
A Structured Optimal Controller with
Feed-Forward for Transportation

Martin Heyden, Richard Pates and Anders Rantzer*

January 31, 2022

Abstract

We study an optimal control problem for a simple transportation model on a
path graph. We give a closed form solution for the optimal controller, which can
also account for planned disturbances using feed-forward. The optimal controller
is highly structured, which allows the controller to be implemented using only
local communication, conducted through two sweeps through the graph.

1 Introduction
In this paper we study a simple Linear Quadratic control transportation problem on a
network. Such problems have well known solutions based on the Riccati equation [?].
This gives a static feedback law

u = Kx,

where u is the input to the system, x is the state of the system and K is a matrix with real
entries. This matrix is in general dense. This is undesirable in large-scale problems,
since it implies that measurements from the entire network are required to compute the
optimal inputs at every node. Furthermore a centralized coordinator with knowledge of
the entire system is required to determine the matrix K, and a complete redesign will
be required in response to any changes in the network.

These factors have led to the development of a range of general purpose methods for
structured control system design. Some notable themes include the notion of Quadratic
Invariance [1, 2], System Level Synthesis [3], and the use of large-scale optimization
techniques (e.g. [4]). A downside with these approaches is that they improve scalability

*This work was supported by the Swedish Foundation for Strategic Research through the project SSF
RIT15-0091 SoPhy.

The authors are members of the LCCC Linnaeus Center and the ELLIIT Excellence Center at Lund Uni-
versity.

The authors are with the Department of Automatic Control, Lund University, Box 118, SE-221 00 Lund,
Sweden.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.

1

ar
X

iv
:2

10
6.

04
28

2v
2

 [
m

at
h.

O
C

]
 2

8
Ja

n
20

22

at the expense of performance. That is they search over families of controllers that
exclude the dense optimal controller for (2). While in comparison with the alternative
this may be an acceptable trade-off, it implicitly assumes that just because the feedback
law is dense, it cannot be efficiently implemented.

The main result of this paper is to show that the simple structure in our problem al-
lows the optimal control law to be computed and implemented in a simple and scalable
manner. The resulting control actions are the same as those from a Riccati approach,
and could in principle be calculated that way. However, there are extra structural fea-
tures in the control law that are obscured by the resulting dense feedback matrix repre-
sentation, and it is not obvious how to exploit these to give a scalable implementation
from the gain matrix obtained from the Riccati equation.

1.1 Problem Formulation
We consider the problem of transportation and production of goods on a directed path
graph with vertices v1,v2, . . . ,vN and directed edges (eN ,eN−1), . . . ,(e2,e1). The dy-
namics are given by

zi[t +1] = zi[t]−ui−1[t]+ui[t− τi]+ vi[t]+di[t]. (1)

All the variables are considered to be defined relative to some equilibrium. In the
above zi[t] ∈R is the quantity in node i at time t. The system can be controlled using
the variables ui[t] ∈ R and vi[t] ∈ R. The variable ui[t] denotes the amount of the
quantity that is transported from node i+1 to node i (again relative to some equilibrium
flows), and the transportation takes τi time units. For the last node N it is assumed that
uN [t] = 0 for all t. The variable vi[t] denotes the flexible production or consumption of
the quantity at the ith node. Finally di[t] ∈ R is the fixed production/consumption at
the ith node. This will be treated like a forecast, or planned disturbance, that is known
to the designer, but cannot be changed. This model could for instance describe a water
irrigation network [5] or a simple supply chain system [6]. A state-space representation
for (1) can be obtained by setting zi[t], ui[t−δ], 1≤ δ ≤ τi to equal the system state.

The goal is to optimally operate this network around some equilibrium point. The
performance is measured by the cost of deviating from the equilibrium levels qiz2

i and
the cost of the variable production riv2

i , where q and r are strictly positive constants.
We thus consider the following linear quadratic control problem on a graph with N
nodes,

minimize
z,u,v

∞

∑
t=0

N

∑
i=1

(
qizi[t]2 + rivi[t]2

)
subject to dynamics in (1)

z[0],di[t].

(2)

Note that there is no penalty on the internal flows ui. This can for example be motivated
by the transportation costs already being covered by the costs of the nominal flows (or
in the case of water irrigation networks that gravity does the moving). This problem is
in effect a dynamic extension of the types of scheduling problems considered in trans-
portation networks [7], and could be used to compliment such approaches by optimally
adjusting a nominal schedule in real time using the feedback principle.

2

0 20 40 60

−1

0.5

Time (samples)

L
ev
el

Feed-forward

Node 1
Node 2
Node 3
Node 4
Node 5

0 20 40 60

−1

0.5

Time (samples)

L
ev
el

No feed-forward

Node 1
Node 2
Node 3
Node 4
Node 5

Figure 1: Example of the effect of feed forward. The graph has five nodes and transportation
delay τ1 = 3, τ2 = 2, τ3 = 5 and τ4 = 4. There is a disturbance in node three from time 10 to
13 and in node 2 from time 12 to 15. We can see that the feed-forward manages to handle the
disturbances better by spreading out their effect throughout the graph. To quantify the difference
one can consider the cost in (2), which is 3.11 with feed-forward and 11.35 without feed-forward.

A similar problem has been studied in a previous paper [8]. However we give sev-
eral important extensions, in that we allow for non-homogeneous delays, production
in every node and optimal feed-forward for planned disturbances. Allowing for non
homogeneous delays is important as that will be the case for almost all applications.
Taking planned disturbances into account allows for increased performance whenever
such disturbances can be forecast. Finally, allowing for some variation in the consump-
tion vi for each node will also generally increase performance whenever such variation
is possible. The effect the feed-forward of planned disturbances can have on the con-
troller performance is illustrated in Figure 1, where we see that the controller with
feed-forward anticipates the action of the disturbances, allowing the effect to be better
spread through the graph and the node levels to be more tightly regulated. This results
in a significant improvement in performance.

1.2 Result Preview
The key structural feature that we identify in the optimal control law for (2) is that
optimal inputs can be computed recursively by two sweeps through the graph (even
though the control law that would be obtained from the Riccati equation would be
dense). More specifically, two intermediate variables local to the ith node δi[t] and
µi[t] can be computed recursively through relationships on the form

δi[t] = f (local variables,δi−1),

µi[t] = g(local variables,µi+1),

3

from which the optimal inputs ui[t] and vi[t] can be calculated based only on local vari-
ables. Conceptually this step is rather similar to solving a sparse system of equations
with the structure of a directed path graph using back substitution.

The details are given in Algorithm 2, and this process is illustrated in Figure 2. This
allows the optimal inputs to be computed by sweeping once through the graph from the
first node to the final node to compute the δ ’s, and once from the final node to the first
to compute the µ’s. Both sweeps can be conducted in parallel. This represents a sort of
middle ground between centralised control and decentralised control, in which global
optimality is preserved whilst only requiring distributed communication. The price for
this is that the sweep through the whole graph must be completed before the inputs
can be applied, but for systems with reasonably long sample times (which is likely true
in transportation or irrigation systems) this seems a modest price to pay. Interestingly
the controller parameters can be computed in a similar distributed manner, allowing
the controller to also be synthesised in a simple and scalable manner. This is shown in
Algorithm 1.

2 Results
In this section we present two algorithms that together allow for the solution of (2). The
first of these algorithms computes the parameters of a highly structured control law for
solving (2), whereas the second shows that the control law has a simple distributed
implementation. These features will be discussed in Section 3. In this section we will
demonstrate that under suitable assumptions on the planned disturbances di[t], Algo-
rithms 1 and 2 give the optimal solution to (2) . This constitutes the main theoretical
contribution of the paper.

