
This is a repository copy of “A Linear Programming Approach to Computing Safe 

Sets for Software Rejuvenation” in the Depósito de Investigación de la Universidad 

de Sevilla. 

Version: Author Accepted Version 

 

Citation: T. Arauz, J.M. Maestre, R. Romagnoli, B. Sinopoli & E.F. Camacho. “A 

Linear Programming Approach to Computing Safe Sets for Software Rejuvenation” 

IEEE Control Systems Letters. 2022. Vol.: 6-9459778. Pp. 1214-1219. 

http://doi.org/10.1109/LCSYS.2021.3090448 

 

 

To cite this publication, please use the final published version (if applicable). 

Please check the document version above. 

 

Copyright: Other than for strictly personal use, it is not permitted to download, 

forward or distribute the text or part of it, without the consent of the author(s) 

and/or copyright holder(s), unless the work is under an open content license such 

as Creative Commons. 

 

Takedown policy: Please contact us (idus@us.es) and provide details if you believe 

this document breaches copyrights. We will remove access to the work immediately 

and investigate your claim. 

 

http://doi.org/10.1109/LCSYS.2021.3090448
mailto:idus@us.es


A Linear Programming Approach to Computing
Safe Sets for Software Rejuvenation

T. Arauz1, J. M. Maestre1, R. Romagnoli2, B. Sinopoli3, E. F. Camacho1

Abstract— Software rejuvenation was born to fix operat-
ing system faults by periodically refreshing the run-time
code and data. This mechanism has been extended to
protect control systems from cyber-attacks. This work pro-
poses a software rejuvenation design method in discrete-
time where invariant sets for the safety and mission con-
trollers are designed to schedule the timing of software
refreshes. To compute a minimal robust positively invari-
ant (min-RPI) set and the bounded time between software
refreshes to ensure system safety, an LP based approach
is proposed for stable and unstable systems. Finally, the
designed approach is illustrated by the case study of a
simulated lab-scale microgrid.

Index Terms— Cybersecurity, Software Rejuvenation,
Linear Systems, Invariant Sets, Linear Quadratic Regulator.

I. INTRODUCTION

MALICIOUS cyber-attacks such as Stuxnet [1] and Crash
Override [2] are increasing in number and complexity

arising the awareness about their types, modes of action and
severe consequences for cyber-physical systems (CPSs) [3].
Different works seek solutions to guarantee CPS safety [4],
[5], most of them based on attack detection and modelling [6],
[7]. However, attacks can be effectuated in different ways,
precluding the modeling and detection of all possibilities.

A powerful strategy to guarantee CPS stability when dealing
with unmodeled and undetectable cyber-attacks that threaten
the run-time code and data is software rejuvenation [8], [9],
which periodically refreshes the run-time control software
with a trusted, secure copy to thwart attacks that may have
changed the on-line code [10]. Software rejuvenation was
initially developed in [11] to address the software aging
problem by periodically resetting the software to a secure
version to avoid failures caused by non-anticipated states. This
idea has been developing ever since [12], e.g., by establishing

This work was supported in part by the European Research Council
Advanced Research Grant 769051-OCONTSOLAR, the project GESVIP
funded by Junta de Andalucı́a (ref. US-1265917), and the Spanish
Training Program for Academic Staff (FPU19/00127).

1T. Arauz, J. M. Maestre and E. F. Camacho are with Department of
Ingenierı́a de Sistemas y Automática, Universidad de Sevilla, Camino de
los Descubrimientos, 41092 Sevilla, Spain (e-mail: marauz@us.es,
pepemaestre@us.es, efcamacho@us.es).

2R. Romagnoli is with the Dept. of Electrical and Computer Engineer-
ing, Carnegie Mellon University (CMU), Pittsburgh, PA, USA 15235 (e-
mail: rromagno@andrew.cmu.edu).

