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Abstract—This paper proposes a first order sliding
mode observer for the purpose of simultaneously estimat-
ing the unknown input time delay and reconstructing the
loss of effectiveness in a model of an actuator. The adaptive
algorithm is driven by the ‘equivalent output error injection’
signal associated with the sliding motion. Sufficient con-
ditions are given to ensure finite time convergence of the
state estimation error system, ensuring both the time delay
estimation error and the estimation error associated with
the actuator fault converge to a small region around zero.
The efficacy of the approach has been evaluated via both a
numerical simulation and flight data validation.

Index Terms—Fault detection; Delay systems; Variable-
structure/sliding-mode control

I. INTRODUCTION

S
LIDING mode observers (SMOs) have been widely ap-
plied to solve Fault Detection and Diagnosis (FDD) prob-

lems [1] by exploiting the concept of the equivalent injection
signals [2], [3]. In [2], an SMO was first employed for the
purpose of fault reconstruction. Fault estimation as opposed
to merely detection is very useful in terms of the fault
tolerant control. In recent years, several authors have extended
typical adaptive observer structures and included sliding mode
injection terms to improve parameter estimation robustness
with respect to mismatched uncertainty [5]–[7]. In particular,
the work in [5] and [29] employ an adaptive law within an
SMO framework for solving FDD problems.
In practical systems, time delays are inevitable due to finite

signal transmission speed and the processing time associated
with different system components. In many situations, to
build a realistic dynamic model and achieve ideal closed-
loop stability performance, time delays should be explicitly
considered. Many control and observation methods assume
that time delays are known. However in many practical
situations, it is often the case that the delays are unknown
or uncertain. Time delay estimation (TDE) or time delay
identification has not been widely developed in the literature
due to its computational complexity. However, a number of
authors have studied TDE in the last decade (e.g. see [10]-
[23]). Using TDE, many time delay systems can be stabilised
more effectively, especially in the situation where there exists
large unknown time delays. The work in [9]–[13] exploited
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optimisation based ideas for TDE. However these methods
are not robust enough against variations of the time delay,
and some of these works assumed the unknown time delay to
be monotonic. The methods proposed in [17], [18] have been
applied to estimate unknown time delays, however, these meth-
ods modelled the delayed input as transport partial differential
equation (PDE) boundary conditions, and constant delays were
estimated via adaptive backstepping control. The theory of
non-commutative rings has also been applied to the analysis of
time delay systems and non-commutative ring based TDE has
been proposed in [19]. In [14], a convolution-based algebraic
approach was used for the estimation of constant time delays.
Observer based methods have also appeared in the literature
[21], [22]. The work in [21] decomposed the system states
via a Taylor polynomial and created an augmented observer
to estimate the constant state delay. In [22], [23], Kalman-
like observers were created to estimate the time delay for an
extended system with the delay as part of the extended state.
In [24] an adaptive observer was created based on Taylor’s
theorem. Sliding mode based methods have also been applied
to TDE [25]. For instance, the recent work in [20] exploited a
super twisting algorithm for the purpose of TDE. However, this
work requires the input signals (affected by the time delay) to
be strictly monotonic and assumes knowledge of the delayed
inputs to be available – which is not realistic in practice. In
[15], the time delay constant τ is modelled in the frequency
domain as an exponential function eτs and a simple filter
based adaptation scheme was used to identify the time delay
in finite time. This approach was further extended and applied
to vehicle applications [16].
The main contribution of this paper is to develop a simple

adaptive sliding mode observer to simultaneously estimate
an unknown input delay whilst estimating the magnitude of
a multiplicative fault (i.e. loss of the actuator effectiveness)
despite external disturbances. Since the unknown input delay
and the multiplicative actuator faults appear in the same
channel, this increases the complexity of the problem. To the
authors’ best knowledge, simultaneous FDD and TDE has not
been addressed in the literature before. The adaptation algo-
rithm is created via exploiting knowledge of the ‘equivalent
output error injection’ signal. Assuming a Persistently Exciting
(PE) regressor, a sufficient condition is proposed to guarantee
convergence of the estimation errors. Unlike [11], [12], [20],
this method does not require knowledge of the delayed input
u(t− h) which is not always available in practice. Numerical
simulation results show the efficacy of the method. To further
demonstrate its practicality, this approach is applied to real
flight test data, collected from an actuator fault tolerant flight
test campaign, to estimate both the values of the aileron input
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delay and the loss of actuator effectiveness.
The notation in this paper is standard. For example, A > 0

denotes a positive definite matrix, and the symbol ‖·‖ denotes
the Euclidean norm or its induced norm.