In the absence of the planned disturbances (i.e. with di[t] ≡ 0), (2) is an infinite
horizon LQ problem in standard form. It is of course highly desirable in applications
to be able to include information about upcoming disturbances in the synthesis of the
control law. However if we are given an infinite horizon of disturbances, (2) is no longer
tractable. For the theoretical perspective, it turns out that the suitable assumption on
the horizon length is as follows:

Assumption 1. Let the aggregate delay σk in (1) be

σk =
k−1

∑
i=1

τi.

Given a horizon length H ≥ 0, assume that di[t] = 0 for all t > H +(σN −σi) and for
all 1≤ i≤ N.

Observe that if di[t] = 0 for all t > H then Assumption 1 holds. Thus the assump-
tion captures the natural notion of having a finite horizon H of information about the
disturbances di[t] available when constructing the control input. In Section 4 we will
investigate how the length of the horizon affects the performance of the controller.

We will now state the main results of this paper. The following theorem shows
that (2) can be solved by running two simple algorithms; one for calculating all the

4

necessary parameters, and one for computing the optimal inputs. Both algorithms can
be implemented using only local communication as discussed in Section 3. A graphical
illustration of the implementation of Algorithm 2, which is the algorithm used for the
on-line implementation, can be found in Figure 2.

Theorem 1. Let

Di[t] =
i

∑
j=1

d j[t−σ j].

Assume that H and d j[t] satisfy Assumption 1. Then the optimal inputs ui[t] and vi[t]
for the problem in (2) are given by running Algorithm 2 with the parameters calculated
by Algorithm 1.

Proof. See the appendix. A sketch of the proof can be found in Section 5.

Remark 1. In most cases the choice of H can be made without considering its effect
on the controller implementation, and can instead be chosen based only on the nodes’
ability to forecast their disturbances. In applications it would also be natural to incor-
porate new information on upcoming disturbances in a receding horizon fashion. This
will be further discussed in Section 3.2. ♦

Remark 2. There is an asymmetry in Assumption 1 in that (σN −σi) grows as i de-
creases from N to 1. This means that this assumption allows nodes further down the
graph to have longer horizons of planned disturbances. Of course there is no reason
to believe that these nodes are better at predicting their disturbances. It is just that
the derived theory can handle those disturbances in a straightforward manner since
the optimal controller lumps the disturbances into time shifted sums, with a time shift
proportional to σi. ♦

3 Implementation
In this section we will discuss the structure in Algorithms 1 and 2, and explain how
they can be used to implement an optimal feedback control law for solving (2) in a
distributed manner. In both cases the order in which the computations occur is highly
structured. This is illustrated for Algorithm 2, which is the algorithm that must be run
to compute the control inputs, in Figure 2. Matlab code for using these algorithms to
calculate the optimal control inputs is available at github1, as well as code to verify that
Theorem 1 holds numerically. We will also discuss how to calculate Di and incorporate
updates to the planned disturbances in a receding horizon style in Algorithm 3.

3.1 Algorithms 1 and 2, and the Optimal Control Law
The problem in (2) is at its heart an LQ problem, and the optimal controller is given by
a static feedback law. The corresponding feedback matrix is generally dense, and that
is the case for (2) as well. However certain special structural features of the process

1https://github.com/Martin-Heyden/cdc-letters-2021

5

Algorithm 1: Computation of control parameters.
Input: qi, ri, τi, H
Output: γi, gi(j), Pi(τi,1), hi, φi(∆), ai, ci
/* First Sweep, upstream direction */

1 γ1 = q1, ρ1 = r1 // initialize first node

2 send γ1 and ρ1 to upstream neighbor
3 for node i = 2:N do
4 γi =

γi−1qi
γi−1+qi

, ρi =
ρi−1ri

ρi−1+ri

5 send γi and ρi to upstream neighbor
6 end

. .
/* Second Sweep Downstream direction */

7 XN(H +2) =− γN
2 +

√
γNρN +

γ2
N
4

8 for node i = N:1 do
9 Xi(τi) =

ρi(Xi+1(1)+γi)
Xi+1(1)+γi+ρi

// Not for node N

10 Xi(t−1) = ρi(Xi(t)+γi)
Xi(t)+γi+ρi

, // 1≤ t−1≤ τi−1 or for i =N, 1≤ t−1≤ H +1

11 gi(i) =
Xi(i)

Xi(i)+γi
, 2≤ i≤ τi

12 gi+1(1) =
Xi+1(1)

Xi+1(1)+γi

13 bi = gi+1(1)∏
τi
j=2 gi(j)

14 send Xi(τi), bi to downstream neighbor.
// for 1≤ l,m≤ τi

15 Pi(1,m) = Xi(1)
ρi

16 Pi(l,m) = (1− Xi(l)
ρi

)gi(l)Pi(l−1,m)+ Xi(l)
ρ(i) , l ≤ m

17 Pi(l,m) = (1− Xi(l)
ρi

)Pi(l−1,m)+ Xi(l)
ρ(i) , l > m

18 end
. .
/* Third Sweep, upstream direction */

19 h1 = P1(τ1,τ1)g2(1)
20 send h1 to upstream neighbor.
21 for node i= 2:N-1 do
22 hi = (1−Pi(τi,1))bihi−1 +Pi(τi,τi)gi+1(1)
23 send hi to upstream neighbor.
24 end

. .
/* Some final local Calculations */

// For 1≤ ∆≤ τi, Empty Product, ∏
1
j=2 = 1

25 φi(∆) =
(

1−Pi(τi,∆)− (1−Pi(τi,1))hi−1∏
∆+1
j=2 gk(j)

)
26 ai =

Xi(1)
ri

+ γi
qi
(1− Xi(1)

ρi
)

27 ci =−
(

Xi(1)
ri
− γiXi(1)

qiρi

)
(1−hi−1)+

γi
qi

hi−1

6

z1 π1 µ1Φ1δ1

0

1

z2 π2 µ2Φ2δ2

0

z3 π3 µ3Φ3δ3

0

z4 π4 µ4Φ4δ4

z5 π5 µ5Φ5δ5

0

1

z5[t]

u4[t−1]

z4[t]

u4[t−2]

u3[t−1]

z3[t]

u2[t−1]

z2[t]

u1[t−1]

u1[t−2]

z1[t]

Figure 2: Illustration of the structured approach for calculating the optimal inputs using Algo-
rithm 2, for a 5 node example with τ1 = 2, τ2 = 1, τ3 = 1, τ4 = 2. The graph at the right of
the figure illustrates the underlying dynamics of the network as in (1). The left part of the figure
illustrates the structure of the computations required to compute the optimal control according
to Algorithm 2. The solid circles corresponds to node states and dashed circles the quanti-
ties in transit. The number in each dashed circle denotes the value of ∆, which then maps to
uk[t− (τk−∆)]. The rectangles indicates the different intermediate calculations needed to deter-
mine the variables required to compute the optimal inputs (lines 2–3 and 7–8 in Algorithm 2).
These are horizontally aligned with the location in the network where they could be locally per-
formed. The arrows indicate information flow. Each intermediate can be calculated using only
the quantities from the incoming arrows. An upstream sweep is performed (the red arrows) in
order to calculate the variables δi[t]. The local intermediate Φi[t] variables are calculated (line 2),
and then aggregated into the δi[t]’s (line 3), which are sequentially passed up the graph. For the
downstream sweep the local πi[t] variables are calculated (line 7) and aggregated into the µi[t]’s
(line 8). Both sweeps can be conducted in parallel, and once they have completed, the optimal
inputs for the ith node can be determined using the variables at the ith location according to lines
11 and 12 in Algorithm 2.