3B. Sinopoli is with the Department of Electrical and Systems En-
gineering, Washington University, St. Louis, MO, USA 63130 (e-mail:
bsinopoli@wustl.edu).

the software refresh frequency based on the time a system
remains safe in case of being cyber-attacked [13] or the
time that an attack can be effective to make the system
safe against persistent attacks [8]. Since frequent reboots can
degrade control performance, the authors in [9] propose an
online computation of the time to reboot that also takes into
account the consequences of a possible attack. Also, they
introduce the hardware root of trust, which is a secure onboard
module that hosts the necessities for implementing software
rejuvenation; the secure execution interval, representing the
period where external communications are disabled; and the
safety controller, which is executed after the software refresh.
Likewise, another relevant topic in the literature is that of
the computation of safe sets, e.g., a safe robust invariant
terminal set is defined along with a maximum safe initial
set in [14]. Due to the computational complexity of polytope
operators [15], [16], these sets typically adopt simple represen-
tations, e.g., zonotopes [14] and ellipsoids [10]. Remarkably,
this challenge is somewhat common with recent works in the
area of learning-based control [17], [18].

This article represents a discrete-time extension of the
algorithm presented in [10], which employs linear matrix
inequalities to derive a constant time interval for scheduling
the software refresh using ellipsoidal invariant sets and off-line
reachability computations. Here, software refreshes are defined
for systems with real eigenvalues by the off-line computation
of two state sets: the safe set, reserved for the safety controller,
and the inner safe set (a subset of the safe set), for the
mission controller, which is responsible for the CPS operation.
However, the way of defining these sets differs because the
inner safe set is defined as the smallest robust positively
invariant (RPI) of a pre-selected shape following the linear
program (LP) given in [19], which is extended to compute
the time schedule for software refreshes and maximize the
volume difference with the safe set so as to decrease the
software refresh frequency. Also, being an LP-based approach,
polytopic sets can be kept without significant computational
issues for larger systems.

Outline. Section II presents the software rejuvenation strat-
egy and Section III introduces the safe sets and the LP-
based approaches for computing the inner safe set and the
time between software refreshes. Section IV presents the
application of the strategy to a case study and discusses results.
Finally, concluding remarks are given in Section V.

Notation. The set of natural numbers is N. The set of non-
negative reals is R0+. λX is the scaling of a set X ⊂ Rn



by λ ∈ R, defined as {λx | x ∈ X}. AX represents the
image of a set X ⊂ Rn under the linear map A : Rn → Rp
given by {Ax | x ∈ X}. The spectral radius of a matrix
A is ρA, which corresponds to its dominant eigenvalue. The
support function of a set X according to vector v is hX (v) ,
sup{v>x | x ∈ X}. For X ,Y ⊂ Rn, the Minkowski sum is
X ⊕ Y , {x + y | x ∈ X , y ∈ Y}. R(x0, k;CP ) represents
the set of reachable states at time step k > 0 from an initial
state x(0) = x0 under policy CP , with the natural extension
to an initial state set X0.

II. SOFTWARE REJUVENATION CONTROL STRATEGY

The CPS is modeled as a discrete-time LTI system:

x(k + 1) = Ax(k) +Bu(k) +Dw(k), (1)

where x ∈ Rnx , u ∈ Rnu and w ∈ Rnw are the states, inputs
and external disturbances of the system, respectively. Hence,
A ∈ Rnx×nx , B ∈ Rnx×nu and D ∈ Rnx×nw .

Assumption 1: The eigenvalues of matrix A are real.
Assumption 2: The system state x is measurable and the

pair (A,B) is controllable.
Assumption 3: The system is subject to polytopic con-

straints containing the origin in their interiors, i.e.,

x ∈ X , {x ∈ Rnx | Cxx ≤ a}, (2)

u ∈ U , {u ∈ Rnu | Cuu ≤ b}, (3)

where Cx ∈ Rrx×nx , Cu ∈ Rru×nu , a ∈ Rrx0+ and b ∈ Rru0+.
Assumption 4: External disturbances are assumed to lie in

a polytopic (compact and convex) set W that also contains the
origin in its interior:

W , {w ∈ Rnw | Cww ≤ g}, (4)

where Cw ∈ Rrw×nw and g ∈ Rrw0+.
Software rejuvenation divides the operation in three modes

(Fig. 1): mission control (MC), software refresh (SR), and
safety control (SC), which take place during TSR, TMC and
TSC time steps, respectively. Likewise, Figure 2 illustrates the
scenarios for which safe operation during the mission of the
CPS needs to be guaranteed.