II. OBSERVER FORMULATION

Consider a single input, signal output actuator subject to an
unknown time-variant time delay and faults modelled as

ẋ(t) = ax(t) + bw(t)u(t− h(t)) + d(t)

y(t) = cx(t)
(1)

In (1), the parameter set (a, b, c) is assumed to be known.
It is assumed that the actuator dynamics are stable. In (1),
h(t) represents an unknown time delay which satisfies h(t) ∈
[hmin hmax], and x(τ) = x(0) for all τ ∈ [−h, 0]. The
quantities x(t) ∈ R and u(t) ∈ R in (1) denote the actuator
internal state and the command input respectively. Here it is
assumed that the state x(t) ∈ R is measurable. In (1), d(t)
captures the disturbance which satisfies |d(t)| ≤ d̄ where d̄ is
a known scalar. The unknown scalar function w(t) ∈ [0 1]
represents the effectiveness level of the actuator which is
unknown and to be estimated [1]. If 0 < w(t) < 1, the actuator
behaves with reduced effectiveness (i.e. some level of fault is
present). For a fault-free actuator w = 1, and for a completely
failed actuator w(t) = 0. In (1), both h(t) and w(t) are to be
estimated.
Assumption 2.1: It is assumed that

i) a < 0 (i.e. the actuator dynamics are stable);
ii) the scalar functions w(t) and h(t) are slowly varying, i.e.

ẇ(t) ≈ 0, ḣ(t) ≈ 0;
iii) the input u(t) is continuous and bounded, and satisfies

|u(t)| ≤ ū for all t ∈ [−hmax ∞);
iv) u(t) has a derivative with Lipschitz’s constant C for all

t ∈ [−hmax ∞);
Remark 2.1: Assumption 2.1 ii) has been widely used for

the development of adaptive schemes in the literature [8].
This assumption is usually made to ensure the exponentially
stability of the parameter estimation error to zero.
The proposed sliding mode observer for the system in (1) has
the following structure

˙̂x(t) = ax̂(t) + bŵ(t)ĥ(t)u̇(t− ĥ) + gley(t) + ν(t) (2)

where x̂(t) represents the estimate of x(t). In (2) the output
estimation error is ey(t) := c(x(t) − x̂(t)) and the nonlinear
output error injection vector

ν(t) =

{
k(t)sign(ey) if ey 6= 0

0 otherwise
(3)

where the modulation gain k(t) is a positive scalar function
which will be defined later and gl denotes the observer gain

to be selected. In (2) ŵ(t) and ĥ(t) are estimates to be
constructed via the adaptation scheme defined in the sequel.

The term u̇(t − ĥ) in (2) represents the first derivative of
u(t − ĥ). Here the aim is to create ŵ(t) and ĥ(t) so that
ey(t) → 0 in finite time.
Remark 2.2: Assumption 2.1 (iii) implies that the input

u(t − ĥ) is also bounded. In (2) u̇(t − ĥ) can be estimated
using a robust exact differentiator [26] defined as

ẋst = νst

νst = νst,1 − k1|xst − u(t− ĥ)| 12 sign(xst − u(t− ĥ))

ν̇st,1 = −k2sign(xst − u(t− ĥ))

(4)

where k1 and k2 are positive scalars. In [26] the following suf-
ficient conditions for the convergence of the ’super-twisting’
algorithm are given as

k2 > C and k21 ≥ 4C
k2 + C

k2 − C
(5)

where the Lipschitz constant C defined in Assumption 2.1 (iv)
is exploited.

III. REACHING AND SLIDING MOTION ANALYSIS

In this section, the state estimation error will be analysed
to demonstrate a sliding motion takes place in finite time.
Define the state estimation error e(t) = x(t) − x̂(t), then

from (1) and (2) it follows

ė(t) = ãe(t)+bw(t)u(t−h)−bŵ(t)ĥ(t)u̇(t− ĥ)−ν(t)+d(t)
(6)

where ã = a− glc.
Proposition 3.1: If the modulation gain k(t) satisfies

k(t) ≥ bū+ b|ŵ(t)||ĥ(t)||u̇(t− ĥ)|+ d̄+ η (7)

where ū represents a bound on the delayed input from As-
sumption 2.1 and η is a positive scalar, then ey converges
to zero and a sliding motion on ey = 0 will take place for
all t ≥ t0 where t0 is the finite time at which sliding is
established.