7

Algorithm 2: Distributed Controller Implementation.
Input: zi[t], ui[t− (τi−∆)], di[t], Di[t +σi +∆]
Output: ui[t],vi[t]
// Let τN = H +1.
/* Upstream sweep - Done in parallel with downstream sweep */

1 for node i = 1:N do
2 Φi[t] = φi(1)zi[t]+

∑
τi−1
∆=0 φi(∆+1)

(
ui[t− (τi−∆)]+Di[t +σi +∆]

)
3 δi[t] = Φi[t]+ (1−Pi(τi,1))δi−1[t]
4 send δi[t] upstream
5 end. .
/* Downstream sweep - Done in parallel with upstream sweep */

6 for node i = N:1 do
// Empty Product, ∏

1
j=2 = 1

7 πi[t] = zi[t]+∑
τi−1
∆=0

(
ui[t− (τi−∆)]+Di[t +σi +∆]

)
∏

∆+1
j=2 gi(j)

8 µi[t] = πi[t]+biµi+1[t]
9 send µi[t] downstream

10 end. .
/* Calculate outputs */

11 ui−1[t] = (1− γi
qi
)
(
zi[t]+ui[t− τi]+Di[t +σi]

)
−aiδi−1[t]+ ciµi[t]+di[t]−Di[t +σi]

12 vi[t] =−Xi(1)
ri

(
δi−1[t]+ (1−hi−1)µi[t]

)

(1) are inherited by the optimal control law. It is these features we exploit to give a
scalable implementation in Algorithms 1 and 2, which we will now discuss.

In terms of the algorithm variables, the optimal node production vi[t] for (2) is given
by

vi[t] =−
Xi(1)

ri

(
δi−1[t]+ (1−hi−1)µi[t]

)
, (3)

and the optimal internal flows ui[t] are given by

ui−1[t] = (1− γi

qi
)
(
zi[t]+ui[t− τi]+Di[t +σi]

)
−aiδi−1[t]

+ ciµi[t]+di[t]−Di[t +σi]. (4)

The parameters in these control laws (the symbols without a time index, which
includes Xi(1)) are calculated in a simple and structured manner by Algorithm 1. Of
course having an efficient method for computing the control law is less critical than
having an efficient real time implementation of the control law (which is performed
by Algorithm 2), since the control law can be computed ahead of time. However the
fact that this step is also highly structured indicates that the approach is scalable, since

8

it allows for the the control law to be simply and efficiently updated in response to
changes to the dynamics in (1) (perhaps resulting from the introduction of more nodes).

Algorithm 1 computes all the parameters needed to give a closed form solution for
the problem in (2). The origin of the parameters in Algorithm 1 are discussed briefly in
the proof idea in Section 5 and full details are found in the proof in the appendix. The
algorithm consists of three serial sweeps. The first sweep starts at node 1 and calculates
γi and ρi. The second sweep starts at node N, and calculates Xi(t) The calculation of
Xi(t) has both local steps (line 10) and steps that requires communication (line 9).
Also during the second sweep, the parameters g, b and P are calculated locally. The
third sweep starts at node 1 again, and calculates the parameter h, which is needed to
calculate the optimal production. Finally, after the third sweep, the parameters φi(∆),
ai and ci are calculated in each node independently.

The real time implementation of the optimal control law also has a simple dis-
tributed implementation. This is the role of Algorithm 2, and the structure of the im-
plementation is illustrated in Figure 2. The algorithm proceeds through two sweeps
through the graph. These sweeps are independent of one another, and can be con-
ducted in parallel. In the upstream sweep (from node 1 to node N), a set of local vari-
ables (Φi[t] and δi[t]) are computed according to lines 2–3. This is done sequentially,
since the computation of δi[t] depends on δi−1[t]. δi−1[t] then gives all the information
node i needs from downstream nodes. Similarly the downstream sweep sequentially
computes the πi[t] and µi[t] variables. Here µi[t] gives all the information needed from
nodes upstream of node i. Once these two sweeps are completed, the optimal inputs
can be calculated locally using lines 11 and 12.

3.2 Receding Horizon and Calculation of Di[t]

We will now discuss how to implement the controller in a receding horizon style to
account for updates and new information about the planned disturbances di[t]. In terms
of both the optimal control problem in (2) and the controller implementation in Algo-
rithm 2, the planned disturbances are treated as fixed quantities, that are known up to
some horizon length H into the future (and equal to zero thereafter, c.f. Assumption 1).
The idea is that di[t] determines the anticipated consumption of the quantity at node i
and time t. Having this information available ahead of time allows the optimal control
law to anticipate the predicated usage, and optimally ’schedule’ the transportation of
the quantity through the network. As we will see in the examples this can lead to a
significant improvement in performance. However, in practice we would want to up-
date the values of the di[t]’s as time passes, and more up to date information becomes
available.

A natural way to do this is to use a receding horizon approach. In this setting we
assume that at each point in time, we essentially have a fresh problem, with a new set of
planned disturbances. Algorithm 2 can then be used to compute the first optimal input
for this problem, after which the problem resets, and we get a new horizon of planned
disturbances. This ensures we always make the best action available to us with a given
horizon of information about the disturbances. The question is then, how to efficiently
update the part of the control law that depends on the planned disturbances.

9

D1[t]

D1[t +1]

D2[t +2]

D2[t +3]

D3[t +4]

D3[t +5]

d
3 [t]d

3 [t+
1]

d
2 [t]d

2 [t+
1]

d
1 [t]d

1 [t+
1]

Figure 3: Illustration for the terms included in Di[t] for a three node graph with τ1 = τ2 = 2. The
first row of dots corresponds to z3[t], z2[t], z1[t] and the second corresponds to z3[t +1], z2[t +
1], z1[t+1], and so on. Due to lack of space only di[t] and di[t+1] has been drawn. However, the
pattern follows through the graph. From the figure we can see that D1[t +3] = D2[t +3]−d2[t],
corresponding to the first part of Algorithm 3.

The changes required to accommodate this are rather minor. The planned distur-
bances do not affect the control parameters or the distributed structure of the implemen-
tation of the control law. To see this, observe from Algorithms 1 and 2 that all of the
information about the planned disturbances is handled through the variables Di[t] de-
fined in Theorem 1. An illustration of the relationship between individual disturbance
di and shifted disturbance vectors Di[t] can be found in Figure 3. Thus the structure
of the implementation of the control law remains the same, and only Di[t] needs to be
updated as new information become available. This can be done efficiently by a sweep
starting at the bottom of the graph. After all, although in the receding horizon frame-
work we assume we have a ‘new’ set of planned disturbances at each point in time,
these will share a large amount of information with the planned disturbances from the
previous time step. This is the role of Algorithm 3, which we now explain.

All the Di[t]’s where none of the underlying d j[t] were changed can easily be up-
dated. For 1 ≤ ∆ ≤ τi− 1 the information in Di[t +σi +∆] will be useful in node i at
the next time step as

Di[t +1+σi +∆−1] = Di[t +σi +∆].

When ∆ = 0 the information can be used at the downstream neighbor as Di satisfies

Di−1[t +1+σi−1] = Di[t +σi]−di[t].

These updates can be done in all nodes simultaneously and the time it takes is thus
independent of the size of the graph.

