
data control of nonlinear process describing water flow
between four interconnected tanks; see [19] for a schematic.
With state h ∈ R4

>0 describing the water levels in the four
tanks, and inputs u ∈ R2

≥0 being flow rates for the two pumps,
the continuous-time system dynamics can be expressed as

ḣ = Aφ(h) + Bu, y = col(h1, h2) (23)

where φ(h) = col(
√

2gh1,
√

2gh2,
√

2gh3,
√

2gh4) and

A =


− a1
A1

0 a3
A1

0

0 − a2
A2

0 a4
A2

0 0 − a3
A3

0

0 0 0 − a4
A4

 , B =


γ1
A1

0

0 γ2
A2

0 1−γ2
A3

1−γ1
A4

0

 ,
with parameters as given in [19]. With u? = (32.64, 32.64),
the point h? = (10, 10, 5.38, 5.38) is an exponentially stable
equilibrium, which we consider as the nominal operating
point for the system. While we omit the details due to
space limitations, one can find appropriate sets X and U
around this operating point such that (A1)–(A3) hold for the
ideally discretized model associated with (23). The control
objective is to regulate the water levels h1, h2 in the two
lower tanks to specified set-points r1, r2, and we therefore
take e = (h1 − r1, h2 − r2) as the error signal of interest.
The control inputs u1, u2 are constrained to lie in set

C = {(u1, u2) | u1 ∈ [0, 45], u2 ∈ [0, 45], u1 + u2 ≤ 85}.

modelling individual and total flow rate constraints for the
two pumps. Straightforward computations show that (4) is

π(ū) =
1

2g
diag(Πū)Πū, Π :=

[
γ1
a1

1−γ2
a1

1−γ1
a2

γ2
a2

]
.

Selecting K = Π−1 ensures that the monotonicity and
Lipschitz conditions in Theorem 3.1 are satisfied with P = I2
on a large domain containing the nominal operating point.
The remaining parameters for the DP-I controller (14) are
selected as Ts = 10s, Ti = 15s, and λ = 0.95. Figure 2 shows
the closed-loop response to sequential set-point changes for

2For a function g : R → R which is positive definite with respect to 0, a
function f : R → R is O(g(λ)) as λ→ 0 if limλ→0 |f(λ)|/g(λ) <∞.



the water levels in the first two tanks. During the first two
reference changes, the constraints u ∈ C are strictly feasible,
and hence exact reference tracking is observed in Figure
2a. After the next two reference changes, the constraints
u1 ∈ [0, 45] and u1 + u2 ≤ 85 are both encountered.
Exact tracking is no longer possible, but input constraints are
maintained and the closed-loop system remains stable and
reaches a steady-state satisfying the variational inequality (7).

(a) Tank water levels; dashed lines denote reference set-points.

(b) Control signals; dashed line denotes individual pump limit.

Fig. 2: Closed-loop response of 4-tank system.

V. C O N C L U S I O N S

We have formulated an approximate tracking specification
as a variational inequality, and designed projected integral
controller to meet this specification while maintaining ar-
bitrary convex constraints on the input signal at all times.
In the absence of constraints, the approximate tracking
specification reduces to an exact tracking specification, and
the projected integral controller reduces to a classical integral
controller. The controller inherits what is perhaps the most
important stability property of traditional integral control,
namely that under a monotonicity condition on the plant
equilibrium mapping, closed-loop stability can be guaranteed
when the plant is exponentially stable and the integral gain is
sufficiently low. Future work will consider the extension of
this scheme to a projected PID controller, and the extension
to more general discrete-time output-regulating controllers
which admit a representation in so-called incremental form.
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