A. Mission control mode
The system exchanges information through the network

during the MC mode generating a source of vulnerability that
can be exploited to hijack or disrupt the control signal.

Assumption 5: The consequence of an attack is that u(k) =
ua(k), where ua(k) is uncertain but bounded by the limits of
the mission control operation, i.e., ua(k) ∈ UUC, which is
defined at the end of this section.

During MC, the system performs its mission requiring ex-
ternal communications, being exposed to cyber-attacks, which
may steer the system away from its goal, which is to minimize
the following stage cost over an infinite horizon:

`(x(k), u(k)) = x(k)>QMCx(k) + u(k)>RMCu(k), (5)

where QMC ∈ Rnx×nx and RMC ∈ Rnu×nu are positive-
definite weighting matrices.

Fig. 1: Safe set (green) and inner safe set (yellow). The system
starts in MC mode with open communications (continuous
blue line) and then is captured by an attacker (dashed red
line). Before the state leaves the safe set, SR is performed
and communications are switched off keeping the last control
input of MC (spaced dashed grey line). After SR finishes, the
safety controllers starts and drives the state into the inner safe
set (dotted green line), from where the cycle starts over.

Fig. 2: Considered set-up: a) On-board mission controller
connected to a remote station; b) Remote mission controller.

This mode ends when the SR mode is triggered by a refresh
clock located within the safe module, i.e., at the hardware root
of trust, which cannot be compromised.

Assumption 6: The control law of the MC is

u(k) = −KMCx(k), (6)

where KMC is the LQR controller, with KMCX ⊆ U.
Then, the closed-loop system dynamics under safety control

are stable and given by

x(k + 1) = AMCx(k) +Dw(k), (7)

with AMC , (A − BKMC). Finally, the set of admissible
states for the MC mode is composed of all states that comply
with both state and input constraints: XMC , X∩XUMC, where
XUMC represents the mapping of input constraints during the
MC mode into the state space, i.e., XUMC , {x ∈ Rnx |
CuKMCx ≤ bUC}, where bUC = αUCb with the scaling factor
αUC ∈ (0, 1).

The period of uncertain control (UC), TUC, represents
the time steps that an attack can be tolerated, which can
be increased reducing the maximum input allowed during
this period by a scaling factor αUC ∈ (0, 1), mitigating the
consequences of attacks, i.e., UUC = αUCU = {x ∈ Rnx |
Cux ≤ bUC}, where bUC = αUCb. Note that parameter αUC

and its related functionality are in the secure onboard module.
The UC period comprises software refresh and mission

control modes (TUC = TMC + TSR), where an attacker may



have gained control. Typically, TSR is a fixed value initially
set by the operation characteristics, but TUC is calculated to
ensure safety. Notice that TUC must be greater than TSR, since
TMC has to be greater than zero. Otherwise, the problem turns
infeasible.

Remark 1: The MC controller can be given by any method
that guarantees: i) x(k) ∈ ISS , which is defined in Section
II.D, and ii) u(k) ∈ UUC = αUCU for 0 ≤ k ≤ TMC.

B. Software refresh mode
SR takes place when the operating software is restored,

eliminating possible modifications from cyber-attacks so that
the system recovers its initial safe configuration. During this
time, external communications are switched off and the ac-
tuators maintain the last control input provided during MC,
which may be corrupted in case of attack. Therefore, it must
be carefully designed to ensure system safety.

C. Safety control mode
This mode is activated before transferring control back to

the mission controller in case the state is out of the safe set
during the software refresh. The safety controller steers the
state of the system back to the safe set while communications
are still switched off. While this mode is active, a different
goal can be considered for safety reasons, i.e., during SC the
controller minimizes the stage cost

`(x(k), u(k)) = x(k)>QSCx(k) + u(k)>RSCu(k), (8)

over an infinite horizon, where QSC ∈ Rnx×nx and RSC ∈
Rnu×nu are positive-definite weighting matrices.