However, the shifted sums Di has to be initialized at time zero, and also updated
when new disturbances di are planned for times t > 0. Di[t] only requires information

10

Algorithm 3: Calculation of D
Input: changed di[s]
Output: updated Di

/* Update Disturbances in parallel, O(1). Necessary even if there

are no new disturbances */

1 for node i = N:1 do
2 Send Di−1[t +1+σi−1] = Di[t +σi]−di[t] downstream.
3 Discard Di[t +σi]

4 end. .
/* Update Disturbances due to new planned disturbances */

5 for node i = 1:N do
/* For t +σi ≤ s < t +σN +H */

6 if di[s−σi] changed or Di−1[s] received then
7 send Di[s] = Di−1[s]+di[s−σi] upstream
8 end
9 end

from downstream, and can thus be calculated by a sweep starting at node one and
going upstream. Starting at the first node, any of the d1[s], t ≤ s≤ t+σN +H that have
changed are sent to node two. Then for every node i, the aggregate Di[s], t +σi ≤ s≤
t +σN +H is sent upstream if it has changed. This will be the case if node i received
Di−1[s], t +σi ≤ s ≤ t +σN +H from its downstream neighbor, or if di[s], t ≤ s ≤
σN−σi +H has changed.

The steps for updating the disturbances are summarized in Algorithm 3. While the
algorithm is essentially a sweep through the graph in the upstream direction, it might be
best to not implement it in the upstream sweep of Algorithm 2 as then the downstream
sweep would have to be done after the upstream sweep, due to its need for the shifted
disturbance vectors. On the other hand, the calculation does not rely on measurement
from the system, and can thus be carried out either before or after Algorithm 2.

We are now ready to discuss how the choice of H affect the implementation of the
controller. Firstly, a larger H will lead to a very slight increase in the synthesis time
due to more iterations of XN(t) being required. Secondly increasing H will increase
the memory requirement in node N, in that it requires to store DN [t+∆] for 0≤ ∆≤H.
Finally the requirement for the communication bandwidth when updating Di[t] will
depend on the number of new disturbances d j[t], but is upper bounded by H if di[t] = 0
for t > H and by H +σN if di[t] = 0 for t > H +σN −σi. Thus if the bandwidth is
limited, and a lot of new disturbances are expected to be planned, one might need to
limit the size of H. Otherwise it can be freely chosen based on the nodes abilities to
forecast disturbances.

11

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

Horizon Length
C
os
t

N = 10 τi = 3
N = 10 τi = 6
N = 10 τi = 12

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

Horizon Length

C
os
t

N = 20 τi = 3
N = 20 τi = 6
N = 20 τi = 12

Figure 4: Simulations comparing the effect the planning horizon has on the performance. The
data-points with highest cost for each configuration corresponds to not using the planned distur-
bances at all. While the the rest corresponds to using all planned disturbances announced up to
H time units ahead in every node.

4 Simulations
In this section we explore the effect the feed-forward horizon has on the controller
performance through simulations. In Figure 4 the performance for different horizon
lengths is shown. Two random nodes are affected by disturbances of total size between
minus one and zero and during a time interval of length between 1 and 5. The node
level cost is given by qi = 1. The production cost is given by ri = 10N, where N is the
number of nodes. This is an attempt to keep the production cost similar for different
values of N. There are 50 simulations done for each case with random disturbances as
previously described. For all the cases when N is the same, all the disturbances are the
same for all the different horizons and delay values. The horizon lengths are the same
for all nodes, i.e it is assumed that di[t +d] = 0 for d > H.

We can see that a large part of the performance increase form having feed-forward
can be achieved for short disturbance horizons. We can also see that for larger delays,
and for more nodes, a longer horizon is needed to get the same effect. As a rule of
thumb, at least for this example, it seems like a horizon longer than 2/3 of the total
delay gives almost no effect, and even a horizon of 1/3 of the total delay gives most of
the performance increase.

5 Proof Idea
In this section we will describe the main idea behind the technique used to derive the
results, which is to study a time shifted sum of the node-levels zi, and a time shifted sum
of the production vi. This will allow the problem to be solved in terms of these shifted

12

sums, essentially reducing it to a problem with scalar variables. Outside the disturbance
horizon the problem can be solved by a Riccati equation in one variable. While inside
the disturbance horizon the problem is solved using dynamic programming, where each
step has scalar variables.

Now for the definitions of the shifted sums, let the sum of a shifted level Sk and
sum of a shifted production vector Vk be defined as

Sk[t] =
k

∑
i=1

zi[t−σi], Vk[t] =
k

∑
i=1

vi[t−σi].

Also Let V̄k[t] =Vk[t]+Dk[t] to shorten some expressions.
We illustrate the main idea by considering these shifted sums with a short example.

Consider a path graph with N > 2, τ1 = 1, and τ2 > 1. Then S2[3] = z1[3]+ z2[2]. It
can be checked that

S2[3] = z1[0]+ z2[0]+V̄1[0]+V̄2[1]+V̄2[2]+u1[−1]+u2[−τ2].

Note that the internal transportation u1[0] and u1[1] have canceled, and the sum is thus
independent of the internal transportation u (except those with negative time index,
which correspond to initial conditions). Also note that any values for z2[2] and z1[3] can
be achieved as long as z1[3]+ z2[2] = S2[2]. This follows from that z2[2] can take any
value by choosing the appropriate value for u1[1]. Thus the cost of q2z2[2]2 +q1z1[3]2

only depends on the value of S2[3], which is independent of all internal transportation
ui[t], t ≥ 0. This means that all inputs except u1[1] can ignore its effect on the terms in
S2[3]. Furthermore, S2[3], and thus the corresponding cost, only depends on the sums
V2[1] and V2[2] and not the individual productions v1[1], v1[2], v2[0] and v2[1].

This idea can be generalized. The cost function can be rewritten in terms of shifted
levels, where each shifted level sum is independent of the internal transportation. Each
shifted level can thus be minimized independently with respect to the internal trans-
portation u. Just as in the example, the only constraint is that the shifted sum has the
correct value. The optimal cost for a shifted vector Sk[t] is given by the solution to

minimize
zi

k

∑
i=1

qizi[t +σk−σi]
2

subject to Sk[t +σk] = c,

(5)

where c depends on the initial conditions, Vi, and Di. The problem has the solution
zi[t +σk−σi] = γk/qi · c and cost γkc2, where γk is as given in Algorithm 1. Once the
optimal level zk[1] is calculated, the optimal value for uk−1[0] can be found from the
dynamics, which gives

uk−1[0] = (1− γk

qk
)(zk[0]+uk[−τk])+ vk[0]+dk[0]

− γk

qk
V̄k[σk]−

γk

qk
(mk−1[0]+

k−1

∑
i=1

τi−1

∑
d=0

V̄i[σi +d]).

13

Where mk[t] = ∑
k
i=1(zi[t] +∑

τi
δ=1 ui[t − δ]). After inserting the optimal values for vk

and Vi the expression in (4) is achieved. Note that all the terms with coefficient 1
corresponds to what would be in the node k at time t = 1 if uk−1[0] = 0, and all terms
with coefficient −γk/qk gives the total quantity in Sk[1].

Furthermore, each shifted level sum only depends on the shifted production sums
Vk[t], and not the individual productions vi[t], i≤ k. The optimal way to produce a spe-
cific amount Vk[t] with a shifted production vector can be found by solving a problem
similar to (5), with the optimal vi given by vi[t−σi] = ρk/ri ·Vk[t] for i≤ k, and the cost
given by ρkVk[t]2, where ρk is as given in Algorithm 1. So the calculations of γi and ρi
in the first sweep in Algorithm 1 thus corresponds to solving the optimal distribution
for a shifted level vector Sk and the optimal production for a shifted production vector
Vk. This is covered in Lemma 1.