Proof: Define Ṽ (ey) =
1
2e

2
y(t) then it follows from the

expression for ė(t) in (6) that

˙̃
V = e2c2ã+ec2(bw(t)u(t−h)−bŵ(t)ĥ(t)u̇(t−ĥ)−ν(t)+d(t))

(8)
Here it is assumed without loss of generality (w.l.o.g) c > 0.
Since (a, c) are scalars, there always exists gl such that ã < 0
and therefore

˙̃
V ≤ ec2(bw(t)u(t−h)−bŵ(t)ĥ(t)u̇(t−ĥ)−ν(t)+d(t)) (9)

Using the fact |w(t)| ≤ 1, |u(t− h)| ≤ ū and |d(t)| ≤ d̄

˙̃
V ≤ |e|c2(bū+ b|ŵ(t)||ĥ(t)||u̇(t− ĥ)| − k(t) + d̄) (10)

If (7) is satisfied,
˙̃
V ≤ −η|c||ey| ≤ −η|c|

√

2Ṽ and therefore
ey will converge to zero and a sliding motion will take place
in finite time.
During sliding on ey = 0, ė(t) = e(t) = 0. Substituting

these quantities into (6) yields

νeq(t) = b(w(t)u(t− h)− ŵ(t)ĥ(t)u̇(t− ĥ)) + d(t) (11)

where the quantity νeq(t) is the equivalent output error injec-
tion signal necessary to maintain sliding [3]. Here the signal
νeq(t) is obtained by replacing the signum function with a
sigmoid function [2] in the signal ν(t), and therefore the
discontinuity is approximated using a smoothing factor. Using
Taylor’s theorem, the following equality is satisfied

u(t− h) = u(t− ĥ)− h̃(t)u̇(t− ĥ) + o(h̃) (12)

where h̃(t) = h− ĥ(t) denotes the time delay estimation error.
Substituting (12) into (11) yields

νeq(t)=b(w(t)u(t− ĥ)−h̃(t)w(t)u̇(t−ĥ)−ŵ(t)ĥ(t)u̇(t−ĥ))

+o(h̃) + d(t) (13)



Define the fault estimation error as w̃(t) = w(t)− ŵ(t), then
(13) is equivalent to

νeq(t)=o(h̃) + d(t) + b(w(t)u(t − ĥ)− h̃(t)w̃(t)u̇(t− ĥ)

−h̃(t)ŵ(t)u̇(t− ĥ)− ŵ(t)ĥ(t)u̇(t− ĥ))

=o(h̃) + d(t) + b(w(t)u(t − ĥ)− h̃(t)w̃(t)u̇(t− ĥ)

−(h− ĥ(t))ŵ(t)u̇(t− ĥ)− ŵ(t)ĥ(t)u̇(t− ĥ))

=o(h̃) + d(t) + b(w(t)u(t − ĥ)− h̃(t)w̃(t)u̇(t− ĥ)

−hŵ(t)u̇(t− ĥ)) (14)

Define a lumped uncertainty as

ξ(t) := −bh̃(t)w̃(t)u̇(t− ĥ) + o(h̃) + d(t) (15)

If the sliding motion on ey = 0 exists and can be maintained,

the signals ĥ(t) and ŵ(t) are available from the adaptation

scheme given later. Since h̃ = h− ĥ and h ∈ [hmin hmax],

|h̃| ≤ |h|+ |ĥ| ≤ hmax + |ĥ| (16)

Also since w̃ = w − ŵ and w ∈ [0 1],

|w̃| ≤ |w|+ |ŵ| ≤ 1 + |ŵ| (17)

From a practical engineering perspective, the approximation

of o(h̃) in (15) stops at order one and o(h̃) is assumed to be
negligible. Since the values of hmax, d̄ and b are known,

‖ξ(t)‖ ≤ ξ̄(t) (18)

where ξ̄(t) is known and is given explicitly as

ξ̄(t) = b(hmax + ĥ(t))(1 + ŵ(t))|u̇(t− ĥ)|+ d̄ (19)