If Assumption 2 holds, the control law becomes

u(k) = −KSCx(k), (9)

where KSC is the corresponding discrete-time LQR controller.
It is also assumed that KSCX ⊆ U. Then, the closed-loop
system dynamics under safety control are stable and given by

x(k + 1) = ASCx(k) +Dw(k), (10)

with ASC , (A − BKSC). Therefore, the set of admissible
states for SC mode is composed of all states that comply with
both state and input constraints: XSC , X∩XUSC, where XUSC
represents the input constraint referred to states for this mode,
i.e., XUSC , {x ∈ Rnx | CuKSCx ≤ b}.

D. System safety sets
Safety conditions are expressed by defining two sets regard-

ing different controllers: the safe set and the inner safe set.
They guarantee that the given constraint sets in the system
state space are not violated in any way. Fig. 1 illustrates these
sets and the evolution of the system states in all the different
operation modes in case of attack.

1) The safe set (SS) is the maximum set containing
all admissible system states complying with state and input
constraints during the SC mode, i.e.,

SS = XSC = {x ∈ Rnx | PSSx ≤ qSS}, (11)

where PSS ∈ RrSS×nx and qSS ∈ RrSS0+ .

2) The inner safe set (ISS) is the subset of the safe set,
ISS ⊆ SS containing all admissible states during the MC
mode, i.e.,

ISS = {x ∈ Rnx | PISSx ≤ qISS}, (12)

where PISS ∈ RrISS×nx and qISS ∈ RrISS0+ . This set must ensure
the following safety conditions:

(13a) The attacker is not able to take the system out of the
safe set, i.e., R(ISS, k; UC) ⊆ SS, ∀0 ≤ k ≤ TUC.

(13b) The safety controller is able to return the system
from the safe set to this set in a bounded time, i.e.,
R(SS, T SC; SC) ⊆ ISS.

(13c) The system stays in ISS during MC, i.e.,
R(ISS, k;MC) ⊆ ISS, ∀0 ≤ k ≤ TMC.

(13d) ISS ⊆ XMC.
The inner safe set has to comply with all these requirements

considering that the attack might try to drive the system to
unsafe states (x /∈ SS) as fast as possible. Therefore, the
ISS computation requires considering the UC period and the
system dynamics under attack, which become

x(k + 1) = Ax(k) +Bua(k) +Dw(k), (14)

where ua represents the attacker input signal: ua ∈ UUC =
αUCU with αUC ∈ (0, 1). Note that x(k) ∈ SS, ∀k, has to
be ensured. Likewise, TSR < TUC.

In this study, we define ISS as the minimal RPI set that
satisfies the safety conditions (13a)-(13d). Furthermore, the
advantage to use a minimal RPI set is the higher difference
between the SS and ISS sets, so the TUC can be maximized
and the software refresh frequency minimized.

III. COMPUTATION OF SAFE SETS

This section presents our proposal to obtain ISS and TUC

based on [19]: for stable systems, a single LP computes both
ISS and TUC; for unstable systems, an iterative LP-based
process is required. The computation of TSC according to the
corresponding safety sets is also presented.

A. Computation of ISS as a min-RPI set and TUC

The approach of [19] assumes that the shape of the RPI
set is arbitrarily defined a priori, i.e., rISS and matrix PISS

of Eq. (12). Here, the shape of ISS is defined for con-
venience with the rows of PISS defined as the nv eigen-
vectors of matrix AMC and their opposites, i.e., P>ISS =
{v1AMC

, . . . , vnv

AMC
,−v1AMC

, . . . ,−vnv

AMC
}, where viAMC

repre-
sents the i-th eigenvector of matrix AMC.

Assumption 7: All eigenvectors of matrix AMC are real.
Thus, rISS = 2nv . Note that the scaled factor αUC have to

be defined to ensure ISS ⊆ XMC, due to constraints are not
considered in [19].