Assuming all ui are picked so that the shifted levels are optimized, the total level
cost is given by

∞

∑
t=0

N

∑
i=1

qizi[t]2 =
N

∑
i=0

qizi[0]2 +
N−1

∑
i=1

σi+1

∑
t=σi+1

γiSi[t]2 +
∞

∑
t=σN+1

γNSN [t]2. (6)

And assuming all vi are picked so that each shifted production vector is optimized, then
the total production cost is given by

∞

∑
t=0

N

∑
i=1

rivi[t]2 =
N−1

∑
i=1

σi+1−1

∑
t=σi

ρiVi[t]2 +
∞

∑
t=σN

ρNVN [t]2. (7)

This allows the problem in (2) to be solved in terms of Vi and Si, reducing it to a
problem in scalar variables. The scalar problem can be solved analytically, giving a
closed form solution.

This is done by first solving for all VN [t] outside the disturbance horizon, that is for
t > σN +H. Using that outside the disturbance horizon the dynamics for the shifted
levels SN [t] are SN [t +1] = SN [t]+VN [t] gives that those VN [t] are given by the solution
to

minimize
VN [t]

∞

∑
t=σN+H+1

γNSN [t]2 +ρNVN [t]2

subject to SN [t +1] = SN [t]+VN [t].

This problem can be solved through a Riccati equation in one variable, giving expres-
sions for VN [t], t > σN +H in terms of SN [t]. And more importantly, a cost to go in
terms of SN [σN +H +1], that is XN [H +2] in Algorithm 1.

Each shifted sum in (6) can be expressed in terms of initial conditions, shifted
production vectors, and shifted disturbance vectors,

Sk[σk +∆] = mk−1[0]+ zk[0]+
k−1

∑
i=1

σi+1−1

∑
d=σi

V̄i[d]+
σk+∆−1

∑
d=σk

V̄k[d].

Using the cost to go from the Riccati equation as the terminal cost allows the rest
of the Vi’s to be found analytically using dynamic programming. When solving this

14

problem the cost to go Xi in Algorithm 1 is used. The parameter g also appears naturally
in the solution to each dynamic programming step, and the upstream aggregate µi in
Algorithm 2 is used to simplify the expressions. This is covered in detail in Lemma 3.

The resulting solution gives Vi[t] in terms of initial conditions and the previous Vk’s
in (7). However, V1[0] is known, which gives V1[1] and so on. When rewriting Vi[0] in
terms of only initial conditions the expressions can be simplified by using δ as defined
in Algorithm 2. This in turn requires P, h, and φ which were defined in Algorithm 1
and Φ which was defined in Algorithm 2. For the details see Lemma 4.

6 Conclusions and Future Work
In this paper we studied an optimal control problem on a simple transportation model.
We showed that the optimal controller is highly structured, allowing for a distributed
implementation consisting of two sweeps through the graph. The optimal controller
can also handle planned disturbances in an efficient way.

We believe that the results presented here can be extended to more general graph
structures. More specifically for any graph with the structure of a directed tree both the
proof technique and the results could be extended. We plan to explore this in a future
publication.

A Appendix
The proof follows the structure of the proof idea. Before we start we restate the defini-
tion of mk which was mentioned in the proof idea.

mk[t] =
k

∑
i=1

(
zi[t]+

τi

∑
d=1

ui[t−d]

)

Also, we let the product over an empty set be equal to one, e.g., ∏
1
i=2 gi = 1.

The proof will derive the optimal inputs at time t = 0. As the problem has an
infinite horizon, one can freely shift the time, and the results will thus holds for all
t ≥ 0. We begin by showing that each shifted level can be optimally distributed and
find the corresponding internal flows.

Lemma 1. The following holds

(i) Every shifted level Sk satisfies

Sk[t +σk +1] =

zk[t]+uk[t− τk]+mk−1[t]+
k−1

∑
i=1

τi−1

∑
d=0

V̄i[t +σi +d]+V̄k[t +σk]

15

(ii) Let γk be defined as in Algorithm 1. The optimization problem

minimize
zi

k

∑
i=1

qizi[t +σk−σi]
2

subject to Sk[t +σk] = m,

has the solution zi = γk/qim and the optimum value is given by γkm2.

(iii) When u is chosen optimally, the cost for (2) is given by

∞

∑
t=0

N

∑
i=1

qizi[t]2 =
N

∑
i=0

qizi[0]2 +
N−1

∑
i=1

σi+1

∑
t=σi+1

γiSi[t]2 +
∞

∑
t=σN+1

γNSN [t]2.

Also, the optimal uk[0] is given by

uk−1[0] = (1− γk

qk
)(zk[0]+uk[−τk])+ vk[0]+dk[0]

− γk

qk
V̄k[σk]−

γk

qk
(mk−1[0]+

k−1

∑
i=1

τi−1

∑
d=0

V̄i[σi +d]).

Proof. For k = 1 (i) reduces to the dynamics. Now assume that (i) holds for k− 1. It
follows from the definition of Sk that

Sk[t +σk +1] = zk[t +1]+Sk−1[t +σk +1]. (8)

It holds that
Sk[t +1] = Sk[t]+V̄k[t]+uk[t−σk− τk], (9)

since ui[t−σi−τi] will cancel out for i < k. This allows Sk−1[t+σk +1] to be rewritten
as

Sk−1[t +σk +1] = Sk−1[t +σk−1 +1]+
σk

∑
∆=σk−1+1

V̄k−1[t +∆]+
τk−1−1

∑
∆=0

uk−1[t−∆]. (10)

Using the induction assumption that (i) holds for k−1, (10) and the dynamics,

zk[t +1] = zk[t]−uk−1[t]+uk[t− τk]+ vk[t]+dk[t], (11)

allows (8) to be rewritten as

Sk[t +σk +1] = zk[t]−uk−1[t]+uk[t− τk]+ vk[t]+dk[t]

+ zk−1[t]+uk−1[t− τk−1]+mk−2[t]+
k−2

∑
i=1

τi−1

∑
d=0

V̄i[t +σi +d]

+V̄k−1[t +σk−1]+
σk

∑
∆=σk−1+1

V̄k−1[t +∆]+
τk−1

∑
∆=0

uk−1[t−∆].

16

In the above it holds that

zk−1[t]+uk−1[t− τk−1]−uk−1[t]+
τk−1−1

∑
∆=0

uk−1[t−∆]+mk−2[t] = mk−1[t]

and

vk[t]+dk[t]+
k−2

∑
i=1

τi−1

∑
d=0

V̄i[t +σi +d]+V̄k−1[t +σk−1]+
σk

∑
∆=σk−1+1

V̄k−1[t +∆]

=
k−1

∑
i=1

τi−1

∑
d=0

V̄i[t +σi +d]+V̄k[t +σk].

And thus (i) holds for k as well.
For (ii) the proposed solution satisfies the constraint as

k

∑
i=1

1
qi

=
1
γk
.