Note: it can be seen from (15) that if the fault estimate error
w̃(t) and the time delay estimate error h̃(t) converge to zero,
ξ(t) approaches a residual set around zero bounded by d̄. In
particular, in the situation when d(t) = 0, ξ(t) → 0.
Now define

φ(t) :=

[
w(t)
h(t)

]

and ψ(t) :=

[
bu(t− ĥ)

−bŵ(t)u̇(t− ĥ)

]

(20)

where φ(t) is the vector of unknown parameters to be esti-
mated and ψ(t) is a known regressor function. Consequently
(14) can be written in the form of

νeq(t) = ψT (t)φ(t) + ξ(t) (21)

An adaptive law will now be developed to describe the
evolution of φ(t) driven by the equivalent injection νeq(t).
Assumption 3.1: It is assumed that the regressor function

ψ(t) remains bounded so that ‖ψ(t)‖ < ψ0 (where the positive
scalar ψ0 is known) and is Persistent Exciting (PE), that is for
any t ∈ R

∫ t+∆t

t

ψ(s)ψT (s)ds ≥ ǫI2 (22)

where ∆t > 0 and ǫ > 0.
Although the scalar b in ψ(t) is given, it can scaled to

any non-zero constant to adjust PE without changing the
actuator dynamic, which can be achieved w.l.o.g by a state
transformation of (1) if necessary.
Remark 3.1: As argued in [8], if ψ(t) is PE, the following

adaptation law
˙̂
φ(t) = γψ(t)(νeq(t) − ψT (t)φ̂) ensures the

estimation error φ̃(t) = φ(t) − φ̂(t) is globally exponentially
stable at the origin provided that ξ(t) ≡ 0. In the situation
when ξ(t) is essentially bounded, the estimation error is
input-to-state stable. However, this adaptation law does not
guarantee a finite time stability.

IV. CONVERGENCE ANALYSIS

In this paper, an alternative adaptation law based on ideas
from [15] is used to ensure the finite time convergence of the
estimation errors. Furthermore, the modulation function and
the bound of estimation error φ̃(t) will be calculated explicitly
in the sequel.
Define a non-homogeneous matrix differential equations as

Ẋ(t) = −λ0X(t) + ψ(t)ψT (t) X(0) = 0 (23)

where X(t) ∈ R
2×2 where λ0 is a positive scalar. Explicitly

the solutions of (23) is

X(t) =

∫ t

0

e−λ0(t−τ)ψ(τ)ψT (τ)dτ (24)

Remark 4.1: Since the regressor function ψ(t) is PE, the
solution X(t) in (24) implies that X(t) and X−1(t) are
positive definite for any t ∈ R. Here it is assumed, w.l.o.g,
λmin(X(t)) > β where β is a positive scalar [15].
Also define a vector χ(t) ∈ R

2 as the solution of

χ̇(t) = −λ0χ(t) + ψ(t)νeq(t) χ(0) = 0 (25)

so that

χ(t) =

∫ t

0

e−λ0(t−τ)ψ(τ)νeq(τ)dτ (26)

Finally define

ζ̇(t) = −λ0ζ(t) + ψ(t)ξ(t) ζ(0) = 0 (27)

so that

ζ(t) :=

∫ t

0

e−λ0(t−τ)ψ(τ)ξ(τ)dτ (28)

Define a new scalar variable ζ̄(t) as the solution of

˙̄ζ(t) = −λ0ζ̄(t) + ψ0ξ̄(t) ζ̄(0) = 0 (29)

where ξ̄(t) is defined in (19). Then it follows

‖ζ(t)‖ < ζ̄(t) (30)

where ζ̄(t) is known since ψ0 and ξ̄(t) is known. Using the
expression in (21), it follows from (24), (26) and (28) that

χ(t) = X(t)φ(t) + ζ(t) (31)

Define a switching function s(t) ∈ R
2 as

s(t) := φ̂(t)−X−1(t)χ(t) (32)

where φ̂(t) represents the estimate of φ(t) to be constructed
from the adaptation law which will be defined in the sequel.
Substituting (31) into (32) yields

s(t) = φ̂(t)−φ(t)−X−1(t)ζ(t) = −φ̃(t)−X−1(t)ζ(t) (33)

where φ̃(t) is the parameter estimation error.
Proposition 4.1: Choosing the adaptation scheme as

˙̂
φ(t) = −ρ(t)

s(t)

‖s(t)‖ (34)

where the (known) modulation function ρ(t) takes the form

ρ(t) =
ψ2
0

β2
(2− e−λ0t) +

1

β
(λ0ζ̄(t) + ψ0ξ̄(t)) + η0 (35)

where ζ̄(t) is the solution of (29). Then a sliding motion is
forced to exist on s ≡ 0 in finite time ts.