Furthermore, the maximum TUC allowed is the value that
ensures the safety constraint:

R(ISS, TUC; UC) ⊆ SS, (15)



i.e., the attached system (Eq. (14)) must remain within set
SS TUC steps after departing from set ISS. Therefore, the
system state x is guaranteed to lie in SS even for the worst
attack scenario as long as TUC is computed to comply with
constraint (15). To compute the set Tk , R(ISS, k; UC) at
time step k, the following recursion holds:

Tk = ATk−1 ⊕BUUC ⊕DW, (16)

with T0 = ISS, which can be rewritten as

Tk = AkISS ⊕

k−1⊕
j=0

AjBUUC ⊕AjDW

 . (17)

Taking support functions according to the directions of
vectors P>SSi

, ∀i = 1, . . . , rSS, equality (17) is equivalent to
the support functions inequality:

hTk(P
>
SSi

) ≤ hAkISS(P
>
SSi

)

+
∑k−1
j=0

(
hAjBUUC

(P>SSi
) + hAjDW(P>SSi

)
)

≤ ρkAhISS(P
>
SSi

)

+
∑k−1
j=0 ρ

j
A

(
hBUUC

(P>SSi
) + hDW(P>SSi

)
)
.

(18)
By definition, hAR(z) = hR(A

>z), so the support of a
mapping satisfies AkR ⊆ ρkAR and hR(A>z) ≤ ρAhR(z).

Recall (15) and let TTUC
, R(ISS, TUC; UC). Taking

support functions, we have:

hTTUC
(P>SSi

) ≤ qSSi
,∀i = 1, . . . , rSS, (19)

where PSSi
represents the i-th row of matrix PSS. The left-

hand side of (19) can be upper bounded using the inequal-
ity (18), providing a means to compute TUC . In particular,
considering the geometric series

∑k−1
j=0 ρ

j
A, the corresponding

constraint becomes:
- If ρA 6= 1, ∀i = 1, . . . , rSS:

ρTUC

A hISSi +
1− ρTUC

A

1− ρA
(
hBUuci

+ hDWi

)
≤ qSSi (20)

- If ρA = 1, ∀i = 1, . . . , rSS:

hISSi + TUC

(
hBUuci

+ hDWi

)
≤ qSSi (21)

where hISSi , hISS(P
>
SSi

), hBUuci
, hBUUC(P

>
SSi

) and
hDWi , hDW(P>SSi

). Note that hBUuci
can be replaced by

αUChBUi
, leading to a explicit link between αUC and TUC .

From this point, the rest of the approach changes depending
on the value of ρA and three cases can be considered.

1) Stable systems where ρA = 1: Constraint (21) preserves
linearity with respect to TUC and the following LP computes
simultaneously ISS as a min-RPI set and an admissible TUC:

P : max
{TUC,ci,di,ξ

i,νi,hISSj
,

hBUucj
,hDWj

,ψj
ISS,ψ

j
BUuc

,ψj
W}

∀i∈{1,...,rISS},j∈{1,...,rSS}

β1

rISS∑
i=1

(ci + di)

+ β2

rSS∑
j=1

(hISSj
+ hBUucj

+ hWj
) + β3TUC

(22)

subject to, for all i ∈ {1, . . . , rISS}, j ∈ {1, . . . , rSS}

ci ≤ PISSiAMCξ
i (23a)

PISSξ
i ≤ c+ d (23b)

di ≤ PISSiν
i (23c)

PDWν
i ≤ qDW (23d)

hISSj ≤ PSSjψ
j
ISS (23e)

PISSψ
j
ISS ≤ c+ d (23f)

hBUucj
≤ PSSj

ψjBUuc
(22g)

PBUuc
ψjBUuc

≤ qBUuc
(22h)

hDWj
≤ PSSj

ψjDW (22i)

PDWψ
j
DW ≤ qDW (22j)

hISSj + TUC(hBUucj
+ hDWj ) ≤ qSSj (22k)

TUC ∈ N (22l)

where β1 � β2 � β3 > 0 are tuning parameters with a
difference of at least one order of magnitude for computing the
three objectives at once, namely, i) computing the min-RPI for
ISS; ii) computing the support functions of sets ISS, BUUC
and DW; and iii) computing the maximum value allowed for
TUC; ξi ∈ Rnx , νi ∈ Rnx , ψjISS ∈ Rnx , ψjBUuc

∈ Rnx and
ψjW ∈ Rnx are some auxiliary variables; and mapped sets of
inputs and disturbances are defined as BUUC = {x ∈ Rnx |
PBUucx ≤ qBUuc} and DW = {x ∈ Rnx | PDWx ≤ qDW}.