If the proposed solution was not optimal then it would be possible to improve it by
increasing zi by epsilon and decreasing z j by epsilon for i, j ≤ K as the problem is
convex. However

∂

∂ zi
qizi[t +σk−σi]

2 = 2γkm

for zi[t +σk−σi] = γk/qim and all i, and thus the proposed solution is optimal.
For (iii) note that the sum ∑

∞
t=0 ∑

N
i=1 qizi[t]2 can be written in terms of shifted level

vectors as follows,

∞

∑
t=0

N

∑
i=1

qizi[t]2 =

N

∑
i=0

qizi[0]2 +
N−1

∑
i=1

σi+1

∑
t=σi+1

i

∑
j=1

q jz j[t−σ j]
2 +

∞

∑
t=σN+1

N

∑
j=1

q jz j[t−σ j]
2. (12)

The inner sums corresponds to the objective in (ii). From (i) it follows that Sk[t], t ≤
σi+1 is independent of u j[t], ∀t ≥ 0,∀ j and that SN [t] is independent of u j[t], ∀t, j.
Thus each shifted level sum in (12) is independent of the internal flows. Now consider
arbitrary, but fixed productions V and disturbances D. Then by (i) the sum of all shifted
levels are fixed. If there exists u so that each sum over shifted levels in (12) is the
optimal solution to the problem in (ii), then those inputs must be optimal for the given
V and D. By choosing u j−1[t−σ j−1] so that z j[t−σ j] is optimal for (ii) for 2≤ j ≤ i
gives that all z j[t−σ j] are optimally for 2 ≤ j ≤ i. However, since the constraint will
always be satisfied, z1[t] will be optimal as well. Using (i), the optimal zk[1] from (ii)
is given by

zk[1] =
γk

qk

(
mk−1[0]+ zk[0]+uk[−τk]+

k−1

∑
i=1

τi−1

∑
∆=0

V̄i[σi +∆]+V̄k[σk]
)
.

17

Inserting the dynamics in (11) into the LHS and solving for uk−1[0] gives the expression
in (iii).

Now we will give the solution to the optimization problem which will arise in the
dynamic programming problem that will need to be solved in the next lemma.

Lemma 2. Let Xi and gi(j) be defined as in Algorithm 1. Then

(i) Let j ≥ 1. The optimization problem

minimize
x

Xi(j+1)(a+b+ x)2 + γi(a+ x)2 +ρix2

has minimizer

x =−Xi(j)
ρi

(a+gi(j+1)b),

with optimum value Xi(j) · (a+gi(j+1)b)2 + f (b).

(ii) The optimization problem

minimize
x

Xi+1(1)(a+b+ x)2 + γi(a+ x)2 +ρix2

has minimizer

x =−Xi(τi)

ρi
(a+gi+1(1)b),

with optimum value Xi(τi) · (a+gi+1(1)b)2 + f (b).

Proof. We will show that the optimization problem

minimize
x

c1(a+b+ x)2 + c2(a+ x)2 + c3x2

has the solution
x =− c1 + c2

c1 + c2 + c3

(
a+

c1

c1 + c2
b
)

and the minimal value is on the form

c3(c1 + c2)

c1 + c2 + c3

(
a+

c1

c1 + c2
b
)2

+ f (b),

where f (b) is independent of a. The lemma then follows by applying the above and
using the definition for Xi and gi(j).

There exits a unique solution as the problem is strictly convex. Differentiating the
objective function with respect to x gives that the optimal x is given by

x =− 1
c1 + c2 + c3

(
(c1 + c2)a+ c1b

)
from which the proposed x follows. The objective function can be rewritten as

c1(a+b)2 + c2a2 +2[(c1 + c2)a+ c1b)]x+(c1 + c2 + c3)x2.

18

Inserting the minimizer gives

1
c1 + c2 + c3

(
(c1 + c2 + c3)(c1(a+b)2 + c2a2)− [(c1 + c2)a+ c1b]2

)
.

The first term can be written as

(c1 + c2 + c3)(c1(a+b)2 + c2a2)

= (c1 + c2 + c3)
[
(c1 + c2)a2 +2c1ab+ c1b2]

= (c1 + c2)
2a2 +2(c1 + c2)c1ab+ c2

1b2+

c3(c1 + c2)a2 +2c1c3ab+(c2 + c3)c1b2.

Which gives that the objective function has the minimum value

1
c1 + c2 + c3

[
c3(c1 + c2)a2 +2c1c3ab+(c2 + c3)c1b2

]
.

The last term is independent of a. The dependence on a is thus given by

c3(c1 + c2)

c1 + c2 + c3

(
a2 +

2c1

c1 + c2
ab
)
=

c3(c1 + c2)

c1 + c2 + c3

(
a+

c1

c1 + c2
b
)2

+ f (b)

Armed with the results from the previous lemma, we will now apply dynamic pro-
gramming to (2). We will show that the problem can be solved in terms of the shifted
levels Sk, shifted productions Vk and shifted disturbances Dk. Outside of the horizon
the problem can be solved using the Riccati equation. Using the cost to go given by the
Riccati equation as initialization we can apply dynamic programming using the results
from the previous lemma.

Lemma 3. Let γk, ρk, Xk, gk, µk be defined as in Algorithms 1 and 2. Let for 1 ≤ k ≤
N−1 and 1≤ ∆≤ τk, and for k = N and 1≤ ∆≤ H +2

ξk[∆−1] = mk−1[0]+ zk[0]+
k−1

∑
i=1

σi+1−1

∑
d=σi

V̄i[d]

+
τk−1

∑
d=0

(
uk[−(τk−d)]+Dk[σk +d]

) d+1

∏
j=∆+1

gk(j)

+
σk+∆−2

∑
d=σk

Vk[d]+µk+1[0]gk+1(1)
τk

∏
j=∆+1

gk(j). (13)

Then the optimal Vk for (2) is given by

Vk[σk +(∆−1)] =−Xk(∆)

ρk
ξk[∆−1].

The optimal individual productions are given by

vk[∆−1] =
ρk

rk
Vk[σk +(∆−1)].

19

Proof. By Lemma 1-(i) and (9) each shifted inventory level Sk[σk +∆] with 1≤ δ ≤ τk
satisfies

Sk[σk +∆] = mk−1[0]+ zk[0]+
k−1

∑
i=1

σi+1−1

∑
d=σi

V̄i[d]+
τk

∑
d=τk−(∆−1)

uk[−d]+
σk+∆−1

∑
d=σk

V̄k[d]. (14)

By (iii) in Lemma 1 the cost can be rewritten as

∞

∑
t=0

N

∑
i=1

qizi[t]2 =
N

∑
i=0

qizi[0]2 +
N−1

∑
i=1

σi+1

∑
t=σi+1

γiSi[t]2 +
∞

∑
t=σN+1

γNSN [t]2.

And similarly, by Lemma 1-(ii), the optimal cost for a shifted production Vi[t] is given
by ρiVi[t]2 and individual productions are given by vi[t] = ρi/ri ·Vi[t +σi]. This gives
the total production cost in terms of Vi as

∞

∑
t=0

N

∑
i=1

rivi[t]2 =
N−1

∑
i=1

σi+1−1

∑
t=σi

ρiVi[t]2 +
∞

∑
t=σN

ρNVN [t]2.

We can thus solve the problem in terms of Si and Vi, and then recover the optimal
vi. To that end define the cost to go for 1≤ k ≤ N−1 and 1≤ ∆≤ τk

Γk[∆] =
σk+1

∑
t=σk+∆

(
γkSk[t]2 +ρkVk[t−1]2

)
+

N−1

∑
i=k+1

σi+1

∑
σi+1

(
γiSi[t]2 +ρiVi[t−1]2

)
+

∞

∑
t=σN+1

(
γNSN [t]2 +ρNVN [t−1]2

)
.

And for k = N and ∆≥ 1

ΓN [∆] =
∞

∑
t=σN+∆

(
γNSN [t]2 +ρNVN [t−1]2

)
.

We will show for 1≤ k≤ N−1 and 1≤ ∆≤ τi, and for k = N and 1≤ ∆≤H +2, that

Γk[∆] = Xk(∆)ξk[∆−1]2 + f (b), (15)

where f (b) is independent of Vk[t]. f (b) can thus be ignored in the optimization of
Vk[t].