Proof: Define a Lyapunov candidate as V = 1
2s

T (t)s(t).
Exploiting Assumption 2.1 ii), the derivative of V is

V̇ =sT (t)ṡ(t) = sT (t)
d

dt
(−φ̃(t)−X−1(t)ζ(t))

=sT (t)(− ˙̃
φ(t) +X−1(t)Ẋ(t)X−1(t)ζ(t) −X−1(t)ζ̇(t))

=sT (t)(
˙̂
φ(t)+X−1(t)Ẋ(t)X−1(t)ζ(t)−X−1(t)ζ̇(t))

(36)

From (23), the term X−1(t)Ẋ(t)X−1(t) in (36) satisfies

‖X−1(t)Ẋ(t)X−1(t)‖ ≤ ψ2
0

β2
(2 − e−λ0t) (37)

and from (30) the term X−1(t)ζ̇(t) is bounded by

‖X−1(t)ζ̇(t)‖ ≤ ‖X−1(t)‖‖ζ̇(t)‖ ≤ 1

β
(λ0ζ̄(t) + ψ0ξ̄(t))

(38)
Substituting (34) into (36) and using (37) and (38) yields

V̇ =−ρ(t)‖s(t)‖+sT (t)(X−1(t)Ẋ(t)X−1(t)ζ(t)−X−1(t)ζ̇(t))

≤(−ρ(t) +
ψ2
0

β2
(2− e−λ0t) +

1

β
(λ0ζ̄(t) + ψ0ξ̄(t)))‖s(t)‖

(39)

Therefore by choosing ρ(t) as in (35) yields

V̇ ≤ −η0‖s(t)‖ = −η0
√
2V (40)

and therefore s(t) → 0 in finite time and

φ̃(t) = −X−1(t)ζ(t) (41)

holds in finite time ts.
Remark 4.2: The global bound on ξ(t) given by ξ̄(t) in (19)

is very conservative. In a neighbourhood of φ̃(t) = 0, a less
conservative bound

‖ξ(t)‖ < d0‖φ̃(t)‖ + d1 (42)

can be used (where d0 and d1 are fixed positive scalars). From
the definition of ξ(t) in (15), inequality (42) better reflects the
inherent property that as φ̃(t) → 0, the lumped uncertainty
ξ(t) → d(t) as observed in (15).
The following proposition analyzes the evolution of the

parameter estimation error during the sliding motion in s = 0.
Proposition 4.2: If βλ0 > ψ0d0, then during sliding when

(41) is satisfied, φ̃(t) is bounded for all t ≥ ts.
Proof: From (28) and (42)

‖ζ(t)‖≤
∫ t

ts

e−λ0(t−τ)‖ψ(τ)‖‖ξ(τ)‖dτ

≤
∫ t

ts

e−λ0(t−τ)ψ0d0‖φ̃(τ)‖dτ+
∫ t

ts

e−λ0(t−τ)ψ0d1dτ

(43)

During sliding s(t) = 0 and from (41), φ̃(t) = −X−1(t)ζ(t).
Therefore ‖φ̃(t)‖ ≤ ‖X−1(t)‖‖ζ(t)‖ < 1

β
‖ζ(t)‖ since

‖X(t)‖ > β. Let µ := ψ0d0

β
and therefore using (43)

‖φ̃(t)‖ ≤ ‖φ̃(ts)‖+
∫ t

ts

e−λ0(t−τ)(µ‖φ̃(τ)‖+ ψ0d1

β
)dτ (44)

Define ω̄(t) := eλ0t‖φ̃(t)‖, then from (44)

ω̄(t) ≤ eλ0t‖φ̃(ts)‖+ µ

∫ t

ts

ω̄(τ)dτ +

∫ t

ts

eλ0τ
ψ0d1

β
dτ

= µ

∫ t

ts

ω̄(τ)dτ +
ψ0d1

λ0β
(eλ0t − eλ0ts) + eλ0t‖φ̃(ts)‖

︸ ︷︷ ︸

λ(t)