In this problem, the maximization of the first objective
subject to constraints (23a) to (23d) to find ISS corresponds
to the LP problem of [19]. It comes from the RPI condition
AMCx(k) + Dw(k) ∈ ISS , ∀x ∈ ISS, w ∈ W, which
is equivalent to c(qISS) + d ≤ b(qISS), where support func-
tions have been taken: bi(qISS) , hISS(P

>
ISSi

), ci(qISS) ,
hAISS(P

>
ISSi

) and di , hDW(P>ISSi
), for i ∈ {1, . . . , rISS}.

Further details can be found in [19].
On the other hand, maximizing the second objective subject

to constraints (23e) to (22j) allows finding vectors of support
functions to sets ISS, BUUC and DWj , which are required
for constraints (22k, 22l) to compute TUC when ρA = 1.

2) Stable systems where ρA < 1: The left-hand sides (LHS)
of (20) and (21) are composed by the same support functions
weighted by different coefficients. As for the coefficients of
hISSi

, if ρA < 1, ρTUC

A ∈ (0, ρA], ∀TUC ∈ N in (20), so it can
be established that ρTUC

A < 1, where 1 is the corresponding
coefficient in (21). Also, if ρA < 1, the coefficients of(
hBUuci

+ hDWi

)
of (20) is always lower than or equal to

TUC, which is the corresponding coefficient of (21). Therefore,
the LHS of (21) represents an upper bound for the LHS of (20)
and the TUC computed by the LP (22) will be suitable, but
may not be the maximum feasible value, for (20) may hold
for greater TUC values than those of constraint (22k) of the
LP. To find the maximum TUC value, constraint (20) can be
iterated after solving the LP (22) using the resulting support
function values hISS , hBUuc

and hDWj
. In particular, TUC

should be increased from the value returned by the LP until
the last one that complies with the constraint is found.



3) Unstable systems (ρA > 1): If ρA > 1, the relation
between constraints (20) and (21) is the opposite of the
previous case (ρA < 1). Therefore, the LP (22) has to be
initially computed but the obtained TUC represents an upper
bound TUC . To find the maximum TUC , constraint (20) has
to be iterated as in the previous case of ρA < 1, but starting
with TUC = TUC and decreasing it until the constraint is held.
The last value represents the maximum feasible TUC . Thus,
the number of iterations required will be TUC at most.

B. Computation of TSC

The safe set is defined as the TSC-steps stabilizable set,
which represents the set of states for which exists an admis-
sible control sequence that drives the system to the invariant
set ISS in TSC steps with an admissible evolution. Therefore,
TSC can be obtained following Algorithm 1, which is based
on the recursion for computing the n-steps stabilizable set.
However, note that instead of having TSC as input to define
SS, the algorithm does the opposite: it computes TSC starting
from XSC = SS as the TSC-steps stabilizable set.

Algorithm 1 Computation of TSC
0: Initialization: S ← ISS , k ← 1
0: Step 1: S ← (A−1SC(S 	DW)) ∩ SS
0: if S 6= SS then
0: k ← k + 1
0: GO TO Step 1
0: else
0: TSC ← k
0: end if=0

IV. RESULTS

The algorithm is tested using the linear model of the lab-
scale microgrid HyLab [20] with sample time TS = 0.5 min:

x(k+1) = x(k)+
[

8.136 5.958
−15.2886 0

]
u(k)+

[
5.958
0

]
w(k),

(24)
where the state variables are the state of charge of the
battery SOC(k) and the metal hydrides level of the storage
tank MHL(k), both measured in percentage (%), i.e., x =
[SOC, MHL]>; inputs are u = [PH2

Pgrid]
>, with the

former representing the power of the electrolyzer (PH2
(k) ≤

0) and the power of the fuel cell (PH2(k) > 0 ), and the
latter the power exchange with the grid, which is positive
when power is imported and negative when exported; finally,
disturbances are given by w(k) = Pnet(k), which corresponds
to the difference between the power produced by a renewable
energy source and the power demanded by the consumers.