Using Lemma 1-(i) combined with (9) and that all DN [t] = 0 for t > H + σN it
follows that the optimal VN [t] for t > σN +H is given by the solution to the problem

minimize
VN [t]

∞

∑
t=σN+H+1

γNSN [t]2 +ρNVN [t]2

subject to SN [t +1] = SN [t]+VN [t]

SN [σN +H +1] = mN [0]+
N−1

∑
i=1

σi+1−1

∑
δ=σi

V̄i[δ]+
σN+H

∑
δ=σN

V̄N [δ].

20

This is a standard LQR problem and the solution can be found by solving the following
Riccati equation

X = X−X2/(ρN +X)+ γN ⇒ X =
γN

2
+

√
γNρN +

γ2
N
4
.

Now let XN(H +2) = X− γN . Then ΓN [σN +H +2] is given by

ΓN [σN +H +2] = SN [σN +H +1]2XN(H +2).

Note that the cost for Sk[σN +H +1] is not part of ΓN [σN +H +2], but it is part of the
cost to go given by the solution X to the Riccati equation. Furthermore, the optimal
VN [t] for t = σN +H +1 is given by

VN [t] =−
X

X +ρN
SN [t] =−

XN(H +1)+ γN

XN(H +1)+ γN +ρN
SN [t] =−

XN(H)

ρN
SN [t].

For ∆ = H +2 and k = N the expression for ξk[∆−1] reduces to

ξN [H +1] = mN [0]+
N−1

∑
i=1

σi+1−1

∑
d=σi

V̄i[d]+
σN+H

∑
d=σN

V̄N [d],

as µN+1 = 0, uN = 0 and DN [t] = 0 for t >σN +H. By (14) ξN [H+1] = SN [σN +H+1]
and thus the lemma and (15) holds for k = N and ∆ = H +2.

Assume that (15) holds for k+1 and ∆ = 1. Then the optimal Vk[σk+1−1] is given
by the minimizer for

Γk[τk] = Γk+1[1]+ γkSk[σk+1]
2 +ρkVk[σk+1−1]2.

Using the assumption for the cost to go in (15) gives that Γk+1[1] = Xk+1(1)ξk+1[0]2

and thus the optimal Vk[σk+1−1] is given by the optimal value for the problem

minimize
Vk[σk+1−1]

Xk+1(1)ξk+1[0]2 + γkSk[σk+1]
2 +ρkVk[σk+1−1]2.

For ∆ = 1 (13) reduces to

ξk[0] = mk−1[0]+
k−1

∑
i=1

σi+1−1

∑
d=σi

V̄i[d]+µk[0], (16)

as

µk[0] = πk[0]+µk+1gk+1(1)
τk

∏
j=2

gk(j)

and

πk[0] = zk[0]+
τk−1

∑
d=0

(
uk[−(τk−d)]+Dk[σk +d]

)d+1

∏
j=2

gk(j).

21

We also note that by (14), as σk+1 = σk + τk,

Sk[σk+1] = mk[0]+
k

∑
i=1

σi+1−1

∑
d=σi

V̄i[d].

Applying Lemma 2-(ii) with

a = Sk[σk+1]−Vk[σk+1−1]
b = ξk+1[0]−Sk[σk+1] = µk+1[0]
x =Vk[σk+1−1],

gives that the lemma and (15) hold for k and ∆ = τk as

ξk[τk−1] = mk[0]+
k−1

∑
i=1

σi+1−1

∑
d=σi

V̄i[d]+
σk+τk−2

∑
d=σk

V̄k[d]+µk+1[0]gk+1(1).

Assume that (15) holds for some k and ∆+ 1, where 1 ≤ ∆ ≤ τi− 1 if k < N and
1≤ ∆≤ H +1 if k = N. Then Vk[σk +∆−1] can be found as the minimizer for

minimize
Vk[σk+∆−1]

Xk(∆+1)ξk[∆]
2 + γkSk[σk +∆]2 +ρkVk[σk +∆−1]2.

Using that two of the terms in (14) can be rewritten as

τk

∑
d=τk−(∆−1)

uk[−d]+
σk+∆−1

∑
d=σk

V̄k[d] =
∆−1

∑
d=0

(
uk[−(τk−d)]+Dk[σk +d]

)
+

σk+∆−1

∑
d=σk

Vk[d]

and with x =Vk[σk +∆−1], a = Sk[σk +∆]−Vk[σk +∆−1], which equals

a = mk−1[0]+ zk[0]+
k−1

∑
i=1

σi+1−1

∑
d=σi

V̄i[d]

+
∆−1

∑
d=0

(
uk[−(τk−d)]+Dk[+σk +d]

)
+

σk+∆−2

∑
d=σk

Vk[d],

and b = ξk[∆]−Sk[σk +∆], which gives

b =
τk−1

∑
d=∆

(
uk[−(τk−d)]+Dk[σk +d]

) d+1

∏
j=∆+2

gk(j)+µk+1[0]gk+1(1)
τk

∏
j=∆+2

gk(j).

By applying Lemma 2-(i) it follows that (15) and the lemma holds for k and ∆ as well.
Thus the lemma holds for all 1 ≤ ∆ ≤ τk for 1 ≤ k ≤ N− 1 and 1 ≤ ∆ ≤ H + 2 for
k = N.

All that remains now is to find expressions for Vk[σk] in terms of the initial condi-
tions. The following lemma allows us to do so, using the expressions for Vk derived in
the previous lemma.

22

Lemma 4. Let hk, Pk(i, j), φk(∆), πk[0], µk[0], Φk[0], and δk[0] be defined as in Algo-
rithms 1 and 2. Then for k ≤ N−1

mk[0]+
k

∑
i=1

σi+1−1

∑
d=σi

V̄i[d] = δk[0]−hkµk+1[0] (17)

Proof. Let Bk[0] = zk[0]+ uk[−τk]+Dk[σk] and Bk[i] = uk[−(τk− i)]+Dk[σk + i] for
1≤ i < τk. We will prove the lemma by showing that for 1≤ ∆≤ τk

mk−1[0]+
k−1

∑
i=1

σi+1−1

∑
d=σi

V̄i[d]+
σk+∆−1

∑
d=σk

Vk[d] =

(1−Pk(∆,1))δk−1[0]−
[
hk−1bk(1−P(∆,1))+Pk(∆,∆)gk+1(1)

τk

∏
j=∆+1

gk(j)
]
µk+1[0]

−
τk−1

∑
d=0

Bk[d]
[
Pk(∆,min(d +1,∆))

d+1

∏
j=∆+1

gk(j)+(1−Pk(∆,1))hk−1

d+1

∏
j=2

gk(j)
]

(18)

More specifically we will show that

1. (18) holds for k = 1 and ∆ = 1.

2. If (18) holds for some k and ∆−1 then it holds for ∆ as well.

3. If (17) holds for k−1 then (18) holds for k and ∆ = 1.

4. If (18) holds for k and ∆ = τk then (17) holds for k.

For k = 1 and ∆ = 1 the LHS of (18) is just V1[t]. The RHS of (18) equals
−X1(1)/ρ1 · µk[0] as P1(1,m) = X1(1)/ρ1, δ0 = 0, and h0 = 0. And by Lemma 3
the RHS is also equal to V1[t] since by (16)

ξ1[0] = µk[0].