(45)

which is in the integral form of the Bellman-Gronwall Lemma.
Using the Bellman-Gronwall Lemma [28]

ω̄(t) ≤ λ(t) + µ

∫ t

ts

λ(τ)eµ(t−τ)dτ (46)

The integral term in (46) can be written as
∫ t

ts

λ(τ)eµ(t−τ)dτ=

∫ t

ts

ψ0d1

λ0β
(eλ0τ − eλ0ts)eµ(t−τ)dτ

+

∫ t

ts

‖φ̃(ts)‖eλ0τeµ(t−τ)dτ

=
ψ0d1

λ0β
eµt(

∫ t

ts

e(λ0−µ)τdτ −
∫ t

ts

eλ0ts

eµτ
dτ)

+‖φ̃(ts)‖eµt
∫ t

ts

e(λ0−µ)τdτ

=
ψ0d1

λ0β
eµt(

e(λ0−µ)t−e(λ0−µ)ts

λ0−µ
+
eλ0ts

µeµt

− eλ0ts

µeµts
)+‖φ̃(ts)‖eµt

e(λ0−µ)t−e(λ0−µ)ts

λ0−µ
(47)

Substituting (47) into (46) yields

eλ0t‖φ̃(t)‖≤µψ0d1

λ0β
eµt(

e(λ0−µ)t−e(λ0−µ)ts

λ0−µ
+
eλ0ts

µeµt
− eλ0ts

µeµts
)

+
ψ0d1

λ0β
(eλ0t − eλ0ts) + eλ0t‖φ̃(ts)‖

+ µ‖φ̃(ts)‖eµt
e(λ0−µ)t−e(λ0−µ)ts

λ0−µ
(48)

Multiplying e−λ0t on both sides of (48) yields

‖φ̃(t)‖≤µψ0d1

λ0β
e(µ−λ0)t(

e(λ0−µ)t−e(λ0−µ)ts

λ0−µ
+
eλ0ts

µeµt
− eλ0ts

µeµts
)

+
ψ0d1

λ0β
(1− eλ0(ts−t)) + ‖φ̃(ts)‖

+ µ‖φ̃(ts)‖e(µ−λ0)t
e(λ0−µ)t−e(λ0−µ)ts

λ0−µ
(49)

It can be seen from (49) that if βλ0 > ψ0d0, then λ0 −µ > 0
and φ̃(t) remains bounded for t ≥ ts.

Remark 4.3: From (49) it follows ‖φ̃(t)‖ ≤ ψ0d1

λ0β
+‖φ̃(ts)‖

as t → ∞. Since βλ0 > ψ0d0, ψ0 < βλ0

d0

and therefore

‖φ̃(t)‖ ≤ d1

d0

+ ‖φ̃(ts)‖ as t → ∞. Consequently, the residual
set of ‖φ̃(t)‖ can be made small enough if d0 ≫ d1 is satisfied

in (42) and the initial values of ĥ(t) and ŵ(t) are chosen to be
close enough to their true values, which implies that ‖φ̃(t)‖
at time instant ts is small.



V. NUMERICAL EXAMPLE

Consider the dynamics of an aileron from JAXA’s experi-
mental MuPAL-α aircraft [27] given by

ẋ(t) = −11.11x(t) + wu(t− h)

y(t) = 9.45x(t)
(50)

which will initially be treated as the nominal model for the
simulation. In this simulation, the time delay is assumed to
be h = 0.3s. Furthermore, it is assumed that the aileron loses
50% of its effectiveness, i.e. w = 0.5. The problem can be
written in the form of (1) in Section II.
For simplicity, in the observer design the scalar modulation

gain k(t) from (7) is chosen to be fixed and assigned the value
19. The scalar λ0 from (23), (24) and (25) is selected as 1. In
(34), the gain ρ = 100 which governs the convergence rate of
the estimation error.
In this example, the control input u(t), shown in Fig. 1(a),

provides sufficient excitation for the adaptive scheme. Here
the control signal is chosen to be a sinusoidal signal with
frequency 2rad/sec and amplitude 0.05rad. The disturbance
signal d(t) represents Gaussian white noise with a maximum
amplitude of 0.05rad. Clearly, the amplitude of disturbance is
same as that of the input signal which needs to be suppressed
by the proposed scheme.
Here two scenarios (d(t) = 0 and d(t) 6= 0) are considered.