State constraints are given by xmax = [40, 40]> and xmin =
[−40, −40]>. Regarding inputs signals, they have to be
within the intervals PH2

(k) ∈ [−0.9, 0.9] kW and Pgrid(k) ∈
[−2.5, 2] kW. Likewise, the disturbance is considered to lie in
the set w(k) ∈ [−0.1995, 0.2732], which has been generated
based on solar generation and demand data from 2020 from
the Spanish National Electricity Network (SNEN) webpage.1

1https://demanda.ree.es/visiona/peninsula/demanda/total

Fig. 3: Admissible state and safe sets for the HyLab model,
including also the system evolution for the simulation.

A. Computation of safe sets
The control laws for SC and MC are

KSC =
[

0.0103 −0.0290
0.0293 0.0131

]
,KMC =

[
0.0066 −0.0173
0.0155 0.0066

]
,

which correspond to discrete LQR designed using QSC = 10I ,
QMC = 2.5I and RSC = RMC = diag(5000, 8000), where
I is the unit matrix of the corresponding dimensions. The
corresponding closed-loop matrices ASC and AMC can be
obtained using (10) and (7), respectively.

Safe sets and admissible state sets for safety and mission
control mode are depicted in Fig. 3, where SS = XSC and
ISS is computed using the LP of (22) since ρA = 1. The
reduced input constraint set for the uncertain control period,
UUC = αUCU, has been defined for αUC = 0.15 to guarantee
ISS ⊆ XMC. Likewise, TUC = 5 = 2.5 min, which is also
computed with the same LP as ISS. Assuming TSR = 1 =
0.5 min, the remaining time steps for MC is TMC = 4 = 2
min. Finally, TSC = 12 = 6 min.

B. Simulation results
Figs. 3 and 4 shows the effects of two external attacks to

test the software rejuvenation strategy. In the first one, the
attacker sets the input values as zero, whereas in the second
one, it tries to drive the system to unsafe states by setting the
input signals to their maximum values. Here, the disturbance
signal is generated based on data from October 1st, 2020, from
9 am to 1 pm. Note that while the software refresh is taking
place, input signals keep the same value as in the last instant
of mission control mode.

The system remains in ISS during all time steps when
there are no attacks, so that the SC mode does not need to
be activated. Also, it remains within SS while being attacked
and the SC mode is successfully activated after finishing the
software refresh, and the state is taken back to the ISS in
less than the bounded time TSC.

As can be seen, the design of safe sets is conservative,
resulting in a relatively high software refresh frequency. The
main reason is that the disturbances set has been estimated by
getting data from an entire year. Likewise, the time required
for the safety controller to take the system back to ISS is
lower than the bounded time TSC. Less conservatism and a
lower frequency of refreshes can be attained by using data
from a shorter period to build the disturbance set, e.g., from
the previous weeks.



Fig. 4: Simulation with two external attacks.

V. CONCLUSION

This article extends the software rejuvenation strategy into
the discrete-time setting to ensure system safety without the
need for attack detection mechanisms. Leveraging the results
of [19] and considering stable systems, a one-step LP to
compute a inner safe set satisfying software rejuvenation con-
straints and an admissible TUC. Also, an equivalent iterative
process based on LPs has been presented for unstable systems.
Both approaches are especially useful for high-dimensional
systems, even when the computation of the maximum number
of time steps TSC is performed using classical set-theoretic
tools. However, the designed algorithms are only suitable in
the case of the matrix A that defines the system dynamics only
has real eigenvalues. Also, the performance of the algorithm
has been verified via simulation.

Extensions of this work will consider systems with complex
eigenvalues and model predictive control (MPC) strategies for
MC and SC controllers. Finally, connections with reinforce-
ment learning will also be explored in this context.

REFERENCES

[1] D. Kushner, “The real story of Stuxnet,” IEEE Spectrum, vol. 3, no. 50,
pp. 48–53, 2013.

[2] A. Bindra, “Securing the power grid: Protecting smart grids and
connected power systems from cyberattacks,” IEEE Power Electronics
Magazine, vol. 4, no. 3, pp. 20–27, 2017.

[3] M. Uma and G. Padmavathi, “A survey on various cyber attacks and
their classification.,” IJ Network Security, vol. 15, no. 5, pp. 390–396,
2013.