Thus (18) holds for k = 1 and ∆ = 1.
Applying Lemma 3 on Vk[σk +∆] for the LHS of (18) gives:

mk−1[0]+
k−1

∑
i=1

σi+1−1

∑
d=σi

V̄i[d]+
σk+∆−1

∑
d=σk

Vk[d] =

(1− Xk(∆)

ρk
)
(

mk−1[0]+
k−1

∑
i=1

σi+1−1

∑
d=σi

V̄i[d]+
σk+∆−2

∑
d=σk

Vk[d]
)

− Xk(∆)

ρk

[τk−1

∑
d=0

Bk[d]
d+1

∏
j=∆+1

gk(j)+µk+1[0]gk+1(1)
τk

∏
j=∆+1

gk(j)
]

(19)

23

Now assume that (18) holds for k and ∆− 1, we then show that (18) holds for k and
∆. Using (19) gives for the coefficients for the different terms of the LHS for (18) as
follows. For δk−1[0] we get

(1− Xk(∆)

ρk
)(1−Pk(∆−1,1)) = 1−Pk(∆,1).

For the terms in front of µk+1[0] we get

−
(

1− Xk(∆)

ρk

)(
hk−1bk

(
1−P(∆−1,1)

)
+Pk(∆−1,∆−1)gk+1(1)

τk

∏
j=∆

gk[j]
)

− Xk(∆)

ρk
gk+1(1)

τk

∏
j=∆+1

gk(j)

=−hk−1bk
(
1−P(∆,1)

)
−Pk(∆,∆)gk+1(1)

τk

∏
j=∆+1

gk(j),

and for the coefficient for B[d],

− (1− Xk(∆)

ρk
)
[
Pk(∆−1,min(d +1,∆−1))

d+1

∏
j=∆

gk(j)+

(1−Pk(∆−1,1))hk−1

d+1

∏
j=2

gk(j)
]
− Xk(∆)

ρk

d+1

∏
j=∆+1

gk(j)

=−Pk(∆,min(d +1,∆))
d+1

∑
j=∆+1

gk(j)− (1−Pk(∆,1))hk−1

d+1

∏
j=2

gk(j).

Thus (18) holds for k and δ as well.
Assume that (17) holds for k−1. Then we can show that (18) holds for k and ∆= 1.

Using that

πk[0] =
τk−1

∑
d=0

(
B[d]

d+1

∏
j=2

gk(j)
)
, (20)

the RHS of (18) reduces to[
1−Pk(1,1)

]
δk−1[0]−

[
hk−1(1−Pk(1,1))+Pk(1,1)

]
(πk[0]+bkµk+1[0]).

Using (19) with ∆ = 1, the definition for Pk(1,1), and inserting (17) gives that the LHS
of (18) is equal to

(1−Pk(1,1))
[
δk−1[0]−hk−1µk[0]

]
−Pk(1,1)

[τk−1

∑
d=0

B[d]
d+1

∏
j=∆+1

gk(j)+µk+1[0]bk

]
.

Using (20) and the definition for µk[0] = πk[0] + bkµk+1[0] shows that the RHS and
LHS are equal. And thus (18) hold for k and ∆ = 1 if (17) holds for k−1.

24

Finally, we will show that if (18) holds for k and ∆ = τk then (17) holds for k. Using
the definition for hk the RHS of (18) reduces to

(1−Pk(τk,1))δk−1[0]+hkµk+1[0]

−
τk

∑
i=d

Bk[d]
[
Pk(τk,d +1)+

(
1−Pk(τk,1)hk−1

)d+1

∏
j=2

gk(j)
]

For ∆ = τk the LHS of (17) is equal to the LHS of (18) plus

zk[0]+
τk

∑
d=1

uk[−d]+
σk+1−1

∑
d=σk

Dk[d] =
τk−1

∑
d=0

Bk[d].

Thus it holds that the LHS of (17) is equal to

(1−Pk(τk,1))δk−1[0]+hkµk+1[0]

+
τk

∑
i=d

Bk[d]
[
(1−Pk(τk,d +1))−

(
1−Pk(τk,1)hk−1

)d+1

∏
j=2

gk(j)
]
.

Using the definition for φi(∆) in Algorithm 1 and Φi and δk in Algorithm 2 shows that
(18) gives (17) for ∆ = τk, as

τk

∑
i=d

Bk[d]
[
(1−Pk(τk,d +1))−

(
1−Pk(τk,1)hk−1

)d+1

∏
j=2

gk(j)
]
= Φk[0].

We are now finally ready to prove the theorem, which follows from the previous
lemmas.

Proof of Theorem 1: Lemma 3 with ∆ = 1 and Lemma 4 gives that

Vk[σk] =−
Xk(1)

ρk

[
mk−1[0]+

k−1

∑
i=1

σi+1−1

∑
d=σi

V̄i[d]+µk[0]
]

=−Xk(1)
ρk

[
δk−1[0]+ (1−hk)µk[0]

] (21)

from which the optimal vk[0] = ρk/rk ·Vk[σk] as in Algorithm 2 follows. Using Lemma 1-
(iii), Lemma 4, and that vk[0] = ρk/rk ·Vk[σk] gives that

uk−1[0] = (1− γk

qk
)(zk[t]+uk[−τk]+Dk[0])+dk[0]−Dk[0]

+Vk[σk]
(

ρk

rk
− γk

qk

)
− γk

qk

(
δk−1[0]−hk−1µk[0]

)
.

Inserting (21) gives that the optimal u is as in Algorithm 2.
The results will hold for t 6= 0 as the problem has an infinite horizon and one can

always change the variables so that current time is time zero.

25

References
[1] M. Rotkowitz and S. Lall, “A characterization of convex problems in decentralized

control,” IEEE Transactions on Automatic Control, vol. 51, no. 2, pp. 274–286,
2006.

[2] L. Lessard and S. Lall, “Quadratic invariance is necessary and sufficient for con-
vexity,” in Proceedings of the 2011 American Control Conference, 2011, pp. 5360–
5362.

[3] Y. Wang, N. Matni, and J. C. Doyle, “Separable and localized system-level syn-
thesis for large-scale systems,” IEEE Transactions on Automatic Control, vol. 63,
no. 12, pp. 4234–4249, 2018.

[4] F. Lin, M. Fardad, and M. R. Jovanović, “Design of optimal sparse feedback gains
via the alternating direction method of multipliers,” IEEE Transactions on Auto-
matic Control, vol. 58, no. 9, pp. 2426–2431, 2013.

[5] M. Cantoni, E. Weyer, Y. Li, S. K. Ooi, I. Mareels, and M. Ryan, “Control of
large-scale irrigation networks,” Proceedings of the IEEE, vol. 95, no. 1, pp. 75–
91, 2007.

[6] K. Subramanian, J. B. Rawlings, C. T. Maravelias, J. Flores-Cerrillo, and
L. Megan, “Integration of control theory and scheduling methods for supply chain
management,” Computers & Chemical Engineering, vol. 51, pp. 4–20, 2013.

[7] R. K. Ahuja, T. L. Magnanti, J. B. Orlin, and M. Reddy, “Applications of net-
work optimization,” Handbooks in Operations Research and Management Science,
vol. 7, pp. 1–83, 1995.

[8] M. Heyden, R. Pates, and A. Rantzer, “A structured linear quadratic controller for
transportation problems,” in 2018 European Control Conference (ECC). IEEE,
2018, pp. 1654–1659.

26

	1 Introduction
	1.1 Problem Formulation
	1.2 Result Preview

	2 Results
	3 Implementation
	3.1 Algorithms 1 and 2, and the Optimal Control Law
	3.2 Receding Horizon and Calculation of Di[t]

	4 Simulations
	5 Proof Idea
	6 Conclusions and Future Work
	A Appendix