The plant and observer output error ey is shown in Fig. 1(b)
which shows that the sliding occurs rapidly and the switching
function is maintained close to zero despite a high frequency
sinusoidal input and the disturbance d(t) 6= 0.
The error between the actuator fault and its estimates (i.e.

w̃) is shown in Fig. 1(c) and Fig. 1(d) which indicates that
the observer has managed to provide a good estimation of
the actual loss of effectiveness despite the disturbance. This
demonstrates that the approach in this paper is capable of
suppressing the effect of the external disturbance. It can also
be seen from Fig. 1(e) and Fig. 1(f) that despite the input delay
is chosen to be 0.3 (which represents a relatively large input
delay) from the beginning of the simulation, the estimation

error h̃ converge close to zero even in the presence of the
large external disturbance.
To compare the fault estimation performance of the pro-

posed scheme and the conventional adaptive law in [8] dis-
cussed in Remark 3.1, both are plotted in Fig. 1(g). Similarly,

the performance comparison for h̃ is shown in Fig. 1(h). It can
be seen from Fig. 1(g) and Fig. 1(h), by using the conventional
scheme, oscillations appear in estimates due to the limit cycle
behaviour of the sliding motion. Although the convergence
speed can be increased by enlarging the learning rate, the large
learning rate enlarges the oscillations in the estimates as well.

VI. PERFORMANCE VALIDATION FROM FLIGHT TEST DATA

To further test the new FDI scheme proposed in this paper,
aircraft flight test data, collected from JAXA’s experimental
MuPAL-α aircraft from one of a series of actual flight tests
conducted in January 2017 [30] will be used in an offline
evaluation. During the flight tests, a fault in the aileron was
introduced giving a reduction in efficiency of 50%. For safety
reasons, the fault was introduced at a software level. During
the flight tests, air data inertial reference system (ADIRS) data
and actuator performance levels were logged for monitoring
and evaluation purposes [30].
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Fig. 1. Simulation results

As argued in [4], the aileron dynamics can be represented
as a serially connected system involving a first order dynamic
and a delay model. The aileron dynamic without time delay,
associated with this flight condition, was modelled as in (50)
used for the numerical simulation. The input time delay is
uncertain and it satisfies h ∈ [0.06 0.40] which was identified
from step and sinusoidal response data recorded from earlier
flight tests [4]. During the flight test, a coordinated ‘S-turn’
manoeuvre, with a roll angle of ±20deg was introduced by
the pilot. The actuator commands and their surface deflections
are shown in Fig. 2(b). It can be seen from Fig. 2(b) that
the input time delay exists and the aileron only operates at
50% efficiency due to the presence of the fault. The observer
scheme described earlier was used off-line to estimate the
delay and the fault.

As shown in Fig. 2(c), the sliding surface ey is close to



zero despite the manoeuvre created by the pilot. The aileron
fault implemented during the flight test and its estimation is
shown in Fig. 2(d), and it can be seen from Fig. 2(d) that the
fault estimate ŵ in the early part of the experiment approaches
the actual fault w. Notice that in Fig. 2(d) an estimation error
appears between 50sec and 70sec. This is in the middle of
the manoeuvre when the roll command changes from 20deg
to −20deg, as shown in Fig. 2(a). The input delay estimate is
shown in Fig. 2(e). Clearly from Fig. 2(e), the delay estimate
converges towards 0.16sec which is inside the known range of
the aileron input delay (i.e. h ∈ [0.06 0.40]). Fig. 2(f) shows
that λmin(X(t)) > 0.0002 and therefore the Assumption 3.1
is verified and the control input in Fig. 2(b) ensures PE.
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Fig. 2. flight data validation

VII. CONCLUSION

In this paper, the problem of simultaneous estimation of the
input time delay and the loss of effectiveness of a single-input
single-output actuator system was addressed using a sliding
mode observer. This is a challenging problem and has not yet
been completely resolved in the literature. By appropriately
using the equivalent output error injection signal and an adap-
tation law, a simple sliding mode observer scheme which can
guarantee convergence of the time delay and fault estimation
errors is proposed. A numerical example was provided to
illustrate the effectiveness of the new result together with real
flight data collected from a flight test. Very accurate results
demonstrating the effectiveness of the scheme were reported.
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