[4] P. Cheng, L. Shi, and B. Sinopoli, “Guest editorial special issue on
secure control of cyber-physical systems,” IEEE Transactions on Control
of Network Systems, vol. 4, no. 1, pp. 1–3, 2017.

[5] Y. Z. Lun, A. D’Innocenzo, F. Smarra, I. Malavolta, and M. D.
Di Benedetto, “State of the art of cyber-physical systems security:
An automatic control perspective,” Journal of Systems and Software,
vol. 149, pp. 174–216, 2019.

[6] F. Pasqualetti, F. Dörfler, and F. Bullo, “Attack detection and identifica-
tion in cyber-physical systems,” IEEE transactions on automatic control,
vol. 58, no. 11, pp. 2715–2729, 2013.

[7] W. Xu, W. Trappe, Y. Zhang, and T. Wood, “The feasibility of launching
and detecting jamming attacks in wireless networks,” in 6th ACM
international symposium on Mobile ad hoc networking and computing,
pp. 46–57, 2005.

[8] M. Arroyo, H. Kobayashi, S. Sethumadhavan, and J. Yang, “FIRED:
frequent inertial resets with diversification for emerging commodity
cyber-physical systems,” CoRR, vol. abs/1702.06595, 2017. Available
online: https://arxiv.org/abs/1702.06595.

[9] F. Abdi, C. Y. Chen, M. Hasan, S. Liu, S. Mohan, and M. Caccamo,
“Guaranteed physical security with restart-based design for cyber-
physical systems,” in 2018 ACM/IEEE 9th International Conference on
Cyber-Physical Systems (ICCPS), pp. 10–21, IEEE, 2018.

[10] R. Romagnoli, B. H. Krogh, and B. Sinopoli, “Design of software
rejuvenation for CPS security using invariant sets,” in 2019 American
Control Conference (ACC), pp. 3740–3745, IEEE, 2019.

[11] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software Re-
juvenation: Analysis, module and applications,” in 25th international
symposium on fault-tolerant computing. Digest of papers, pp. 381–390,
IEEE, 1995.

[12] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, “A survey of
software aging and rejuvenation studies,” ACM Journal on Emerging
Technologies in Computing Systems (JETC), vol. 10, no. 1, pp. 1–34,
2014.

[13] K. M. M. Aung and J. S. Park, “Software Rejuvenation approach to
security engineering,” in International Conference on Computational
Science and Its Applications, pp. 574–583, Springer, 2004.

[14] F. Gruber and M. Althoff, “Computing safe sets of linear sampled-data
systems,” IEEE Control Systems Letters, vol. 5, no. 2, pp. 385–390,
2020.

[15] S. V. Rakovic, E. C. Kerrigan, K. I. Kouramas, and D. Q. Mayne,
“Invariant approximations of the minimal robust positively invariant set,”
IEEE Transactions on automatic control, vol. 50, no. 3, pp. 406–410,
2005.

[16] S. V. Raković, B. Kouvaritakis, and M. Cannon, “Equi-normalization and
exact scaling dynamics in homothetic tube model predictive control,”
Systems & Control Letters, vol. 62, no. 2, pp. 209–217, 2013.

[17] I. M. Mitchell, J. Yeh, F. J. Laine, and C. J. Tomlin, “Ensuring safety
for sampled data systems: An efficient algorithm for filtering potentially
unsafe input signals,” in 2016 IEEE 55th Conference on Decision and
Control (CDC), pp. 7431–7438, IEEE, 2016.

[18] K. P. Wabersich and M. N. Zeilinger, “Linear model predictive safety
certification for learning-based control,” in 2018 IEEE Conference on
Decision and Control (CDC), pp. 7130–7135, IEEE, 2018.

[19] P. Trodden, “A one-step approach to computing a polytopic robust
positively invariant set,” IEEE Transactions on Automatic Control,
vol. 61, no. 12, pp. 4100–4105, 2016.

[20] M. Pereira, D. Limon, D. M. de la Peña, L. Valverde, and T. Alamo, “Pe-
riodic economic control of a nonisolated microgrid,” IEEE Transactions
on industrial electronics, vol. 62, no. 8, pp. 5247–5255, 2015.


